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Abstract. Modeling biological rhythms helps understand the complex principles 
behind the physical and psychological abnormalities of human bodies, to plan 
life schedules, and avoid persisting fatigue and mood and sleep alterations due 
to the desynchronization of those rhythms. The first step in modeling biological 
rhythms is to identify their characteristics, such as cyclic periods, phase, and 
amplitude. However, human rhythms are susceptible to external events, which 
cause irregular fluctuations in waveforms and affect the characterization of 
each rhythm. In this paper, we present our exploratory work towards 
developing a computational framework for automated discovery and modeling 
of human rhythms. We first identify cyclic periods in time series data using three 
different methods and test their performance on both synthetic data and real 
fine-grained biological data. We observe consistent periods are detected by all 
three methods. We then model inner cycles within each period through 
identifying change points to observe fluctuations in biological data that may 
inform the impact of external events on human rhythms. The results provide 
initial insights into the design of a computational framework for discovering and 
modeling human rhythms. 
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1 Introduction 

Biological rhythms created through periodic changes in the physiological functions and 
living habits of many organisms are managed by biological clocks [1]. Similar to other 
creatures, there is evident periodicity in various physiological and psychological 
activities of human bodies, such as heartbeat, electroencephalogram (EEG), and 
female menstruation [2,3]. Biological rhythms, however, are affected by external 
events such as social obligations and work schedules. Persistent disruption of these 
cycles may result in physical and mental health problems such as cardiovascular 
disease [4] and depression [5]. 

Understanding and modeling human rhythms can have profound impacts on the 
health and well-being of individuals. The advancements of technology allow for 
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longitudinal tracking of physiological and behavioral data using consumer-level 
devices outside of the laboratory. As such, computational systems that are aware of 
human rhythms can help people in planning their life around their rhythms to achieve 
better health and wellness. 

The first step in understanding and modeling biological rhythms is to identify their 
characteristics, such as cyclic periods, phases, and amplitude. However, so far, most 
studies in modeling rhythms have focused on circadian rhythms that were introduced 
by Halberg in the 1950s to denote the 24 hours of sleep-wake cycle [6]. Since then, 
numerous procedures for the numerical analysis of circadian rhythms have been 
proposed (See, e.g., Refinetti et al. for a summary [7]). Zielinski et al. (2014) developed 
an online system that incorporated six algorithms to make an accurate estimate of the 
underlying period of circadian data [8]. In the medical field, modeling of disruption in 
biobehavioral rhythms in cancer patients was used to predict readmission risk after 
pancreatic surgery [9]. In all of these studies, the assumption has been that an 
underlying 24-hour cycle in data exists. 

In this paper, we aim to advance the computational modeling of human rhythms 
by 1) automatically discovering all possible periods of a human time series data and 2) 
building a hierarchical model to further identify the inner cycles of each period and 
thereby observe possible fluctuations and disruptions in biological rhythms resulted 
from external stimulus. We will first apply three well-known but fundamentally 
different methods, namely Fast Fourier Transform (FFT), Chi-squared based 
periodogram, and Cyclic Hidden Markov Models (CyHMMs) to detect periods in three 
datasets. The first dataset is created artificially with known periods to test how well 
those three methods can detect periods in the data. The methods are then tested on 
a real-world dataset containing heart rate and temperature data over 70 days as well 
as a dataset with data collected from the E4 wearable device that consists of 16 days 
of fine-grained heart rate (HR), heart rate variability (BVP), skin temperature, and 
galvanic skin response (EDA). In the next step, we explore the inner variability of 
physiological data in each cycle via adopting the Automatic Non-stationary Oscillatory 
Modelling (AutoNOM) method that can model non-stationary time series to identify 
change points and achieve piecewise fitting simultaneously [10]. Our framework can 
identify the known periods in the synthetic dataset with small errors. In the two real-
world datasets, HR, skin temperature, BVP, and EDA are found to have a 24-hour 
circadian cycle and detected changing points gathered around 6:40 am and 8:00 pm. 
Compared with current approaches, our framework can model rhythms using different 
methods to provide insights into commonality and differences between those models. 
It can also inspect the signal series for fluctuations and changes that are essential to 
human health and wellbeing. Overall, our research makes the following contributions: 

– We explore the feasibility of developing a computational framework for 
discovering and modeling human rhythms from multiple sensor data streams. We 
investigate the requrements of such framework to model the overall rhythms and 
to detect the instantaneous changes in the rhythmic data. 

– We evaluate different periodicity detection algorithms on one synthetic dataset 
and two real-world physiological datasets and describe the application of 
changing point detection technology to rhythm modeling. 

In the following sections, we describe our approach and discuss the experimental 
results. 
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2 Related Work 

Several studies have shown the impact of biological and behavioral rhythms on health 
and wellbeing [11, 12]. Abdullah et al. demonstrated the circadian rhythm regularity 
in bipolar disorder using data collected from smartphones [13]. Murnane et al. built 
the connection between circadian rhythm models and phone usage and pointed out 
overloaded phone usage in the late evening as a cause of low-quality sleep [14]. The 
aforementioned studies have assumed the regularity of circadian rhythms and tried to 
show the impact of people’s behavior (e.g., phone usage) on the sleep-wake cycle. Our 
research goes beyond assuming known periodicity in data and uses computational 
modeling to discover possible cycles (more or less than 24 hours). 

Among the periodicity detection methods, Fast Fourier Transform (FFT) is the most 
commonly used approach. FFT converts a time function into a frequency function. The 
dominant frequency in the frequency function is selected as the period of rhythm [15]. 
Lomb-Scargle periodogram is another algorithm for cycle discovery based on Fourier 
analysis and is mainly used for unequal distance data [16]. Saner et al. assessed blood 
pressure and heart rate with Fourier analysis and found that cardiovascular 
rhythmicity is related to obesity in children [17]. Chi-square periodogram uses Chi-
square statistics, has been applied to model the period of lobsters’ circadian rhythms 
to enhance fishing efficiency [18]. Chi-square periodogram calculates the variance 
between-period and within-period, and use χ2	distribution to evaluate the significant 
level. Vukolic et al. applied Chi-squared to model the circadian rhythms of blood 
pressure and heart rate of mice carrying the muted gene Per2, and found the circadian 
clock gene Per2 control cardiovascular rhythms [19]. Cyclic Hidden Markov Model 
(CyHMM) has also been used for modeling cyclic time series data. CyHMM outputs the 
period’s length by inferring the cyclic latent states of input time series [3]. Pierson et 
al. applied the cyHMM to sleep time, steps, and calories burned and found that these 
features showed a weekly cycle. All these statistical models could output the general 
periods of time series, but they all lose the detailed information within each period at 
the same time and do not capture the variation in the shape of sequence in each cycle 
[3]. 

Once the period is known, cyclic functions can be applied to the time series data 
to model the rhythmicity. Cosinor is a standard method to model the amplitude and 
phase of rhythms when the period is used as input. It uses a linear combination of 
cosine curves to fit time series data using least squares regression [20]. Doryab et al. 
used Cosinor to extract rhythm features from cancer patients and to predict the 
readmission probability using these features [9]. However, cosinor cannot fit the non-
stationary time series well. Changing point detection (CPD) helps model the time series 
within one period; it can split the non-stationary time series into several stationary 
series pieces. It can also identify the location of detected changing points. CPD has 
been used in monitoring medical conditions. For example, applying CPD to heart rate 
(HR), electrocardiogram (ECG), and electroencephalogram (EEG) has helped better 
diagnosis of heart disease and understand brain activity [10,21–24]. CPD has also been 
applied to human activity recognition using data from smart home and mobile devices. 
The changing points in this context represent the transition of human activity [25–27]. 
Selection criteria differ among CPD methods, and some methods are sensitive to the 
changes of amplitude in the mean, variance, correlation, and spectral density. The 
cumulative sum (CUSUM) is the most familiar CPD algorithm. CUSUM tracks the shift 



 4 Runze Yan et al. 
of local mean, and if the decrease or increase of the mean exceeds the threshold, one 
change will be identified [28]. 

For modeling the variations in physiological data during each cycle, we adopt the 
Automatic Non-stationary Oscillatory Modelling (AutoNOM) to model non-stationary 
time series with a known period. AutoNOM identifies change points in each cycle and 
achieves piecewise fitting [10] using sinusoidal regression models simultaneously. We 
prefer the CPD technology used in the AutoNOM because it is more sensitive to the 
change of frequencies of time series, and the AutoNOM can find the best sinusoidal 
equations to fit the data in each segment [10]. The following section describes these 
methods in detail. 

3 Methods 

The analysis procedure of physiological data in this paper can be divided into three 
steps, shown in Figure 1. In the first step, the raw data is processed, cleaned, and 
missing values are imputed. In the second step, the period detection methods are 
applied to each time series dataset to infer possible significant periods (p	<	0.01). We 
choose three different algorithms, including the FFT [15] based on the Fourier 
Transformation, the Chi-squared periodogram [29] based on the chi-square statistic, 
and the CyHMMs [3] based on the state transition. From this step, we choose common 
periods selected by all three methods to be used for the final step in which the data in 
each period is modeled via the AutoNOM method for detecting inner cycles and 
estimating their rhythmic characteristics. Once a dataset is determined to exhibit 
rhythmicity, we can further extract the characteristics of the rhythm, including MESOR 
(the average value around the variable oscillation), amplitude (half the difference 
between the peak and trough of the wave), and phase (the time at which the peak of 
rhythm occurs). These features are shown in Figure 2. 

 
Fig.1: Analysis pipeline for the physiological data 

 3.1 Periodicity Detection 

Fast Fourier Transform (FFT) Fast Fourier transform is an algorithm that converts a 
signal from the time domain to the frequency domain [15]. In this way, a periodic time 
series can be expressed by the sum of its frequency components. The Fourier 
periodogram obtained by the FFT encodes the spectral energy at a given frequency, 
and the dominant frequency is the component with maximal frequency. The dominant 
period is the reverse of the dominant frequency. 
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Fig.2: Rhythmic parameters to depict a periodic series [30] 

Chi-squared Periodogram The Chi-squared Periodogram was developed from the 
Enright Periodogram [31]. The Enright periodogram is based on the principle that the 
variances of different segments of the time series are arranged in periodic order 
sequentially. This process repeatedly divides the long data stream into different 
periods and calculates a variability index for each period. For the significance test of 
each hypothesis period, the Enright periodogram uses the F statistic to compare the 
between-class and within-class variabilities, to test the null hypothesis of the equal 
class mean. The Chi-square periodogram uses the χ2	 distribution instead of F 
distribution. Sokolove and Bushell [32] proposed the index QP	 to calculate the 
significance of different frequencies in time-series data. The stronger is the 
rhythmicity in a data set, the higher is the value of QP. For a dataset with N	values (i.e., 
Xi	for i	=	1	to N), which can be broken down into K	sections of period P, the formula 
of QP	could be defined as follows [33]: 

  (1) 

where Mh	is the mean of P	values under each time unit of the period length, and M is 
the mean of all N values. 

Cyclic Hidden Markov Models Cyclic Hidden Markov Models (CyHMMs) are a special 
kind of Hidden Markov Models (HMMs) [34] for detecting and modeling cyclic patterns. 
The input time series will be treated as the observation sequence, and a set of cyclic 
latent states will be inferred for the observation sequence. The period of latent states 
will be returned as the period of input time series. Although having the same primary 
structure as the standard HMMs, CyHMMs differ from HMMs as they do not allow the 
random transition between hidden states. They require that the transition between 
hidden states follows a specific order, and the next state of the final state is the 
starting state, thus forming a closed-loop link to reflect the periodicity. In the CyHMMs, 
the time spent at a particular stage follows the Poisson distribution, while the standard 
HMMs have a Geometric distribution [3]. 

 3.2 Changing Point Detection in Cycles 
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As mentioned previously, once periodicity is detected in the time series data, we want 
to explore the variation within each period to understand the potential impact of 
external factors or fluctuations in each cycle. To choose a method for analyzing each 
time series, we explore stationary and non-stationary time series methods. The theory 
and methods for analyzing the stationary time series are relatively well-developed. For 
example, the cosinor approach [20] fits data by a combination of cosine curves with 
or without polynomial terms using the least-squares method. However, the cosinor 
does not apply to non-stationary data, and when the waveform approximates squares, 
the working performance is not excellent. Since most physiological signals are non-
stationary, we need to consider methods suitable for non-stationary time series [35]. 

As mentioned in the Related Work section, we use AutoNOM to identify change 
points in each cycle using sinusoidal regression models. The model can be divided into 
two sub-models: the segment model and the change point model. The rhythm time 
series y	is segmented by k	unknown change points by analyzing the frequency change 
over time. If the frequency on both sides of a time point has a sudden change in the 
frequency domain, this time point will be regarded as a substation. In each time 
segment, AutoNOM measures the frequency ω, amplitude β, and phase of the 
segment σ. ω, β, and σ	are multidimensional vectors, and their dimension numbers 
are unknown. Before using AutoNOM, we need to set the maximum number of 
change-points kmax	and the maximum number of frequencies on each segment mmax. 
These threshold setting will transform the problem of modeling rhythm series into a 
finite state problem. The AutoNOM method will then select an optimal model from 
the model state space, which is composed of models with a different number of 
change points and frequencies. The optimal model is the model with the maximum 
posterior probability, which is calculated as follows [10]: 

π(k,mk,sk,θk|y)	=π(k|y)π(mk|k,y)π(sk|mk,k,y) 
(2) 

π(θk|sk,k,mk,y), 

where k	 is the number of unknown change-points, mk	 is the number of frequency 
components in each time series segment, sk	is the location of change-points, and θk	is 
a three-dimensional vector combined by the frequency ω, amplitude β	and phase σ	of 
each segment. 

To estimate the parameters k, mk, sk	and θk, a reversible-jump MCMC (Markov 
chain Monte Carlo) algorithm [36] is applied. The reversible-jump MCMC is an 
extended version of standard MCMC that provides a simulation of the posterior 
distribution listed above on spaces of varying dimensions [36]. Thus, the simulation is 
possible even if the number of parameters in the model is unknown. This algorithm 
iterates between the segment model move and the change point model move 
according to its basic structure. 

Before applying the AutoNOM, the maximal number of change points k	needs to 
be determined. Although the fitting results will be better as the value of k	increases, 
we want to avoid setting the k	too large, because when the value of k	is large, minor 
irregular fluctuations in the time series can falsely identify the existence of change 
points. 
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We use the mean average percentage error (MAPE) as a measure index to select the 
AutoNOM model with different input k values. MAPE is a method used to calculate the 
accuracy of curve fitting and is calculated as follows: 

 ,	 (3) 

where ai	is the actual value, pi	is the estimated value on minute i	and n	is the number 
of minutes for which the data is used. 

4 Experiment 

We use three different datasets in our experiment and process them in the following 
way: 

– Dataset 1 - A synthetic dataset with known periods of 24, 36, and 48 hours (Figure 
3). The sequences are comprised of different sinusoidal signals with a predefined 
frequency. We also add 3dB white noise to the dataset to simulate real conditions. 

– Dataset 2 - A real-world open-source dataset [37] containing 70 consecutive days 
of heart rate and skin temperature collected in the one-minute interval as 
visualized in Figure 4. The values assumed to be missing at random (MAR) account 
for 7.63%	of the whole dataset. We use the simple moving average (SMA) to 
impute the missing values [38]. SMA replaces the missing values by averaging the 
non-missing values within a rolling window without weights. 

– Dataset 3 - A real-world dataset collected from Empatica E4 wristband, a 
medicalgrade physiological monitoring device [39], for over two weeks. The E4 
device monitors the blood volume pulse (BVP), the electrodermal activity (EDA), 
the heart rate, and skin temperature in real-time with a sampling rate of 64Hz, 
4Hz, 1Hz, and 4Hz respectively. We apply the same imputation method for 
processing data as in the second dataset. 

 4.1 Periodicity Detection 

As shown in Table 1, all three methods can detect the periods of the synthetic dataset 
accurately with an error range between 0.09 and 0.36 hours. Among the three 
methods, the average error of FFT is the smallest, but the difference between FFT and 
the other two methods is small. These results verify the reliability of the three 
periodicity detection algorithms. 

For the second dataset with a 70-day heart rate and temperature, the 
periodograms outputted by FFT and Chi-square are shown in Figures 5 and 6. In the 
Fourier periodogram, the period according to the dominant frequencies are around 24 
and 12 hours. As for the Chi-square periodogram, the most significant periods for heart 
rate and skin temperature are 167.80 hours and 72.04 h, respectively. However, 168 
h and 72 h are both multiples of 12 and 24 h, and the Chi-square periodogram also 
shows significant 
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Fig.3: Visual inspection of the synthetic dataset 

 
Fig.4: Visual inspection of the open-source dataset with heart rate and skin 
temperature data over 70 days 

 
Synthetic Period Algorithm Estimated Error 

24 
FFT 23.91 
Chi 23.89 

0.09 
0.11 

 CyHMMs 23.64 0.36 

36 
FFT 35.72 
Chi 35.81 

0.28 
0.19 

 CyHMMs 35.69 0.31 

48 
FFT 47.84 
Chi 47.79 

0.16 
0.21 

 CyHMMs 47.87 0.13 

Table 1: The performance of three period estimation algorithms on a synthetic dataset. 
The results from the synthetic dataset verify the reliability of the three periodicity 
detection algorithms. 

oscillations with a period of 24 hours. CyHMMs only infer a period of almost 24 hours 
for both time series (23.94 h and 24.01 h). Therefore, we can confirm that both heart 
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rate and skin temperature have 24 h rhythms, which is consistent with the circadian 
cycle. Table 2 summarizes the detected results by the three methods. 

 
Fig.5: Fourier peridogram derived from heart rate, and skin temperature for the 
second dataset. The dashed line indicates the 0.05 level of significance for the 
periodogram. Dominant frequency correspond to 24 and 12 h for both heart rate and 
skin temperature. 

 
Fig.6: Chi-square periodograms derived from heart rate, and skin temperature for the 
second dataset. Red straight lines indicate the significance level of p	=	0.01. Both heart 
rate and skin temperature in Chi-square periodogram exhibits a 24 h oscillation. 

Compared to dataset 2, the E4 dataset contains new types of data, namely BVP 
and EDA, and the data is more fine-grained and clean. In terms of heart rate and skin 
temperature, FFT and Chi-square periodogram can display a period of 24 h, but the 
detected period is less significant than dataset 2, which may be a result of shorter time 
series (about 2 weeks only) and fine-grained high-frequency sampling rates that result 
in more fluctuations in the data. 

In contrast to heart rate and skin temperature, the BVP and EDA show less 
significant periodic patterns. In Fig 7, BVP has a 24 h period, and EDA is detected to 
have a 25.6 h period more significant than the 24 h. In Fig 8, the Chi-square 
periodogram recognizes that the period of BVP is 23.95 h, which is close to the result 
derived from the FFT. The rhythm period of EDA is 50.12 h, but in the Chi-square 
periodogram of EDA, there also exists a peak QP	value above the significant level at 
around 25 hours, and this value corresponds to the 25.6 h in the FFT periodogram. The 
detected period of EDA by the CyHMMs is also 24.85 hours. As shown in Table 3, the 
results from the 

Physiological Data Algorithm Detected Periods 

 FFT 23.98, 11.99, 279.83, 27.98 
 Heart Rate Chi 167.80, 24.00, 12.00 
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CyHMMs 23.94 

 FFT 23.98, 11.99, 1679, 419.75 
Skin Temperature Chi 72.04, 24.00, 12.00 CyHMMs 24.01 

 
Table 2: Periods of heart rate and skin temperature detected by FFT, Chi-square 

periodogram, and CyHMMs. Heart rate and skin temperature have obvious cycle 

characteristics of 24 h and 12 h. three methods reflect that EDA has a more extended 

period (around 25 hours) than the other three physiological signals. Besides 24 hours, 

from Fig 7, the period of 12 h is also significant in the Chi-square periodogram of EDA, 

heart rate and skin temperature, and the FFT periodogram of heart rate. 

 
Fig.7: Fourier periodogram derived from Empatica E4 wristbant dataset. The dashed 
line indicates the 0.05 level of significance for the periodogram. Dominant frequency 
in BVP, heart rate and skin temperature corresponds to 24 h, or the integral multiple 
of 24 h. Period corresponding to main frequency in EDA is 25.6 h instead of 24 h. (384 
is the total length of the dataset) 
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Fig.8: Chi-square periodograms derived from Empatica E4 wristbant dataset. Red 
straight lines indicate the significance level of p	=	0.01. Detected period in BVP is 23.95 
h. Detected period in EDA is 50.12, and there is a a peak in the periodogram at around 
25h. For heart rate and skin temperature, the periodograms display a 24 h oscillation. 

 
Physiological Data Algorithm Detected Periods 

BVP 
FFT 192.00, 384.00, 128.00, 24.00 
Chi 23.95 
CyHMMs 23.97 

EDA 
FFT 384.00, 25.60, 24.00, 16.69 
Chi 50.12, 12.00, 24.00 
CyHMMs 24.85 

Heart Rate 
FFT 24.00, 12.00, 38.40, 11.63 
Chi 23.97, 12.00 
CyHMMs 24.00 

Skin Temperature 
FFT 384.00, 24.00, 192.00, 128.00 
Chi 23.59, 12.00 
CyHMM 23.83 

Table 3: Periods of BVP, EDA, heart rate, and skin temperature detected by FFT, 
Chisquare periodogram, and CyHMMs. BVP, heart rate, and skin temperature own 24 
h cycle, but the periodicity is not as evident as that of heart rate and skin temperature. 
The EDA detected by the three algorithms is about one hour longer than that of BVP, 
heart, and skin temperature. 

 4.2 Changing Point Detection in Cycles 

As shown in previous sections, the FFT, chi-square periodogram, and CyHMMs have 
been validated in dataset 1 (synthetic data), and they are all able to identify a 24-hour 
rhythm period for heart rate and skin temperature in datasets 2 and 3. We continue 
our experiment on all three datasets to further detect the inner cycle and change 
points with the AutoNOM method within each period. 
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Dataset 1 is generated using the combination of constant frequencies and noise, 

and the AutoNOM identify changing points by perceiving changes in frequency, so it is 
reasonable that no change points have been detected in Fig 9. From another 
perspective, the AutoNOM has a strong anti-noise ability when searching for change 
points. 

 
Fig.9: The analysis of dataset 1 using the AutoNOM. The blue lines are the real data, 
and the red lines depict the estimated values from the AutoNOM. No changing points 
have been detected by the AutoNOM, which is expected as there are no abrupt 
frequency changes in the synthetic dataset. 

To demonstrate the performance of AutoNOM in detecting changing points in 
dataset 2, We choose one day from all 70 days in the dataset and use the AutoNOM 
to fit the one day’s data. We choose k	equal to 4 as the optimal value based on an 
empirical observation: as shown in Table 4, when the value of k	changes from 3 to 4, 
the MAPE value drops significantly, and when the value of k	changes from 4 to 5, the 
change is minor. Figure 10 demonstrates similar distributions of the heart rate and the 
skin temperature change points where the two most frequent change points are 
located at around the 400th minute (6:40 am) and 1200th minute (8:00 pm) for both 
distributions. Illustrated in Figure 11, the skin temperature remains high at the start 
and end of each day, and it has a trough in the middle. As for the heart rate, it keeps 
low at the beginning of each day and goes through two combinations of up and down 
in turn and returns to a lower value at the end of the day. Between the two most 
frequent change points, the amplitudes and frequencies of the oscillation increases. 
Based on previous research, the body temperature of the circadian rhythm is under 
the control of the suprachiasmatic nucleus (SCN), which receives the input from 
photosensitive cells and synchronize body temperature and day and night alternation 
[40]. The temperature will reach its peak in the late afternoon and drop to its trough 
at the end of sleep [41]. In Figure 11, an abrupt decrease in skin temperature at the 
second changing point (about 7:00 am) and a stable increase between the second 
(about 7:00 am) and third changing point (about 5:00 pm) can be observed, which is 
consistent with previous studies. However, the difference is that the peak of skin 
temperature occurs in the late evening. Compared with body temperature, heart rate 
is less susceptible to the influence of the external environment [42,43]. The heart rate 
is more dependent on physical activity, and the heart rate during sleep is lower than 
during the wake time [44]. This view can explain why the heart rate in Figure 11 is 
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lower on both sides of the day. The increase in heart rate in the two segments may be 
related to physical activity. 

k=3 k=4 k=5 
Heart Rate 4.54 3.29 3.14 
Skin Temp 3.10 1.92 1.73 

Table 4: The MAPE values of the AutoNOM method with different maximal number of 
change points k. 

 
 (a) Heart Rate (b) Skin Temperature 

Fig.10: The distribution of change points in heart rate per day for 70 days. The x-axis 
represents the time of day in minutes. The change points are concentrated in the 
400Th and 1200Th minutes of each day. Compared with the heart rate, the 
temperature has a more obvious tendency of the concentrated distribution. This 
change in heart rate and skin temperature is similar to the pattern of rest activity 
alternating between daytime activity and night rest. 

We repeated the same process for dataset 3 and did the same analysis process on 
one random day in the data. The grey vertical lines in Figure 12 illustrates the changing 
points detected by the AutoNOM for heart rate, skin temperature, EDA, and BVP on 
the chosen day. The two common changing points for all four signals occur between 
the 400th minute (6:40 am) and 600th minute (10:00 am) and at around 1200th 
minute (8:00 pm), which are similar to the observation from dataset 2. In each 
segmentation between two changing points, the estimated curve output from the 
AutoNOM could fit the raw data well except for BVP. BVP reflects the relative change 
in blood volume caused by the heart contracting, so there will be many instantaneous 
and massive changes in BVP signals, which cause the AutoNOM not to work well. The 
daily trend of heart rate and skin temperature shown in Figure 11 and 12 are different, 
which could be caused by individual differences (e.g., lifestyle, daily schedule, and 
personality traits), climate, and even accuracy of wearable devices. We observe a 
seasonal effect in the skin temperature between the two datasets. The skin 
temperature in Figure 12 shows an apparent decrease between the second and third 
changing points, whereas the skin temperature in Figure 11 shows an increase at the 
same time. Checking the timing of data collection for these datasets, we found that 
dataset 2 was collected during spring, whereas dataset 3 was collected during the early 
winter. One interesting observation from dataset 3 is that there is one peak for heart 
rate during the first and second changing point, which is inconsistent with what we 
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mentioned above. Peters et al. have found that the accelerated heart rate during sleep 
may be caused by uncomfortable sleeping posture [45]. When in an uncomfortable 
posture, the volume of intake oxygen will decrease, so the heart will increase the beat 
rate to demand oxygen supply, which is similar to what happens during strenuous 
exercise [46]. 

 
Fig.11: The analysis of heart rate and skin temperature in dataset 2 for one day using 
the AutoNOM. The blue lines are the real data, and the red lines depict the estimated 
values. The gray vertical lines show the estimated location of the change points. Three 
changing points occur at around 400th, 1000th, and 1200th in both heart rate and skin 
temperature. The heart rate increases in the second and fourth segments, while the 
remaining three segments keep low. The skin temperature maintains a high value at the 
beginning and end of the day, and there are a significant decrease and rebound in the 
middle. 

Empatica E4 used in the dataset 3 is a medical-grade device that can collect 
accurate physiological data, but E4 can only work up to 40 hours and needs to be 
charged again. E4 cannot work when charging, and this process introduces missing 
values, which will cause unnecessary changing points. For example, the time points 
when E4 stops and starts working will be recognized as changing points. Due to the 
above uncontrollable factor, we do not provide a figure similar to Figure 10 for dataset 
3. 
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Fig.12: The analysis of heart rate, skin temperature, EDA, and BVP in dataset 3 for one 
day using the AutoNOM. The blue lines are the real data, and the red lines depict the 
estimated values from the AutoNOM.The gray vertical lines show the estimated 
location of the change points. The changing point between 400th and 600th minute is 
pretty close in the four signals. Heart rate, skin temperature, and EDA all have a 
changing point approximately at the 1200th minute. The heart rate fluctuates greatly 
at both ends, and the peak occurs at the beginning of the day. Similar to Figure 11, the 
trough of skin temperature appears in the middle. Except at the end of the day, EDA 
has little fluctuation. BVP declines in the second segment and has many instantaneous 
changes. 

5 Implications and Conclusion 

Our work explored the feasibility of designing a computational framework for 
automated discovery and modeling of human rhythms using data collected from 
consumer devices in the wild. We used three periodicity detection algorithms to 
examine their commonality in detecting periods in time series data without ground 
truth. The fact that those different methodologies identified the same periodic 
patterns in data implies the feasibility of incorporating those methods for periodicity 
detection in the framework to discover significant periods. FFT and Chi-Square 
periodograms output several significant periods compared to CyHMMs that output 
only the most significant one. Those periods indicate the existence of additional cycles 
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in the same time series that are essential to discover and use in a rhythm-aware 
system for, e.g., planning. For the rhythm detection algorithms, the p-values of 
detected periods must exceed at a given significance level (e.g., the horizontal dash 
line in Figure 5 and 7, and the red line in Figure 6 and 8). If not, the input series will be 
assumed to have no periodicity. The periodicity detection methods on our three 
datasets identified multiple significant cycles in the biological data, including the 
presumed circadian 24 h cycle which confirms the existence of cyclic biobehaviors in 
humans. 

We further explored the estimation of the change points in each period and 
observed the possibility of detecting inner cycles and fluctuations caused by external 
stimulus. This feature is dependent on the known period. As such, if the period 
detection algorithms cannot reach a consensus, our framework will be in a dilemma. 
Another shortcoming is that the maximum number of changing points k	needs to be 
tuned manually, which may mean a repetition of the process as the dataset is updated 
with new data. 

While our exploratory study provides enough grounds for the development of a 
computational framework for modeling human rhythms from consumer-level 
wearable devices, we are curious to test these methods on behavioral data alone and 
in combination with physiological data. The modeling may reveal the causal 
relationship between behavioral and biological rhythms and whether they reflect 
people’s mental and physical states. If so, we may be able to integrate our framework 
into health and well-being applications to provide interventions in the daily life of 
individuals according to their biological rhythms. 
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