
Cost-effective 4DoF manipulator for general
applications?

Sandro A. Magalhães1,2, António Paulo Moreira1,2, Filipe Neves dos Santos2,
Jorge Dias2,4, and Luis Santos1,5

1 INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e
Ciência, Campus da FEUP, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

2 Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465
Porto, Portugal

3 Institute of Systems and Robotics, Department of Electrical Engineering and
Computers, University of Coimbra, Rua Silvio Lima – Pólo II, 3030-290 Coimbra,

Portugal
4 Khalifa University of Science, Technology, and Research, Abu Dhabi 127788,

United Arab Emirates
5 UTAD – Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados,

5000-801 Vila Real

Abstract. Nowadays, robotic manipulators’ uses are broader than in-
dustrial needs. They are applied to perform agricultural tasks, consumer
services, medical surgeries, among others. The development of new cost-
effective robotic arms assumes a prominent position to enable their wide-
spread adoption in these application areas. Bearing these ideas in mind,
the objective of this paper is twofold. First, introduce the hardware and
software architecture and position-control design for a four Degree of
Freedom (DoF) manipulator constituted by high-resolution stepper mo-
tors and incremental encoders and a cost-effective price. Secondly, to
describe the mitigation strategies adopted to lead with the manipula-
tor’s position using incremental encoders during startup and operating
modes. The described solution has a maximum circular workspace of
0.7 m and a maximum payload of 3 kg. The developed architecture was
tested, inducing the manipulator to perform a square path. Tests prove
an accumulative error of 12.4 mm. All the developed code for firmware
and ROS drivers was made publicly available.

Keywords: robotic arm, manipulator control, manipulator design, position-
control, 4DoF manipulator

? This work is financed by National Funds through the Portuguese funding
agency, FCT – Fundação para a Ciência e a Tecnologia, within the scholarship
SFRH/BD/147117/2019.
The final publication is available at Springer via http://dx.doi.org/10.1007/
978-3-030-82199-9 15

http://dx.doi.org/10.1007/978-3-030-82199-9_15
http://dx.doi.org/10.1007/978-3-030-82199-9_15

2 Sandro A. Magalhães et al.

1 Introduction

Since the beginning of the research in robotics, robotic manipulators became one
of the most significant research interests. Their high-capability to manipulate
and grasp objects has aroused the industry’s interest in using them to agile and
execute repetitive tasks.

The first applications for robotic arms appeared in the industry. In the begin-
ning, robots worked only inside closed and protected cells, executing single and
repetitive tasks [1]. Nevertheless, scientists and engineers later found that these
robots could work collaboratively with the human being, performing supporting
tasks [2].

With good results in mobile robotics research, researchers found that mo-
bile manipulators could be helpful in many different issues. For example, inside
manufacturing, they can dynamically change the layout, execute various tasks,
or transport objects between cells [3]. However, mobile manipulators’ uses are
not constrained to industry. Successful use cases for manipulators are visible in
agricultural environments [4], medical surgery rooms [5], or consumer services [6].

Many kinds of configurations for the manipulators may be used to reach dif-
ferent results. They can vary in the number of joints (normally between 1 to 6
joints, but some cases of redundant configurations are frequent) and joint type,
i.e., revolution (R) or prismatic (P) joints [7, ch. 1]. In agricultural environments,
researchers frequently use four DoF manipulators, but there are some applica-
tions with 3, 5, or 6 DoF [8–13]. A 6 DoF manipulator normally offers higher
maneuverability and dexterity but is usually expensive. On the other hand, a 4
DoF manipulator is more cost-effective, so more attractive for most agricultural
tasks.

The Igus RoboLink manipulator is a cost-effective manipulator designed by
Igus company6 with 4 DoF. All the joints of the arm are revolution joints
(RRRR). This manipulator has not any control hardware or software. Therefore,
this paper article presents the software and hardware architecture of the manip-
ulator. The Igus RoboLink manipulator is a commercial manipulator without
the control hardware and software. So, the contributions of this paper are:

– Implementation of control hardware;
– Implementation of the position control loop7;
– Implementation of Robot Operating System (ROS) packages to communicate

with the robot, simulate it, and plan trajectories8;
– Rough evaluation of the robot’s performance.

The section 2 does an overall presentation of the manipulator, specifying
some of its features. Section 3 demonstrates the forward and inverse kinematics.

6 http://www.igus.pt/
7 The code was made publicly available at https://gitlab.inesctec.pt/agrob/

igusman4agro
8 The code was made publicly available at https://gitlab.inesctec.pt/agrob/

igusman4agro ROS

http://www.igus.pt/
https://gitlab.inesctec.pt/agrob/igusman4agro
https://gitlab.inesctec.pt/agrob/igusman4agro
https://gitlab.inesctec.pt/agrob/igusman4agro_ROS
https://gitlab.inesctec.pt/agrob/igusman4agro_ROS

Cost-effective 4DoF manipulator for general applications 3

Sections 4 and 5 present the hardware and software architecture and design con-
siderations, respectively. Section 6 details the driver, which establishes the com-
munication between the manipulator and ROS (Robotics Operating System) [14]
through the serial port. Section 7 tests the performance of the manipulator with
a fixed trajectory. Finally, section 8 presents the conclusions, identifies some
found issues, and previews future work to solve them.

2 Manipulator features

The Igus RoboLink robotic arm RL-D-RBT-5532-BC in Fig. 1 is a flexible,
modular, multi-purpose, and low-cost solution for manipulation and grasping.
It is an articulated manipulator with 4 DoF (RRRR). Plastic worm gear with
bipolar precise stepper motor equips each joint for power transmission. Moreover,
to feedback each joint’s position, it also has a high-resolution incremental encoder
and a Hall sensor for position resetting.

Fig. 1. Igus RoboLink RL-D-RBT-5532-BC

The total manipulator weights about 15 kg and supports a maximum payload
of 3 kg. It works between 24 V to 48 V and consumes 14.6 A of maximum current.
However, the manipulator is fully working with just 3 A because it has a low
payload and speed in its general uses for pruning or monitoring in agriculture.
Concerning the operational workspace, it reaches a maximum circular workspace
of 0.7 m.

3 Kinematics

3.1 Forward kinematics

The forward kinematics of the Igus RoboLink manipulator in Fig. 1 could be cal-
culated through the Denavit-Hartenberg (DH) method [7, ch. 3.2]. The schemat-

4 Sandro A. Magalhães et al.

ics in Fig. 2, 3 and 4 present the kinematics chain of the manipulator of Fig. 1,
which places the frames for each joint of the manipulator and characterise the
rotation angles for each of them.

Fig. 2. Igus manipulator schematic draw for kinematics calculation. d1, d2, a2, a3 are
fixed distances, respectively 0.39 m, 0.009 m, 0.36 m, 0.27 m. d4 depends of the centre
of the used gripper. θ1, θ2, θ3, θ4 are variables which varies according to the position of
the joint. xi, yi, zi are the frames for each joint i.

Fig. 3. Igus manipulator schematic draw for kinematics calculation (lateral view). See
Fig. 2 for more details.

Any homogeneous transformation may be represented by a vector of six val-
ues: three for the rotation and three for the translation. Nevertheless, the DH

Cost-effective 4DoF manipulator for general applications 5

Fig. 4. Igus manipulator schematic draw for kinematics calculation (top view). The
frame Ox0y0z0 is the global frame, and the robot is placed on it. See Fig. 2 for more
details.

method reduces this representation to four values, through careful placement of
the frames for each joint [7, ch. 3.2.2], as placed in the Fig. 2. So, in the DH
method, the homogeneous transformation matrix has the shape of (1). In this
equation:

ai is the segment size (distance between Oi and zi−1);
αi is the segment twist (angle between zi and zi−1);
di is the segment offset (distance between xi and Oi−1);
θi is the articulation angle (angle between xi and xi−1).

Ai =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 (1)

The table 1 applies the DH method to the Igus manipulator, using the
schematics of Fig. 2. In this table, all the distances are represented in meters
(m) and all angles in degrees (o), and θi are variable values that depend on the
joint rotation.

Table 1. Application of the DH method for the manipulator

i ai αi di θi
1 0 90° d1 θ1
2 a2 0° d2 θ2
3 a3 90° 0 θ3
4 0 0° d4 θ4

The homogeneous transformation for each joint of the manipulator can be
calculated using the matrix (1) and the table eq:forward kinematics DH. The

6 Sandro A. Magalhães et al.

forward kinematics of the IGUS manipulator can be computed by multiplying
these homogeneous matrices (2).

T 0
4 = A1A2A3A4 (2)

3.2 Inverse kinematics

The forward kinematics has always been unique, but the same does not verify
in the inverse kinematics. It can have one solution, multiple solutions, or no
solution. The manipulator may have multiple solutions when there are multi-
ple joint’s positions to reach the same cartesian pose. There is no valid joints
position when the desired cartesian pose is outside the manipulator workspace.
The inverse kinematics is computed by the inverse matrix of (2), i.e., (T 0

4)−1.
Some alternative strategies are also used, such as the decoupling [7, ch. 3.3], to
facilitate the inverse kinematics calculation.

Observing the manipulator’s composition, it is possible to apply the kine-
matic decoupling strategy proposed by Spong et al. [7, ch. 3.3]. For current case,
it was considered that (x4, y4, z4) is the pose of the end-effector, i.e. (xo, yo, zo),
and (x3, y3, z3) is the position of the manipulator, i.e. (xc, yc, zc). Therefore, it
is possible to divide the kinematic problem into two parts: (i) inverse position of
the manipulator, (ii) inverse orientation of the end-effector. O0

c , the position of
the frame Oc in relation to the frame O0, can be computed as (3). In this equa-
tion, O0

o is the position of the end-effector, d4 is the offset of the end-effector, R0
4

is the rotation matrix between the origin and the end-effector, and because the
initial pose for the manipulator is pointing up, it was considered the standard
orientation of the manipulator [0 0 1]T . Equation (4) decouples the orientation
problem, Ri

j is the rotation matrix between the frame i to the frame j.

Oo
c = O0

o − d4R0
4

0
0
1

 (3)

R3
4 = (R0

3)−1R = (R0
3)TR (4)

Therefore the kinematics problem can now be solved in two parts. The first
part concerns computing the inverse position of the manipulator (section 3.3),
computing Oo

c , which is commonly solved through geometrical approaches. The
second part concerns solving the inverse orientation of the manipulator (sec-
tion 3.2), which focuses on solving the rotation matrix R3

4.

Inverse orientation As previously referred, the computation of the inverse
orientation of the manipulator focuses on solving the rotation matrix R3

4. The
rotation matrix R0

4 is known and is the desired rotation for the end-effector.
Once computed the inverse position (as performed in the section 3.3), R0

3 can
be obtained by computing T 0

3 as (2). R0
3 is a square matrix of the first three

columns and rows of the matrix T 0
3 , i.e. R0

3 = T 0
3 (0 : 2, 0 : 2).

Cost-effective 4DoF manipulator for general applications 7

While in the initial pose, the joint four’s movement is a rotation along the
z-axis. Therefore, the rotation matrix R3

4, besides (4), can also be described as
a matrix of Euler Angles in the z-axis (5). In this equation, α is the angle of
the joint four, i.e. θ4. Comparing both equations (4) and (5), it is possible to
compute the position angle θ4.

Rotz =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 (5)

3.3 Inverse position

For computing the robot inverse position, a geometric approach was used based
on the schematics of Figs. 4 and 5.

Fig. 5. Igus manipulator schematic draw for kinematics calculation (lateral view). The
frame Ox0y0z0 is the global frame, and the robot is placed on it. Ji is the joint i of the
manipulator. See Fig. 2 for more details.

From Fig. 4, it is possible to compute the position angle of the joint 1. This
angle is given by (6).

The position angles of joints 2 and 3 can be computed through a lateral view
of the robot as demonstrated in Fig. 5 and are computed, respectively by (7)
and (8).

8 Sandro A. Magalhães et al.

θ1 = arctan 2(y3, x3)+

arctan 2(−d2,±
√
r2 − d2) (6)

θ2 = arctan 2(s, r))−
arctan 2(a3 sin(θ2), a2 + a3 cos(θ3)) (7)

θ3 = arctan 2(cos(θ3),±
√

1− cos2(θ3)) (8)

cos (θ3) =
r2 + s2 − d22 − d23

2d2d3
(9)

r2 =x23 + y23 − d22 (10)

s =z3 − d1 (11)

4 Hardware architecture

As previously referred, the Igus manipulator (Fig. 1) is a four revolution joints
manipulator. An incremental encoder counts its movement for each joint while
moving through a bipolar precise stepper motor.

Due to the high-resolution of the stepper motor and once it just moves one
step for each order command, a high-speed clock cycle is desired. So, in the
proposed architecture, four Arduino Pro Mini9 are responsible for commanding
and managing the position of each joint (Fig. 6). A distributed system based on
Arduino boards reduces the microprocessors’ overload to control each joint and
increase the frequency. Each microcontroller receives and processes the encoder
and Hall sensor data to get the joint’s absolute position. It also controls the
stepper motor through a TB66600 stepper motor driver.

Since the manipulator follows a distributed architecture, the microcontrollers
need to share information between them and the external systems. This commu-
nication interface is achieved using the Inter-Integrated Circuit protocol (I2C)
protocol, and the master microcontroller communicates with external systems
using Universal Asynchronous Receiver-Transmitter protocol (UART) and a cus-
tom American Standard Code for Information Interchange (ASCII) string (sec-
tion 5.3) as described in Fig. 6.

This distributed architecture allows the spread of the computational cost
over several microcontrollers, consequently, optimises the control cycle. Simul-
taneously, once Electrically-Erasable Programmable Read-Only Memory (EEP-
ROM) stores part of the data, it is also optimised, as detailed in section 5.

5 Software architecture

As referred to in section 4, the Igus RoboLink manipulator is built over a dis-
tributed configuration. Four Arduino Pro Mini are responsible for commanding

9 https://store.arduino.cc/arduino-pro-mini

Cost-effective 4DoF manipulator for general applications 9

Arduino	Pro
Mini

Reset

9
8

7
6

5
4

3
2

G
N
D

R
ST

R
X
I

TX
O TXORXI

R
AW

G
N
D

R
ST

V
C
C

A
3

A
2

A
1

A
0

13
12

11
10

VCCGND

B
LK

G
R
N

C
106

C
106

Arduino	Pro
Mini

Reset

9
8

7
6

5
4

3
2

G
N
D

R
ST

R
X
I

TX
O TXORXI

R
AW

G
N
D

R
ST

V
C
C

A
3

A
2

A
1

A
0

13
12

11
10

VCCGND

B
LK

G
R
N

C
106

C
106

Arduino	Pro
Mini

Reset

9
8

7
6

5
4

3
2

G
N
D

R
ST

R
X
I

TX
O TXORXI

R
AW

G
N
D

R
ST

V
C
C

A
3

A
2

A
1

A
0

13
12

11
10

VCCGND

B
LK

G
R
N

C
106

C
106

Arduino	Pro
Mini

Reset

9
8

7
6

5
4

3
2

G
N
D

R
ST

R
X
I

TX
O TXORXI

R
AW

G
N
D

R
ST

V
C
C

A
3

A
2

A
1

A
0

13
12

11
10

VCCGND

B
LK

G
R
N

C
106

C
106

��
2

����

Fig. 6. Igus hardware architecture

and controlling the stepper motor drivers, which command each manipulator’s
joint. The microcontrollers share information using I2C, where the Arduino,
which controls the first joint of the robot (see Fig. 6) is the master and the other
ones are slaves.

5.1 Control loop

The program’s main loop is featured by reading and setting the reference and
the current joint poses. In the master microcontroller, the main loop, described
in the algorithm 1, starts by receiving an encoded packet through UART and
decoding it. After, the master sends the reference pose to the slaves and updates
its reference pose. At the end of the main loop, it requests the other joints’
current poses using I2C, updates its current pose, and sends an encoded packet
with all updated current poses through UART.

Algorithm 1: Main loop for master (joint 1)

Initialization;
while true do

Receive reference poses and velocities from UART;
for i = 2 to 4 do

Update reference pose and velocity of joint i through I2C;
end
Update reference pose of joint 1;
for i = 2 to 4 do

Request current pose of joint i through I2C;
end
Update current pose of joint 1;
Pack all current poses and send through UART;

end

10 Sandro A. Magalhães et al.

A similar algorithm, illustrated in the algorithm 2, is used on slaves mi-
crocontrollers. However, they do not have any UART communication and only
respond to master I2C requests.

Algorithm 2: Main loop for slaves (joints 2 to 4)

Initialization;
while true do

Updated the transmitted reference pose;
Respond with the current joint pose using I2C;

end

The microcontroller processes the control loop concurrently through timer
interruptions. All joints are position-controlled with a variable velocity because
they have incremental encoders and stepper motors, allowing easy counting of
steps and the joints’ position. The program uses a control loop that simulates
a Pulse Width Modulation signal (PWM) to generate the joint velocity, as de-
scribed in Fig. 7. After the initialization procedures, it jumps to the STOP state.
If there are a positive reference speed and a position error, the state machine
commutes to PWM HIGH. Into this state, the motor moves one step and imme-
diately changes to PWM LOW state or, whether the reference speed or position
error is null, to STOP state. While into PWM LOW state, the motors do not
move, and the variable non moved steps is incremented once per control cycle
of 80µs. This state machine allows a PWM effect whose duty cycle is described
between 0 – 99. So, a joint’s overall speed is described in (12) in pulses per cycle.
In this equation, v is the reference duty cycle between 0 – 99.

vpps =
1

80× (1 + 100− v)
× 106 (12)

reference_speed	 	0	
AND	error	 	0

>

≠

STOP PWM_HIGH

non_moved_steps	 reference_speed== 99−

PWM_LOW

reference_speed	 	0	
OR	error	 	0

==

==

Fig. 7. State machine for joint position control using a variable velocity

The update of the joint position is done via digital pin interruption for the A
pin. Fig. 8 schematics an example of the sensors’ behaviour. The A and B signals

Cost-effective 4DoF manipulator for general applications 11

allow computing the rotation direction of the incremental encoder. Whether
signal A changes to true and B is true, the joint moves ClockWise (CW), and the
position counter is incremented. Otherwise, the motor moves Counter-ClockWise
(CCw), and the position counter decrements.

The N signal refers to the Hall sensor. When it is true, the sensor is acted,
so the joint position counter is reset once.

Fig. 8. Incremental encoder and Hall sensor signals

5.2 Initialization loop

There are three possible states when the manipulator powers off: stopped, mov-
ing to CW, or moving to CCw. Every time the state machine changes the state,
the microcontroller stores this information in the EEPROM and the current
joint position.

So, whenever the joint powers on, the microcontroller reads the joint’s last
state and position. Whether the joint was stopped, the last position is updated,
and the initialisation procedure is complete. Otherwise, whether it was moving,
the joint position needs to reset in the Hall Sensor. The joint moves to CW or
CCw, such as described in the state machine of Fig. 9.

5.3 Data sharing packet protocol

As indicated in Fig. 6, the manipulator communicates with other devices through
UART. For that, a structured packet for positions and velocities sharing was
designed. This packet is string-based and always starts with the ‘$’ character
and finishes with the ‘#’ character.

The equation (13) is an example of a sent packet to send the target joints
positions for the manipulator. It contains eight elements of comma-separated,
dividable into four pairs. Each pair contains a string of five digits representing the
target position angle, in radians, for the joint multiplied by 10 000. So the joint’s

12 Sandro A. Magalhães et al.

last_motor_state	==	CW

last_motor_state	==	CCW

last_motor_state	==	STOPSTART

Read	last_motor_state

hall_sensor	==	true

MOVE	CCW

hall_sensor	==	true

MOVE	CW

STOP
NORMAL	

OPERATION
MODE

Fig. 9. State machine for joint initialization

target position should be represented by a string number between 00000 and
62 832. The other sub-string is the target velocity for Pulse Width Modulation
(PWM) generation and is represented by a string of two digits between 00 and
99.

At the end of each main loop’s cycle, the manipulator answers each joint’s
current position. This response message has a similar structure to the sent packet
(14). It also starts and ends with the same characters, but it only answers four
sub-strings of five digits between 00000 and 62 832.

$00000, 00, 00000, 00, 00000, 00, 00000, 00# (13)

$00000, 00000, 00000, 00000# (14)

In both messages, the joints are organised and numbered as indicated in
Fig. 6, i.e., joint one is the base joint, and joint four is the end-effector attacher
joint. When all joints are looking up and the first joint is turned to the front,
the robot is in zero.

6 Driver development

A new serial driver node for ROS10 was developed to support the communica-
tions with the external systems for further applications. This node is a simplified
adaptation of rosserial node [15], which reads and writes string-based packets
(see section 5.3) on the serial port and publishes and subscribes ROS topics.

Fig. 10 details the software architecture for the serial driver that commu-
nicates with the manipulator. When this node starts, the SerialCommunication

10 See https://gitlab.inesctec.pt/agrob/igusman4agro ROS

https://gitlab.inesctec.pt/agrob/igusman4agro_ROS

Cost-effective 4DoF manipulator for general applications 13

Fig. 10. UML class diagram for the ROS driver for the manipulator

14 Sandro A. Magalhães et al.

class initialises the serial port and orders the Publisher and Subscriber managers’
initialisation. Once the SerialCommunication is fully initialised, it continuously
rebuilds the streamed packet, supported by AsyncReadBuffer class. Every time
this class’s object is called, it reads whole data in the serial buffer, stores it in a
local buffer, and returns the required number of characters. The SerialCommu-
nication asks sequentially one or more characters until a packet is rebuilt. Once
the streamed string is complete, the MessageHandler object parses it to the
Publisher publishes the manipulator’s current position, encrypted in the packet,
in the /joint states topic.

Parallelly to this execution procedure, responsible for updating the current
robot position, another is responsible for streaming the target position and
the desired velocity to the manipulator. So, the Subscriber subscribes to the
/joint states goal topic. Follow, it asks the SerialCommunication object to build
a new string-based packet and stream it. The MessageHandler object supports
the SerialCommunication ones on the string generation.

Therefore, the serial node follows an event-based runtime with two branches.
The first branch reads data from the serial buffer, converts it, and publishes it on
the /joint states topic, which reports the manipulator’s joints’ current position.
On the other branch, the program subscribes to the /joints state goal topic and
generates a string-based packet written in the serial port.

Additionally, to test and work with the manipulator, some other ROS pack-
ages were developed. For instance, a configuration package for path and trajec-
tory planning for MoveIt! [16] was built using the MoveIt! Setup Assistant. The
ROSControl [17] is responsible for controlling the trajectory execution. Once the
manipulator is position and velocity controlled, an additional contribution for the
MoveIt! repository11 was needed, to set up the joint trajectory controllers/pos vel controller
and joint trajectory controllers/pos vel acc controller from ROSControl pack-
age, which allow position, and velocity controlled robots and position, velocity,
and acceleration controlled robots, respectively.

7 Experiment and results

As previously regarded, the approached manipulator is position controlled. Be-
sides, it has many cascaded control loops to assure the correct positioning of the
end-effector.

To evaluate the manipulator’s performance was used a square trajectory in
the YZ plane (Fig. 11). The robot moved at the maximum speed through the
trajectory and did not use a path planning algorithm. The performance of the
robot performing the trajectory was published online12.

The robot could perform the trajectory with high precision, average Eu-
clidean distance error of 12.4 mm. This error is computed as the difference be-
tween the robot’s position (computed through direct kinematics) and the ref-
erence trajectory. Fig. 12 shows the computed euclidean error while the robot

11 https://github.com/ros-planning/moveit/pull/1806
12 See https://educast.fccn.pt/vod/clips/fqi0zj4u9/streaming.html

https://github.com/ros-planning/moveit/pull/1806
https://educast.fccn.pt/vod/clips/fqi0zj4u9/streaming.html

Cost-effective 4DoF manipulator for general applications 15

Fig. 11. Performed square trajectory by the robot in the YZ plane. Black dashed line
is the reference trajectory. Blue filled line is the performed trajectory.

performs the trajectory. As shown in this figure, the robot can move easier in
the z-axis than in the y-axis. Cause the similarity in the robot’s behaviour be-
tween y-axis and x-axis, the same can be concluded for the last axis. Through
visual observation of the robot’s behaviour and analysing Figs. 11 and 12, it is
observable that the robot’s movement is not smooth. This robot’s aggressiveness
can be related to the motors’ high static friction, which should be measured and
balanced, or badly tuned speed or position controllers.

8 Conclusion and feature work

This paper presents an open-source and cost-effective position-controller (hard-
ware and software) for four DoF manipulator. It moves through bipolar stepper
motors, which command plastic worm gears. To feedback each joint’s position,
they have one incremental encoder and one magnetic Hall’s sensor. This manip-
ulator does not have the required control hardware to communicate and control
the robot. Therefore a new cost-effective control circuit and algorithms were de-
signed. The control hardware focuses on four Arduino Pro Mini boards to con-
trol each joint. The boards share data between them through I2C. The boards’

16 Sandro A. Magalhães et al.

Fig. 12. Computed error of the robot to perform the trajectory.

firmware was optimised to run at 12.5 MHz, and position control the robot’s joint
with high-precision. The communication with external devices is made through
UART.

In order to manage the platform in more complex environments, for instance,
over mobile platforms, a new ROS driver was programmed. This node commu-
nicates with Moveit! to develop more complex algorithms, like advanced inverse
kinematic modules, path planning, and trajectory control loops.

All the developed code for hardware control and ROS integration was made
publicly available.

Due to the high resolution of the Igus RoboLink manipulator’s stepper mo-
tors, they are relatively slow but precise. The usage of a distributed architecture
with four Arduino boards benefits to optimise the control cycle to 80µs.

Despite their high resolution and precision, the encoders bring some issues
that need to be software outcome. Once they are incremental, they cannot store
their absolute position. Therefore, the developed firmware develops advanced
strategies to record the joint’s position at each state change, saving the EEPROM
usage. However, when the manipulator shuts down during a movement, special
initialisation procedures need to be used. For these particular situations, the

Cost-effective 4DoF manipulator for general applications 17

robot recognises the last movement of the manipulator in the startup and moves
it to the opposite until Hall’s sensor resets the joint’s position value.

A rough analysis was also performed to evaluate the performance and the
functionality of the developed system. The robot could to perform the trajectory
precisely but additional control improvements are required to assure a faster and
smother trajectory. The robot get the trajectory with an average euclidean error
of 12.4 mm.

Future work involves finding hardware and software strategies to minimise
special initialisation procedures to power on the manipulator. Besides that, the
quantitative measure should be done to quantify the manipulator capabilities.
So, robustness, repeatability, and accuracy tests should be performed. The cur-
rent implementation of the position controller focuses on a proportional con-
troller. More advanced control loops need to be designed to assure more position
accuracy and smoothness and lower overfitting.

Bibliography

[1] M. Edwards. Robots in industry: An overview. Applied Ergonomics,
15(1):45 – 53, 1984. ISSN 0003-6870. doi: https://doi.org/10.
1016/S0003-6870(84)90121-2. URL http://www.sciencedirect.com/science/
article/pii/S0003687084901212.

[2] C. Park, J. H. Kyung, and D. I. Park. Development of an industrial robot
manipulator for the easy and safe human-robot cooperation. In ICCAS
2010, pages 678–681, Oct 2010. doi: 10.1109/ICCAS.2010.5670249.

[3] Ole Madsen, Simon Bøgh, Casper Schou, Rasmus Skovgaard Andersen,
Jens Skov Damgaard, Mikkel Rath Pedersen, and Volker Krüger. Integra-
tion of mobile manipulators in an industrial production. Industrial Robot,
42(1):11–18, 2015. doi: 10.1108/ir-09-2014-0390.

[4] S. Kitamura and K. Oka. Recognition and cutting system of sweet pepper
for picking robot in greenhouse horticulture. In IEEE International Confer-
ence Mechatronics and Automation, 2005, volume 4, pages 1807–1812 Vol.
4, July 2005. doi: 10.1109/ICMA.2005.1626834.

[5] N. Padoy and G. D. Hager. Human-machine collaborative surgery using
learned models. In 2011 IEEE International Conference on Robotics and
Automation, pages 5285–5292, May 2011. doi: 10.1109/ICRA.2011.5980250.

[6] A. Pratkanis, A. E. Leeper, and K. Salisbury. Replacing the office intern:
An autonomous coffee run with a mobile manipulator. In 2013 IEEE In-
ternational Conference on Robotics and Automation, pages 1248–1253, May
2013. doi: 10.1109/ICRA.2013.6630731.

[7] Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot
modeling and control. Wiley, 2006.

[8] Babu Sivaraman and Thomas F Burks. Robot manipulator for citrus
harvesting: Configuration selection, 2007. URL http://elibrary.asabe.org/
abstract.asp?aid=24066&t=5.

[9] Satoru Sakai, Michihisa Iida, Koichi Osuka, and Mikio Umeda. Design and
control of a heavy material handling manipulator for agricultural robots.
Autonomous Robots, 25(3):189–204, Oct 2008. ISSN 1573-7527. doi: 10.
1007/s10514-008-9090-y. URL https://doi.org/10.1007/s10514-008-9090-y.

[10] S.S. Mehta and T.F. Burks. Vision-based control of robotic manipu-
lator for citrus harvesting. Computers and Electronics in Agriculture,
102:146 – 158, 2014. ISSN 0168-1699. doi: https://doi.org/10.1016/j.
compag.2014.01.003. URL http://www.sciencedirect.com/science/article/
pii/S0168169914000052.

[11] Seiichi Arima, N Kondo, Y Yagi, M Monta, and Y Yoshida. Harvesting
robot for strawberry grown on table top culture, 1: Harvesting robot using
5 dof manipulator. Journal of Society of High Technology in Agriculture
(Japan), 2001.

http://www.sciencedirect.com/science/article/pii/S0003687084901212
http://www.sciencedirect.com/science/article/pii/S0003687084901212
http://elibrary.asabe.org/abstract.asp?aid=24066&t=5
http://elibrary.asabe.org/abstract.asp?aid=24066&t=5
https://doi.org/10.1007/s10514-008-9090-y
http://www.sciencedirect.com/science/article/pii/S0168169914000052
http://www.sciencedirect.com/science/article/pii/S0168169914000052

Cost-effective 4DoF manipulator for general applications 19

[12] José Nuno Gomes de Brito. Manipulador robótico para poda automática
(Projecto ROMOVI). Msc thesis, Faculty of Engineering of the University
of Porto, 2018.

[13] Sandro Augusto Magalhães, Filipe Neves dos Santos, Rui Costa Martins,
Luis F. Rocha, and José Brito. Path planning algorithms benchmarking for
grapevines pruning and monitoring. In Paulo Moura Oliveira, Paulo Novais,
and Lúıs Paulo Reis, editors, Progress in Artificial Intelligence, pages 295–
306, Cham, 2019. Springer International Publishing. ISBN 978-3-030-30244-
3.

[14] Stanford Artificial Intelligence Laboratory et al. Robotic operating system,
2018. URL https://www.ros.org.

[15] Michael Ferguson, Paul Bouchier, and Mike Purvis. rosserial, 2018. URL
http://wiki.ros.org/rosserial.

[16] David Coleman, Ioan Alexandru Sucan, Sachin Chitta, and Nikolaus Cor-
rell. Reducing the barrier to entry of complex robotic software: a moveit!
case study. CoRR, abs/1404.3785, 2014. URL http://arxiv.org/abs/1404.
3785.

[17] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep,
Adolfo Rodŕıguez Tsouroukdissian, Jonathan Bohren, David Cole-
man, Bence Magyar, Gennaro Raiola, Mathias Lüdtke, and Enrique
Fernández Perdomo. ros control: A generic and simple control framework
for ros. The Journal of Open Source Software, 2017. doi: 10.21105/joss.
00456. URL http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.
00456.pdf.

https://www.ros.org
http://wiki.ros.org/rosserial
http://arxiv.org/abs/1404.3785
http://arxiv.org/abs/1404.3785
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf

	Cost-effective 4DoF manipulator for general applications

