
ar
X

iv
:2

10
5.

10
43

4v
2

 [
cs

.D
S]

 2
4

M
ay

 2
02

1

Verification of Multi-Layered Assignment

Problems

Barak Steindl and Meirav Zehavi

Ben Gurion University of the Negev, Beer-Sheva, Israel

Abstract. The class of assignment problems is a fundamental and well-
studied class in the intersection of Social Choice, Computational Eco-
nomics and Discrete Allocation. In a general assignment problem, a group
of agents expresses preferences over a set of items, and the task is to al-
locate items to agents in an “optimal” way. A verification variant of this
problem includes an allocation as part of the input, and the question be-
comes whether this allocation is “optimal”. In this paper, we generalize
the verification variant to the setting where each agent is equipped with
multiple incomplete preference lists: Each list (called a layer) is a ranking
of items in a possibly different way according to a different criterion.
In particular, we introduce three multi-layer verification problems, each
corresponds to an optimality notion that weakens the notion of global
optimality (that is, pareto optimality in multiple layers) in a different
way. Informally, the first notion requires that, for each group of agents
whose size is exactly some input parameter k, the agents in the group
will not be able to trade their assigned items among themselves and ben-
efit in at least α layers; the second notion is similar, but it concerns all
groups of size at most k rather than exactly k; the third notion strength-
ens these notions by requiring that groups of k agents will not be part
of possibly larger groups that benefit in at least α layers. We study the
three problems from the perspective of parameterized complexity under
several natural parameterizations such as the number of layers, the num-
ber of agents, the number of items, the number of allocated items, the
maximum length of a preference list, and more. We present an almost
comprehensive picture of the parameterized complexity of the problems
with respect to these parameters.

1 Introduction

The field of resource allocation problems has been widely studied in recent years.
A central class of problems in this field is the class of assignment problems
[2,13,1,3,43,7,6,32,28]. In the most general, abstract formulation of an assign-
ment problem (to which we will simply refer as the general assignment problem),
an instance consists of a set of n agents and a set ofm items. Each agent (human,
company, or any other entity) expresses preferences over a subset of items, and
the objective is to allocate items to agents in an “optimal” way. A verification
variant of the general assignment problem includes, in addition, some alloca-
tion as part of the input, and the question becomes whether this allocation is
“optimal”.

http://arxiv.org/abs/2105.10434v2

2 Barak Steindl and Meirav Zehavi

Different notions of optimality have been considered in the literature, but the
one that has received the most attention is pareto optimality (see, e.g., [2,7,6]).
Intuitively, an assignment p is called pareto optimal if there is no other assign-
ment q that is at least good as p for all agents and also strictly better than p
for at least one agent. An equivalent requirement for an assignment to be pareto
optimal is to admit no trading cycle (see, e.g., Aziz et al. [7,6]). Intuitively, an
assignment admits a trading cycle if there exists a set of agents who all benefit
by exchanging their allocated items among themselves (as indicated by the cy-
cle). It is known to imply that the problem of verifying whether an assignment
is pareto optimal can be solved efficiently in polynomial time (see, e.g., Aziz et
al. [7,6]). Even the seemingly more difficult problem of finding a pareto optimal
assignment can also be solved in polynomial time, as shown by Abdulkadiroglu
and Sönmez [2].

Besides their theoretical interest, these problems (both decision and verifica-
tion variants) have also practical importance. Algorithms for both variants are
applied in a variety of real-world situations, such as assigning jobs to workers,
campus houses to students, time stamps to users on a common machine, players
to sports teams, graduating medical students to their first hospital appoint-
ments, and so on. In particular, algorithms for verifying whether an assignment
is optimal are useful in cases where we already have an assignment and we want
to check whether it is pareto optimal; if it is not, we may seek a “strategy” to
improve the assignment (e.g., a trading cycle). For example, when the input is
large, finding an optimal assignment may be computationally expensive, so a
better choice will be to use some heuristic to find an initial assignment, verify
whether it is optimal or not, and proceed accordingly.

In the general assignment problem, each agent has exactly one preference
list. In this paper, we consider an extension to the verification variant of the
general assignment problem in which the agents may have multiple preference
lists (rather than only one). The preference lists may represent a single subjective
criterion according to which each agent ranks the items. However, it may also
represent a combination of different such criteria: each agent associates a score to
each item per criterion, and a single preference list is derived from some weighted
sum of the scores. In many cases, it is unclear how to combine scores associated
with criteria of inherently incomparable nature - that is like “comparing apples
with oranges”. Additionally, even if a single list can be forcefully extracted, most
data is lost.

Thus, the classic model seems somewhat restrictive in real world scenarios
where people rely on highly varied aspects to rank other entities. For example,
suppose that there are n candidates who need to be assigned to n positions.
The recruiters may rank the candidates for each position according to different
criteria, such as academic background, experience, impression by the interview,
and so on [31,4]. Moreover, when assigning campus houses to students, the stu-
dent may rank the houses by multiple criteria such as their location (how close
the house is to their faculty), rent, size etc [41]. Transferable skills such as ver-
bal communication, adaptability, problem solving and so on may also be factors

Verification of Multi-Layered Assignment Problems 3

when making decisions. This motivates the employment of multiple preference
lists where each preference list (called a layer) is defined by a different criterion.

In many real-world scenarios, the preferences of the agents may sometimes
depend on external circumstances that may not be completely known in advance
such as growth of stocks in the market, natural phenomena, outbreak of pan-
demics [42,39] and so on. In such cases, each layer in our generalized model can
represent a possible “state” of the world, and we may seek an assignment that is
optimal in as many states as possible. For instance, suppose that there is a taxi
firm with n taxis and m costumers (n > m) that want to be picked at a specific
time in future. The “cost” of each taxi depends on the time taken to reach the
costumer from the starting location of the taxi. Many factors (that may not be
completely known a-priori) may affect the total cost such as road constructions,
weather, car condition and the availability of the drivers [19,36]. The firm may
suggest different possible scenarios (each represents a layer). For each scenario,
the costumers may be ranked differently by the taxis, and an assignment that
is pareto optimal in as many layers as possible will cover most of the scenarios
and will give the lowest expected total cost.

Furthermore, it is not always possible to completely take hold of preferences
of some (or all) agents due to lack of information or communication, as well
as security and privacy issues [34,14]. In addition, even if it is technically and
ethically feasible, it may be costly in terms of money, time, or other resources to
gather all information from all the agents [33]. In these cases, we can “complete
the preferences” using different assumptions on the agents. As a result, we will
have a list of preference profiles that represent different possible states of the
world. An assignment that is pareto optimal in as many preference profiles as
possible will be pareto optimal with high probability.

Our work is inspired by the work of Chen et al. [16], who studied the Stable
Marriage problem under multiple preference lists. In contrast to assignment
problems, the Stable Marriage problem is a two-sided matching problem,
i.e. it consists of two disjoint sets of agents A and B, such that each agent
strictly ranks the agents of the opposite set (in assignment problems, only the
agents rank the items. The objective in the Stable Marriage problem is to
find a matching (called a stable matching) between A and B such that there
do not exist agents a ∈ A and b ∈ B that are not matched to each other but
rank each other higher than their matched partners. Chen et al. [16] consid-
ered an extension of the Stable Marriage problem where there are ℓ layers
of preferences, and adapted the definition of stability accordingly. Specifically,
three notions of stability were defined: α-global stability, α-pair stability, and
α-individual stability. In their work, Chen et al. [16] studied the algorithmic
complexity of finding matchings that satisfy each of these stability notions.

In our recent work [37], we defined the notion of global optimality, which
(similarly to global stability defined by Chen et al. [16]) extends the notion of
pareto optimality to the case where there are multiple layers by requiring an
assignment to be pareto optimal in a given number of layers. They studied the
parameterized complexity of the problem of finding a globally optimal assign-

4 Barak Steindl and Meirav Zehavi

ment (in the presence of multiple preference lists), and they showed that it is an
extremely hard computational task with no efficient parameterized algorithms
(with respect to almost any parameter combination). Two factors cause this
hardness: First, in general, finding an optimal assignment is harder than verify-
ing whether an assignment is optimal. Second, the concept of global optimality,
which requires “global agreement” among the agents on the layers where benefi-
cial trading cannot be performed, may seem too strong. Thus, a natural direction
is to consider an adaptation of the verification variant to the multi-layer model,
and to weaken the notion of global optimality.

We define three new notions of optimality: (k, α)-optimality, (k, α)-upper-
bounded optimality, and (k, α)-subset optimality. Intuitively, the first notion re-
quires that each subset of agents of size k does not admit trading cycles (without
additional agents) in at least α layers. The second notion is similar, but it addi-
tionally applies this condition on all subsets of size at most k rather than only
exactly k. The third notion requires that each subset of k does not appear in
trading cycles, together with possibly other agents, in at least α layers. In con-
trast to the notion of global optimality, these notions do not require having the
same α layers where all agents cannot trade and benefit - each “small” subset of
agents may have different α layers where the agents in this subset do not admit
trading cycles.

The consideration of the parameter k is reasonable: indeed, suppose that
some assignment can be improved but only if a large group of agents would
exchange their items among themselves. In many cases, such trading may not be
simple or feasible since it may require a lot of efforts and organization [21,22].
Thus, we define k as a fixed size or as an upper bound on the size of agent groups
for which trading can be performed (in (k, α)-optimal and (k, α)-upper-bounded
optimal). In contrast, in the definition of (k, α)-subset optimality, the parameter
k is, essentially, a “lower bound” on the size of subsets which do not admit
trading cycles. This notion was designed to represent real scenarios where (i) we
are not interested in finding short trading cycles but only in finding large ones
since they would gain the most benefit and only they might justify changing the
status quo, and where (ii) large and complicated trading cycles can be performed
[5].

Although the verification variant of the assignment problem can be easily
solved in polynomial time in the classic single-layer model (see, e.g., Aziz et
al. [7,6]), similarly to the decision variant, the problem becomes harder when
multiple preference lists are taken into account. However, we show that, while
some verification variants are still hard with respect to various parameters, they
also admit fixed-parameter algorithms rather than mainly hardness results. Our
results show that the new verification variants are, in general, much easier to
solve than the decision variant in [37]. For instance, the verification variants
are solvable in O∗(2n) time, but the decision variant is proved to admit no
O∗(2o(k log (k)))-time algorithm even for k = n+m+α and for k = n+m+(ℓ−α)
(where n = #agents and m = #items), unless Exponential Time Hypothesis
(ETH) fails. In addition, the decision variant is W[1]-hard when parameterized

Verification of Multi-Layered Assignment Problems 5

Parameter Complexity Class Running Time Polynomial Kernel?

α para-coNP-hard (T. 6) - -
VUOA: P when α = ℓ polynomial yes

ℓ para-coNP-hard (T. 6) - -

k coW[1]-hard (T. 5) O∗(nO(k)) (T. 3) -

VOA, VUOA: XP (T. 3) O∗(nO(k)) (T. 3) -

k + ℓ coW[1]-hard (T. 5) O∗(nO(k)) (T. 3) -

VOA,VUOA: XP (T. 3) O∗(nO(k)) (T. 3) -
k + d VOA,VUOA: FPT (T. 4) O∗(dk) (T. 4) no (T. 7)
(n− k) + ℓ+ d para-coNP-hard (T. 6) - -
#alloc FPT (T. 2) O∗(2#alloc) (T. 2) no (T. 7)

#alloc + ℓ FPT (T. 2) O∗(2#alloc) (T. 2) yes (T. 1)

n+m+ α FPT (T. 2) O∗(2#alloc) (T. 2) no (T. 7)
n+m+ (ℓ− α) FPT (T. 2) O∗(2#alloc) (T. 2) no (T. 7)
Table 1. Summary of our results for the problems Verify Optimal Assignment,
Verify Upper-Bounded Optimal Assignment, and Verify Subset Optimal As-

signment. The results are applicable to the three problems, unless stated otherwise.

by m+ α and m+ (ℓ− α), while the verification variants are FPT with respect
to m, n, and even #alloc (the number of allocated items). Furthermore, the
decision variant is unlikely to admit a polynomial kernel with respect to m+ ℓ,
whereas the verification variants admit polynomial kernels with respect to m+ ℓ
and #alloc + ℓ.

Our Contributions.We consider several parameters such as the number of lay-
ers ℓ, the number of agents n = #agents, the number of items m = #items, the
maximum length of a preference list d, the number of allocated items #alloc, and
the parameters α and k that are related to the optimality concepts (see Section
2 for the formal definitions). In particular, we present an almost comprehensive
picture of the parameterized complexity of the problems with respect to these
parameters.

The choice of these parameters is sensible because in real-life scenarios such as
those mentioned earlier, some of these parameters may be substantially smaller
than the input size. For instance, ℓ and α are upper bounded by the number of
criteria according to which the agents rank the items. Thus, they are likely to
be small in practice: when ranking other entities, people usually do not consider
a substantially large number of criteria. For instance, when sports teams rank
candidate players, only a few criteria such as the player’s winning history, his
impact on his previous teams, and physical properties are taken into account
[24]. Moreover, in various cases concerning ranking of people, jobs, houses etc.,
people usually have a limited number of entities that they want or are allowed
to ask for [18]. In these cases, the parameter d is likely to be small. In addition,
in small countries (such as Israel), the number of universities, hospitals, sports
teams and many other facilities and organizations is very small [17,38]. Thus,
in scenarios concerning these entities, at least one among n and m (and thus
also #alloc) may be small. Furthermore, when assigning students to universities,

6 Barak Steindl and Meirav Zehavi

workers to companies (or to work teams in a company), and players to sports
teams since the number of universities, companies (or work teams) and sports
teams are usually substantially smaller than the number of students, workers and
players, respectively. The consideration of k is justified by previous arguments.
A summary of our results is given in Table 1.

coNP-Hardness. We first provide some simple properties of the problems Ver-

ify Optimal Assignment (Verify-OA), Verify Upper-Bounded Opti-

mal Assignment (Verify-UOA), and Verify Subset Optimal Assign-

ment (Verify-SOA). Afterward, we prove that Verify-UOA is solvable in
polynomial time when α = ℓ. We also assert that the three problems are in
coNP by providing a witness for each Yes-instance. After that, we prove that the
problems are para-coNP-hard with respect to the parameter ℓ+d+(n−k). This
is done using a polynomial reduction from the Hamiltonian Cycle problem
on directed graphs with maximum degree 3 (proved to be NP-hard by Plesńik
[35]) to the complements of Verify-OA and Verify-SOA. In the reduction,
we construct an instance with ℓ = 1 layers, d = 3, α = 1, and k = n (we
show that the problems are equivalent in this case). We then extend this proof
by adding another layer in order to capture Verify-UOA as well. Informally,
given a directed graph G with n vertices, the reduction constructs an instance
of the problem with n agents, n items, consisting of two layers, such that the
trading graph of one layer is derived by the graph G, and the trading graph of
the second layer is a single cycle containing all the agents and items.

Kernelization. We prove that the problems admit polynomial kernels when
parameterized by #alloc + ℓ. Informally, given an instance of the problems, the
kernels first perform a preprocessing step to verify that no agent admits self
loops in many layers; then, they remove from the instance all the agents and
items which are not matched by the assignment since they cannot appear in
trading cycles. Thus, we conclude that the problems admit polynomial kernels
with respect to the parameters n+ℓ andm+ℓ as well. We prove thatVerify-OA

and Verify-SOA do not admit polynomial kernels with respect to the n+m+α
and n + m + (ℓ − α) by providing two cross-compositions from Hamiltonian

Cycle on directed graphs with maximum degree 3, which rely on the reduction
from Section 5. We then extend these cross-compositions to have the same results
for Verify-UOA.

Fixed-Parameter Tractability. We first prove that the three problems are
FPT with respect to #alloc (and thus, also with respect to n, and m) by provid-
ing O∗(2#alloc)-time dynamic programming algorithms that are inspired by the
technique by Björklund et al. [9] to compute the Fast zeta and Möbius trans-
form and by the Floyd–Warshall algorithm [26]. We then prove that Verify-

OA and Verify-UOA are XP with respect to the parameter k by providing an
O∗(nO(k))-time algorithm. Informally speaking, the algorithm verifies whether
each subset of agents of size k (or at most k for Verify-UOA) does not admit
“conflicts” (i.e. trading cycles) in many layers, and it relies on an O∗(2n)-time
algorithm for Hamiltonian Cycle on directed graphs by Bellman [8]. Then,
we prove that Verify-OA and Verify-UOA are FPT with respect to the pa-

Verification of Multi-Layered Assignment Problems 7

rameter k + d by providing an O∗(dk)-time algorithm. The algorithm relies on
the fact that there are at most O(n · dk) trading cycles with at most k agents in
each layer. It first runs the kernelization algorithm of size ℓ · (#alloc)2, and then
it considers all possible trading cycles with at most k agents in all the layers.
For each such trading cycle, it checks whether the agents in the cycle admit
trading cycle also in ℓ−α other layers - if this is the case, it returns No. Finally,
we prove that the three problems are coW[1]-hard when parameterized by k+ ℓ
using a parameterized reduction from the Multicolored Independent Set

problem to the complements of the problems. Roughly speaking, given a graph
G with n vertices and a coloring c that colors the vertices in G with k̃ colors, the
reduction creates an agent and an item for each vertex; In the resulting instance,

k = k̃, α = 1, ℓ =
(
k̃
2

)
, and we have that the agents and items that correspond

to the vertices in the multicolored independent set admit trading cycles in all
the layers.

2 Preliminaries

For any t ∈ N, let [t] = {1, . . . , t}. We use theO∗-notation to suppress polynomial
factors in the input size, that is, O∗(f(k)) = f(k) · nO(1).

2.1 Assignment Problems

An instance of the (general) assignment problem is a triple (A, I, P) where A is
a set of n agents {a1, . . . , an}, I is a set of m items {b1, . . . , bm}, and P = (<a1

, . . . , <an
), called the preference profile, contains the preferences of the agents

over the items, where each <ai
encodes the preferences of ai and is a linear order

over a subset of I (preferences are allowed to be incomplete). We refer to such
linear orders as preference lists. If bj <ai

br, we say that agent ai prefers item br
over item bj , and we write bj ≤ai

br if bj <ai
br or bj = br. Item b is acceptable

by agent a if b appears in a’s preference list. An assignment is an allocation of
items to agents such that each agent is allocated at most one item, and each item
is allocated to at most one agent. Since the preferences of the agents may be
incomplete, or the number of items may be smaller than the number of agents,
some agents may not have available items to be assigned to. To deal with this
case, a special item b∅ is defined, seen as the least preferred item of each agent,
and will be used as a sign that an agent is not allocated an item. Throughout
this paper, we assume that b∅ is not part of the item sets, and that it appears at
the end of every preference list (we will not write b∅ explicitly in the preference
lists). We formally define assignments as follows:

Definition 1. Let A = {a1, . . . , an} be a set of n agents and let I = {b1, . . . , bm}
be a set of m items. A mapping p : A → I ∪ {b∅} is called an assignment if for
each i ∈ [n], it satisfies one of the following conditions:

1. p(ai) = b∅.
2. Both p(ai) ∈ I and for each j ∈ [n] \ {i}, p(ai) 6= p(aj).

8 Barak Steindl and Meirav Zehavi

We refer to p as legal if it satisfies p(ai) = b∅ or that p(ai) ∈ I is acceptable by
ai for each i ∈ [n]. For brevity, we will omit the term “legal” and refer to a legal
assignment just as an assignment.1Moreover, when we write a set in a preference
list, we assume that its elements are ordered arbitrarily, unless stated otherwise.
In the general assignment problem, we are given such a triple (A, I, P), and we
seek an assignment which is “optimal” according to some criterion.

Pareto Optimality. There are different ways to define optimality of assign-
ments, but the one that received the most attention in the literature is pareto
optimality. Informally speaking, an assignment p is pareto optimal if there does
not exist another assignment q that is “at least as good” as p for all the agents,
and is “better” for at least one agent. It is formally defined as follows.

Definition 2. Let A = {a1, . . . , an} be a set of agents, and let I be a set of
items. An assignment p : A→ I ∪ {b∅} is pareto optimal if there does not exist
another assignment q : A→ I ∪ {b∅} that satisfies:

1. p(ai) ≤ai
q(ai) for every i ∈ [n].

2. There exists i ∈ [n] such that p(ai) <ai
q(ai).

If such an assignment q exists, we say that q pareto dominates p.

TheAssignment problem is a special case of the general assignment problem
where the criterion of optimality is pareto optimality.

In what follows, we first give some well-known characterizations of assign-
ments, and then we introduce new concepts of optimality and two new multi-
layered assignment problems.

Intuitively, an assignment admits a trading cycle if there exists a set of agents
who all benefit by exchanging their allocated items among themselves. For ex-
ample, a simple trading cycle among two agents a and b occurs when agent a
prefers agent b’s item over its own item, and agent b prefers agent a’s item over
its own item. Both a and b would benefit from exchanging their items. Formally,
a trading cycle is defined as follows.

Definition 3. An assignment p admits a trading cycle
(ai0 , bj0 , ai1 , bj1 , . . . , aik−1

, bjk−1
) if for each r ∈ {0, . . . , k − 1}, we have

that p(air) = bjr and bjr <air
bjr+1 (mod k)

.

Definition 4. An assignment p admits a self loop if there exist an agent ai and
an item bj such that bj is not allocated to any agent by p, and p(ai) <ai

bj.

Proposition 1 (Folklore; see, e.g., Aziz et al. [7,6]). An assignment p is
pareto optimal if and only if it does not admit trading cycles and self loops.

By this proposition, the problem of checking whether an assignment admits
trading cycles or self loops can be reduced to the problem of checking whether
the directed graph defined next contains cycles. For an instance (A, I, P) and an
assignment p, the corresponding trading graph is the directed graph defined as
follows. Its vertex set is A ∪ I, and there are three types of edges:

1 All the “optimal” assignments that we construct in this paper will be legal for each
agent group in a sufficient number of layers.

Verification of Multi-Layered Assignment Problems 9

• For each a ∈ A such that p(a) 6= b∅, there is a directed edge from p(a) to a.
Namely, each allocated item points to its owner.
• For each agent a ∈ A, there is an edge from a to all the items it prefers over
its assigned item p(a) (if p(a) = b∅, a points to all its acceptable items).
• Each item with no owner points to all the agents that accept it.

Proposition 2 (Folklore; see, e.g., Aziz et al. [7,6]). An assignment p is
pareto optimal if and only if its corresponding trading graph does not contain
cycles.

Example. Suppose that A = {a1, a2, a3, a4, a5} and I = {b1, b2, b3, b4, b5}. As-
sume that the preferences of the agents are defined as follows.

• a1 : b4 > b1 > b2 > b5
• a2 : b1 > b4 > b5
• a3 : b2 > b1
• a4 : b3 > b5
• a5 : b5

Let p : A → I ∪ {b∅} be an assignment such that p(a1) = b2, p(a2) = b4,
p(a3) = b1, p(a4) = b5, and p(a5) = b∅. The trading graph of the preference
profile with respect to p is:

a1 a2 a4a3

b1 b2 b3 b4 b5

a5

Observe that agents a1, a2 and a3 admit the trading cycle
(a1, b2, a2, b4, a3, b1), and agent a4 admits a self loop with b3. By Proposi-
tion 2, p is not pareto optimal. If a1, a2, and a3 exchange their items, a4 gets
b3, and a5 gets b5, we have a pareto optimal assignment q in which q(a1) = b4,
q(a2) = b1, q(a3) = b2, q(a4) = b3 and q(a5) = b5.

2.2 Generalization of the Assignment Problem

We introduce a generalized assignment problem where there are ℓ layers of pref-

erences. For each j ∈ [ℓ], we refer to <
(j)
ai as ai’s preference list in layer j. The

preference profile in layer j is the collection of the agents’ preference lists in the

layer, namely, Pj = (<
(j)
a1 , . . . , <

(j)
an). Thus, the new problem is defined as follows.

10 Barak Steindl and Meirav Zehavi

Multi-Layered Assignment

Input: (A, I, P1, . . . , Pℓ), where A is a set of n agents, I is a set of m items, Pi

is the preference profile in layer i for each i ∈ [ℓ].
Question: Does an “optimal” assignment exist?

New Concepts of Optimality. In [37], we introduced a new concept of opti-
mality that naturally extends pareto optimality by requiring an assignment to
be pareto optimal in a given number of layers. This criterion is formally defined
as follows.

Definition 5. An assignment p is α-globally optimal for an instance
(A, I, P1, . . . , Pℓ) if there exist α layers i1, . . . , iα ∈ [ℓ] such that p is pareto
optimal in the single layered instance (A, I, Pij), for each j ∈ [α].

The corresponding decision problem was defined as follows:

Globally Optimal Assignment

Input: (A, I, P1, . . . , Pℓ, α), where A is a set of n agents, I is a set of m items,
Pi is the preference profile in layer i for each i ∈ [ℓ], and α ∈ [ℓ].
Question: Does an α-globally optimal assignment exist?

In this paper, we “weaken” this notion. By Proposition 1, with respect to an
α-globally optimal assignment, there exist α layers with no trading cycles or self
loops (and therefore all the agents cannot exchange items and benefit in these
layers). In other words, there is a “global agreement” among all the agents on
the layers where they cannot benefit by trading. This requirement may seem too
strong, thus we weaken it as follows. Instead of requiring the same α layers for
all the agents, we will require that each group of agents of a bounded size will
have its own α layers where the agents in the group cannot exchange their items
and benefit; the layers for each group may be different.

Definition 6. Let (A, I, P1, . . . , Pℓ) be an instance of the
Multi-Layered Assignment problem, let p : A → I ∪ {b∅} be an as-
signment, and let K ⊆ A be a subset of agents. We say that K admits a trading
cycle with respect to p in layer j ∈ [ℓ] if all the agents in K appear together
(with no additional agents) in a trading cycle with respect to p in the single
layered instance (A, I, Pj). For a ∈ A, we say that a admits a self loop with
respect to p in layer j if it admits a self loop with respect to p in the single
layered instance (A, I, Pj).

We now define three new concepts of optimality.

Definition 7 ((k, α)-optimality). An assignment p is (k, α)-optimal for an
instance (A, I, P1, . . . , Pℓ) if it satisfies the following conditions:

1. If k ≥ 2, then for each subset of agents K ⊆ A such that |K| = k, there
exist α layers i1, . . . , iα such that K does not admit a trading cycle in layer
ij with respect to p, for each j ∈ [α].

2. If k = 1, then for each a ∈ A, there exist α layers where a does not admit a
self loop.

Verification of Multi-Layered Assignment Problems 11

Intuitively, the first concept requires that each group of k agents cannot trade
and benefit in at least α layers (that may depend on the specific group). So, no
group of k agents has incentive to “rebel” against the given assignment. In order
to show that an assignment p is not (k, α)-optimal, we will usually rely on the
following equivalent definition:

Observation 3 An assignment p is not (k, α)-optimal for an instance
(A, I, P1, . . . , Pℓ) if it satisfies one of the following:

1. If k ≥ 2, then there exist a subset K ⊆ A of agents such that |K| = k, and
ℓ − α + 1 layers i1, . . . , iℓ−α+1 such that K admits a trading cycle in layer
ij, for each j ∈ [ℓ− α+ 1].

2. If k = 1, then there exists a ∈ A that appears in self loops in some ℓ−α+1
layers.

The second definition strengthens this definition by not allowing groups of
size at most k to admit conflict in a large number of layers. It is formally defined
as follows.

Definition 8 ((k, α)-upper-bounded optimality). An assignment p is (k, α)-
upper-bounded optimal for an instance (A, I, P1, . . . , Pℓ) if it satisfies the fol-
lowing conditions:

1. For each subset of agents K ⊆ A such that |K| ≤ k, there exist α layers
i1, . . . , iα such that K does not admit a trading cycle in layer ij with respect
to p, for each j ∈ [α].

2. For each a ∈ A, there exist α layers where a does not admit a self loop.

Clearly, an assignment is (k, α)-upper-bounded optimal if and only if it is
(k′, α)-optimal for all k′ ∈ [k] (simultaneously). So, algorithms regarding the
first notion of optimality can be used in the context of the second. However, the
problems may not be computationally equivalent, as the second may be easier (in
various aspects) than the first, and hence both are defined explicitly. Indeed, we
have similar “equivalence” between k-Cycle (finding a cycle of length exactly k
in a given graph) and k-Shortest Cycle (finding the shortest cycle of length
at most k in a given graph), while the first problem among these two is known
to be NP-hard (since it generalizes Hamiltonian Cycle), and the second is in
P (these problems may not be equivalent in different senses, such as solvability
in polynomial time, kernelization complexity, and more). In order to show that
an assignment is not (k, α)-upper-bounded optimal, similarly to Observation 3,
we can show that there exists an agent which admits self loops in some ℓ−α+1
layers, or a subset of agents which admits trading cycles in some ℓ−α+1 layers.

The third definition is similar to the first one, but additionally, it further
does not allow small groups of agents to be part of larger trading cycles. It is
formally defined as follows.

Definition 9 ((k, α)-subset optimality). An assignment p is (k, α)-subset op-
timal for an instance (A, I, P1, . . . , Pℓ) if it satisfies the following conditions:

12 Barak Steindl and Meirav Zehavi

1. For each subset of agents K ⊆ A such that |K| = k, there exist α layers
i1, . . . , iα such that, for each j ∈ [α], there does not exist K ′ ⊆ A that
contains K (K ⊆ K ′ ⊆ A) and admits a trading cycle in layer ij.

2. If k = 1, then for each a ∈ A, there exist α layers where it does not admit a
self loop.

Notice that when k = 1, both conditions need to be satisfied (we mentioned
them separately since the notions of trading cycle and self loop are different). In
order to show that an assignment p is not (k, α)-subset optimal, we will usually
use the following equivalent definition:

Observation 4 An assignment p is not (k, α)-subset optimal for an instance
(A, I, P1, . . . , Pℓ) if it satisfies one of the following.

1. There exist a subset K ⊆ A such that |K| = k, ℓ − α + 1 subsets
K1, . . . ,Kℓ−α+1 such that K ⊆ Ki ⊆ A for each i ∈ [ℓ−α+1], and ℓ−α+1
layers i1, . . . , iℓ−α+1 such that Kj admits a trading cycle in layer ij, for each
j ∈ [ℓ− α+ 1].

2. If k = 1: There exists a ∈ A that appears in self loops in some ℓ − α + 1
layers.

Notice that if we change the first condition in Definition 9 to apply on all
subsets of size at most k (rather than on subsets of size exactly k), and the
second condition to be satisfied for any value of k, then the parameter k becomes
senseless since (k, α)-subset optimality will be just equivalent to (1, α)-subset
optimality for any k (as shown in Lemma 2). We remark that this equivalence is
not true for (k, α)-upper-bounded optimality since there are instances in which
each agent does not admit self loops in some α layers, while there exists a subset
of agents that admits trading cycles in some ℓ− α+ 1 layers.

The new decision problems, where we are given an instance as in the Multi-

Layered Assignment problem and seek an “optimal” assignment, are defined
as follows:

Optimal Assignment (OA)
Input: (A, I, P1, . . . , Pℓ, α, k), where A is a set of n agents, I is a set of m items,
Pi is the preference profile in layer i for each i ∈ [ℓ], α ∈ [ℓ], and k ∈ [n].
Question: Does a (k, α)-optimal assignment exist?

The problems Upper-Bounded Optimal Assignment (UOA) and Sub-

set Optimal Assignment (SOA) are defined analogously with respect to Def-
initions 8 and 9, respectively.

Verification Variants. In this paper, we focus on the verification variants of the
problems Optimal Assignment, Upper-Bounded Optimal Assignment,
and Subset Optimal Assignment, in which we are additionally given an
assignment, and we ask whether it is optimal.

Verify Optimal Assignment (Verify-OA)
Input: (A, I, P1, . . . , Pℓ, α, k, p), where A is a set of n agents, I is a set of m
items, Pi is the preference profile in layer i for each i ∈ [ℓ], α ∈ [ℓ], k ∈ [n] and
p is an assignment p : A→ I ∪ {b∅}.
Question: Is p (k, α)-optimal?

Verification of Multi-Layered Assignment Problems 13

The other verification problems, Verify Upper-Bounded Optimal

Assignment (Verify-UOA) and Verify Subset Optimal Assignment

(Verify-SOA), are defined analogously.
Our main problems areVerify-OA andVerify-SOA. In most of our proofs

we focus on these two problems at first. Then, we explain how to extend the
proof in order to have the same result on the problem Verify-UOA as well.
Informally speaking, the technique is to add more preference profiles to the
constructed instances which enforce each subset of agents that admits trading
cycles to have a specific size.

Example. Consider the following instance, where the agent set is A =
{a1, a2, a3, a4, a5}, the item set is I = {b1, b2, b3, b4, b5}, and there are four layers,
defined as follows.

Layer 1:

• a1 : b2 > b1
• a2 : b3 > b2 > b1
• a3 : b3 > b1 > b4
• a4 : b2 > b1 > b3
• a5 : b4 > b2 > b1 > b3

Layer 2:

• a1 : b2 > b1
• a2 : b2 > b3
• a3 : b1 > b2 > b3 > b4
• a4 : b3
• a5 : b4 > b3 > b2

Layer 3:

• a1 : b3 > b2 > b1
• a2 : b4 > b1 > b2
• a3 : b1 > b3 > b4
• a4 : b5
• a5 : b1 > b3 > b2

Layer 4:

14 Barak Steindl and Meirav Zehavi

• a1 : b3 > b1 > b2
• a2 : b1 > b2
• a3 : b4 > b3
• a4 : ∅
• a5 : b2 > b3 > b4 > b1

Consider the assignment p : A→ I∪{b∅} that satisfies p(a1) = b1, p(a2) = b2,
p(a3) = b4, p(a4) = b∅, and p(a5) = b3. We set k = 2 and α = 2. Let us write all
the self loops and the subsets of size two that admit trading cycles and in each
layer:

• Layer 1: {a2, a5}, {a3, a5}.
• Layer 2: {a3, a5}.
• Layer 3: {a1, a2}, {a1, a5}, a4 admits a self loop.
• Layer 4: no trading cycles with 2 agents or self loops.

By Observation 3, since there is no subset of size 2 that appears in trading
cycles in at least ℓ − α + 1 = 4 − 2 + 1 = 3 layers, or an agent that appears in
self loops in at least 3 layers, we conclude that p is (2, 2)-optimal and also (2, 2)-
upper-bounded optimal. In contrast, notice that the subset {a1, a2} appears in
trading cycles with additional agents in 3 layers:

• In layer 1, the subset {a1, a2, a5} admits the trading cycle
(a1, b1, a2, b2, a5, b3).
• In layer 3, the subset {a1, a2, a3} admits the trading cycle
(a1, b1, a2, b2, a3, b4).
• In layer 4, the subset {a1, a2, a5} admits the trading cycle
(a1, b1, a5, b3, a2, b2).

Therefore, by Observation 4, p is not (2, 2)-subset optimal.
We study these three problems from the perspective of parameterized com-

plexity.

2.3 Parameterized Complexity

Let Π be an NP-hard problem. In the framework of Parameterized Complexity,
each instance of Π is associated with a parameter k. Here, the goal is to confine
the combinatorial explosion in the running time of an algorithm for Π to depend
only on k. Formally, we say that Π is fixed-parameter tractable (FPT) if any
instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is an arbitrary
computable function of k. A weaker request is that for every fixed k, the problem
Π would be solvable in polynomial time. Formally, we say that Π is slice-wise
polynomial (XP) if any instance (I, k) of Π is solvable in time f(k) · |I|g(k),
where f and g are arbitrary computable functions of k. Nowadays, Parameterized
Complexity supplies a rich toolkit to design FPT and XP algorithms [23,20,27].

Verification of Multi-Layered Assignment Problems 15

Parameterized Complexity also provides methods to show that a problem is
unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-
hardness replaces the one of NP-hardness, and for reductions we need not only
construct an equivalent instance in FPT time, but also ensure that the size of
the parameter in the new instance depends only on the size of the parameter in
the original one.

Definition 10 (Parameterized Reduction). Let Π and Π ′ be two parame-
terized problems. A parameterized reduction from Π to Π ′ is an algorithm that,
given an instance (I, k) of Π, outputs an instance (I ′, k′) of Π ′ such that:

• (I, k) is a Yes-instance of Π if and only if (I ′, k′) is a Yes-instance of Π ′.
• k′ ≤ g(k) for some computable function g.
• The running time is f(k) · |Π |O(1) for some computable function f .

If there exists such a reduction transforming a problem known to be W[1]-
hard to another problem Π , then the problem Π is W[1]-hard as well. Central
W[1]-hard-problems include, for example, deciding whether a nondeterministic
single-tape Turing machine accepts within k steps, Clique parameterized be
solution size, and Independent Set parameterized by solution size. To show
that a problem Π is not XP unless P=NP, it is sufficient to show that there exists
a fixed k such Π is NP-hard. Then, the problem is said to be para-NP-hard.

A companion notion to that of fixed-parameter tractability is the one of
a polynomial kernel. Formally, a parameterized problem Π is said to admit a
polynomial compression if there exists a (not necessarily parameterized) problem
Π ′ and a polynomial-time algorithm that given an instance (I, k) of Π , outputs
an equivalent instance I ′ of Π ′ (that is, (I, k) is a Yes-instance of Π if and only if
I ′ is a Yes-instance of Π ′) such that |I ′| ≤ p(k) where p is some polynomial that
depends only on k. In case Π ′ = Π , we further say that Π admits a polynomial
kernel. For more information on Parameterized Complexity, we refer the reader
to recent books such as [23,20,27].

Non-Existence of a Polynomial Compression. Our proof of the “unlikely
existence” of polynomial kernels relies on the well-known notions of OR-cross-
composition and AND-cross-composition. Before we present these techniques,
let us define the following. Suppose that Σ is some finite alphabet, Σ≤n is the
set of all words of length at most n over Σ, and Σ∗ is the set of all possible
words of any length over Σ.

Definition 11 (Polynomial Equivalence Relation). An equivalence rela-
tion R on the set Σ∗ is called a polynomial equivalence relation if the following
conditions are satisfied:

1. There exists an algorithm that, given strings x, y ∈ Σ∗, resolves whether
(x, y) ∈ R in time polynomial in |x|+ |y|.

2. R restricted to the set Σ≤n has at most p(n) equivalence classes for some
polynomial p.

16 Barak Steindl and Meirav Zehavi

Definition 12 (OR-Cross-Composition). A (not necessarily parameterized)
problem Π OR-cross-composes into a parameterized problem Π ′ if there exists a
polynomial-time algorithm, called an OR-cross-composition, that given instances
I1, I2, . . . , It of Π for some t ∈ N that are equivalent with respect to some poly-
nomial equivalence relation R, outputs an instance (I, k) of Π ′ such that the
following conditions are satisfied.

• k ≤ p(s+ log t) for some polynomial p.
• (I, k) is a Yes-instance of Π ′ if and only if at least one of the instances
I1, I2, . . . , It is a Yes-instance of Π.

The notion of AND-Cross-Composition is defined similarly, but instead of
requiring that the output instance is a Yes-instance if and only if at least one of
the input instances is Yes-instance, we require that the output instance is a Yes-
instance if and only if all the input instance should be yes instances. We will use
the following proposition to prove that the problems do not admit polynomial
kernels.

Proposition 5 ([11,12]). Let Π be an NP-hard (not necessarily parameter-
ized) problem that OR-cross-composes (or AND-cross-composes) into a parame-
terized problem Π ′. Then, Π ′ does not admit a polynomial compression, unless
NP⊆coNP/poly.

To obtain (essentially) tight conditional lower bounds for the running times
of algorithms, we rely on the well-known Exponential-Time Hypothesis (ETH)
[29,30,15]. To formalize the statement of ETH, first recall that given a formula
ϕ in conjuctive normal form (CNF) with n variables and m clauses, the task of
CNF-SAT is to decide whether there is a truth assignment to the variables that
satisfies ϕ. In the p-CNF-SAT problem, each clause is restricted to have at most
p literals. ETH asserts that 3-CNF-SAT cannot be solved in time O(2o(n)).

3 Properties of the Concepts of Optimality

Relations between different notions of optimality. We start with some
simple properties regarding the notions of (k, α)-optimality, (k, α)-upper-
bounded optimality, and (k, α)-subset optimality. Additionally, we prove that
Verify-OA, Verify-UOA, and Verify-SOA are in coNP, and that Verify-

UOA is solvable in polynomial time when α = ℓ.
We begin by considering what would have happened if that the second con-

dition in Definition 9 is applied to all subsets of agents of size at least k (rather
than subsets of size exactly k). Intuitively, we show that it does not make sense to
consider Verify-SOA with ≥ instead of = with respect to subset sizes, as then
we just get the exact same problem. In other words, this yields an alternative
definition of (k, α)-subset optimality.

Lemma 1. An assignment p is (k, α)-subset optimal for an instance
(A, I, P1, . . . , Pℓ) if and only if it satisfies the following conditions:

Verification of Multi-Layered Assignment Problems 17

1. For each subset of agents K ⊆ A such that |K| ≥ k, there exist α layers
i1, . . . , iα such that, for each j ∈ [α], there does not exist K ′ ⊆ A that
contains K (K ⊆ K ′ ⊆ A) and admits a trading cycle in layer ij.

2. If k = 1, then for each a ∈ A, there exist α layers where it does not admit a
self loop.

Proof. ⇒: Suppose that p is (k, α)-subset optimal. Let K ⊆ A be a subset of
agents such that |K| ≥ k, and let X ⊆ K be a subset of K such that |X | = k. By
Definition 9, there exist α layers, i1, . . . , iα such that for each j ∈ [α], there does
not exist Y ⊆ A that contains X (X ⊆ Y) and admits a trading cycle in layer
ij . Let j ∈ [α], and let Y ⊆ A be a subset such that K ⊆ Y . Since X ⊆ K ⊆ Y ,
we have that Y does not admit a trading cycle in layer ij. Thus, K does not
appear in trading cycles with possibly other agents in these α layers. If k = 1,
then p satisfies the second condition as well. So, both conditions are satisfied.

⇐: Suppose that p satisfies both conditions. Then, if k = 1, by Definition 9 we
have that p satisfies the second condition. Let K ⊆ A be a subset of agents such
that |K| = k. By the first condition of the Lemma, there exist α layers where
the agents in K do not admit trading cycles with possibly other agents. Thus, p
is (k, α)-subset optimal. ⊓⊔

The next lemma shows that if we modify Definition 9 such that the first
condition applies to all subsets of agents of size at most k (rather than exactly
k), and the second condition is satisfied for any value of k, then the parameter
k becomes senseless. We refer to this new optimality notion as (k, α)-subset*
optimality.

Lemma 2. Let (A, I, P1, . . . , Pℓ) be an instance of Multi-Layered Assign-

ment and let k ∈ [|A|] and α ∈ [ℓ]. Then, p is (k, α)-subset* optimal if and only
if it is (1, α)-subset optimal.

Proof. ⇒: Suppose that p is (k, α)-subset* optimal. If k = 1, then clearly p is
also (1, α)-subset optimal. Otherwise, let a ∈ A. By the definition of subset*
optimality, a does not admit trading cycles with possibly other agents in at least
α layers. Then, by Definition 9, p is (1, α)-subset optimal.
⇐: Suppose that p is (1, α)-subset optimal. First, each agent does not admit

self loops in at least α layers. Second, let K ⊆ A be a subset of at most k
agents and let a ∈ K. Since p is (1, α)-subset optimal, we have that a is not
part of trading cycles with other agents in at least α layers. Since a ∈ K, this
implies that K is not part of larger trading cycles in these layers. Then, p is
(k, α)-subset* optimal. ⊓⊔

Next, by the definitions of (k, α)-optimality, (k, α)-subset optimality and
(k, α)-upper-bounded optimality, we immediately obtain the two following ob-
servations.

Observation 6 Let (A, I, P1, . . . , Pℓ) be an instance of
Multi-Layered Assignment with ℓ layers. Let p : A → I ∪ {b∅} be an
assignment. Then, for every k ∈ [|A|] and α ∈ [ℓ], p is (k′, α)-optimal for all
k′ ∈ [k] (simultaneously) if and only if p is (k, α)-upper-bounded optimal.

18 Barak Steindl and Meirav Zehavi

Observation 7 Let (A, I, P1, . . . , Pℓ) be an instance of
Multi-Layered Assignment with ℓ layers, let p : A → I ∪ {b∅} be an
assignment, and let k ∈ [|A|] and α ∈ [ℓ]. Assume that p is (k, α)-subset
optimal. Then, p is (k, α)-optimal.

We next prove equivalence relations between the various notions of optimality
under specific choices of k and α.

Lemma 3. Let (A, I, P1, . . . , Pℓ) be an instance of
Multi-Layered Assignment with ℓ layers. Let p : A → I ∪ {b∅} be an
assignment. Then, the following properties are equivalent:

1. p is (k, ℓ)-optimal for all k ∈ [n] (simultaneously).
2. p is (n, ℓ)-upper-bounded optimal.
3. p is (1, ℓ)-subset optimal.
4. p is ℓ-globally optimal.

Proof. We prove each equivalence separately:

(1)⇒ (2): Immediate from Observation 6.

(2) ⇒ (3): Assume that p is (n, ℓ)-upper-bounded optimal. First, each agent
does not admit self loops in all the layers. Second, for each subset K ⊆ A, the
agents in K do not admit trading cycles in all the layers. Let {a} ⊆ A, and let
X ⊆ A such that {a} ⊆ X . Then, X does not admit trading cycles in all the
layers. Thus, we conclude that {a} is not part of trading cycles in all the layers.
Thus, p is (1, ℓ)-subset optimal.

(3) ⇒ (4): Assume that p is (1, ℓ)-subset optimal. Then, p does not admit self
loops in any layer. Towards a contradiction, suppose that there exists a layer
i ∈ [ℓ] containing the trading cycle (a1, p(a1), . . . , at, p(at)). Then, we have a
layer where a1 admits a trading cycle (with other agents), a contradiction to the
supposition that p is (1, ℓ)-subset optimal. Thus, all the layers do not contain
self loops and trading cycles. So, by Proposition 1, p is ℓ-globally optimal.

(4) ⇒ (1): Assume that p is ℓ-globally optimal. Then, by Proposition 1, p does
not admit self loops and trading cycles of any length in all the layers. Thus, it
is clearly (k, ℓ)-optimal for each k ∈ [n].

We now give a simple observation that relates (k, α)-optimality to (k, α)-
subset optimality in a very particular setting, which will arise in our proofs.

Observation 8 Let (A, I, P1, . . . , Pℓ) be an instance of
Multi-Layered Assignment with ℓ layers, and let p : A → I ∪ {b∅} be
an assignment. Assume that for each i ∈ [ℓ], Pi does not contain trading cycles
containing more than k agents with respect to p. Then, p is (k, α)-optimal if
and only if it is (k, α)-subset optimal.

Proof. ⇒: Assume that p is (k, α)-optimal. First, if k = 1, then p clearly satisfies
that each agent does not admit self loops in some α layers. Second, let K ⊆ A
be a subset of agents of size k. By the definition of (k, α)-optimality, there exist

Verification of Multi-Layered Assignment Problems 19

α layers i1, . . . , iα such that for each j ∈ [α], K does not admit a trading cycle in
layer ij . Since each preference profile does not contain trading cycles with more
than k agents, we have that for each K ′ ⊆ A such that K ⊆ K ′, K ′ does not
admit a trading cycle in layer ij. Hence, p is (k, α)-subset optimal.
⇐: Immediate from Observation 7. ⊓⊔

By Observation 8, and since every trading cycle can contain at most n agents,
we conclude the following.

Corollary 1. Assignment p is (n, α)-optimal if and only if it is (n, α)-subset
optimal.

Membership in coNP and polynomial-time algorithms. We now assert
that all problems considered in this paper are in coNP.

Lemma 4. The problems Verify-OA, Verify-UOA, and Verify-SOA are
in coNP.

Proof. We prove that the complements of the problems Verify-OA,
Verify-UOA, and Verify-SOA are in NP. Given an instance D =
(A, I, P1, . . . , Pℓ, α, k, p):

• If D is a Yes-instance of Verify-OA (or Verify-UOA), then by Observa-
tion 3 the witness is of one of the following forms:
1. If k ≥ 2: A subset K ⊆ A such that |K| = k (or |K| ≤ k for

Verify-UOA), ℓ − α + 1 layers i1, . . . , iℓ−α+1, and ℓ − α + 1 trading
cycles Ci1 , . . . , Ciℓ−α+1

, such that the agents in K admit the trading cy-
cle Cij in layer ij , for each j ∈ [ℓ− α + 1]. Given the witness, a verifier
can verify in polynomial time whether the agents in K admit the cor-
responding trading cycle in each layer Pij with respect to p, for each
j ∈ [ℓ− α+ 1].

2. If k = 1 (or for any value of k only if the input is an instance of
Verify-UOA): An agent a ∈ A, ℓ − α + 1 layers, i1, . . . , iℓ−α+1, and
ℓ−α+1 self loops, Li1 , . . . , Liℓ−α+1

, such that a admits the self loop Li1

in layer Pij with respect to p, for each j ∈ [ℓ−α+1]. This can be easily
verified in polynomial time.

• If D is a Yes-instance of Verify-SOA, then by Observation 4 the witness
is of one of the following forms:
1. A subset K ⊆ A such that |K| = k, ℓ− α+ 1 layers, i1, . . . , iℓ−α+1, and

ℓ−α+1 trading cycles, Ci1 , . . . , Ciℓ−α+1
, such that Cij is a trading cycle

that contains all the agents from K together with possibly additional
agents. Given the witness, the verifier can verify in polynomial time
whether for each j ∈ [ℓ− α+ 1] (i) all the agents from K appear in Cij

and (ii) Cij is a trading cycle in layer ij .
2. If k = 1: An agent a ∈ A, ℓ− α+ 1 layers, i1, . . . , iℓ−α+1, and ℓ− α+ 1

self loops, Li1 , . . . , Liℓ−α+1
, such that a admits the self loop Lij in Pij

with respect to p for each j ∈ [ℓ − α + 1]. This can be easily verified in
polynomial time.

20 Barak Steindl and Meirav Zehavi

⊓⊔

Recall that the first conditions in the definitions of (k, α)-optimality and
(k, α)-subset optimality apply on subsets of agents of size exactly k, and in the
definition of upper-bounded optimality, the first condition applies to subsets of
size at most k. We prove now that this difference makes Verify-UOA much
easier to solve than Verify-OA when α = ℓ.

Lemma 5. Let (A, I, P1, . . . , Pℓ) be an instance of
Multi-Layered Assignment, let p be an assignment, and let k ∈ [n].
Then:

1. Deciding whether p is (k, ℓ)-upper-bounded optimal can be done in a polyno-
mial time.

2. Deciding whether p is (k′, ℓ)-subset optimal for all k′ ∈ [k] (simultaneously)
takes a polynomial time.

Proof. We provide a polynomial time algorithm for each problem.

Verify-UOA. By Definition 8, we need to verify whether (i) for each subset
K ⊆ A such that 2 ≤ |K| ≤ k, the agents in K do not admit trading cycles in all
the layers, and whether (ii) for each a ∈ A, a does not admit self loops in all the
layers. Equivalently, we need to answer whether the trading graph of each layer
does not contain cycles with at most k agents. Thus, we construct the trading
graphs of all the layers with respect to p, and denote them by G1, . . . , Gℓ. For
each i ∈ [ℓ], we run a polynomial time algorithm on Gi to find the length of the
shortest cycle ti. If for some i ∈ [ℓ], ti ≤ 2k, which means that there exists at
least one cycle with k or fewer agents in Gi, we return false. Otherwise, all the
ti’s are greater than k (i.e. there does not exists a subset of agents of size at
most k that admits cycles in at least ℓ− α+ 1 = 1 layer), and we return true.

The second problem. By Observation 4, we need to return false if and only if
(i) there exists an agent that admits self loop in at least one layer, or (ii) there
exist a subset K ⊆ A such that 2 ≤ |K| ≤ k, and a subset K ⊆ K ′ ⊆ A, such
that the agents in K ′ admit a trading cycle in at least one layer. Notice that one
of these conditions occur if and only if at least one of the trading graphs of the
layers contains a cycle (of any length). Thus, we construct the trading graphs
of all the layers, G1, . . . , Gℓ, and run a polynomial time algorithm on each of
them to check whether they contain cycles. If at least one trading graph contains
cycles, we return false. Otherwise, we return true. ⊓⊔

The algorithms rely on the fact that it is easier to decide whether a directed
graph contains a cycle of length at most k than to decide whether it contains a
cycle of length exactly k, or a cycle through specified elements (see, e.g., [40,10]).

4 Fixed-Parameter Tractability

In this section, we first prove that Verify-OA, Verify-UOA and Verify-

SOA admit polynomial kernel with respect to #alloc + ℓ where #alloc =

Verification of Multi-Layered Assignment Problems 21

a1

a2

a3

a4
b3

b2

b4

b1

b5

a5

a1

a2
a3

b3

b2

b1

Fig. 1. Suppose we run the kernel on an instance with the agent set A =
{a1, a2, a3, a4, a5}, the item set I = {b1, b2, b3, b4, b5}, in which p(a1) = b1, p(a2) = b2,
p(a3) = b3, p(a4) = b∅ and p(a5) = b∅. The kernel removes a4, a5, b4, and b5 since they
are not matched by the assignment. The resulting instance cannot contain self loops
but only trading cycles as shown in the figure.

number of items allocated by the assignment. Then, we prove that the three
problems are FPT with respect to the parameters #alloc, n = #agents, and
m = #items, by providing O∗(2#alloc)-time algorithms. Then, we prove that
Verify-OA and Verify-UOA admit an XP algorithm when parameterized by
k, and even an FPT algorithm when parameterized by d + k (note that d ≤ m,
but d and n are incomparable). After that, we prove that the three problems are
coW[1]-hard when parameterized by k + ℓ.

Theorem 1. The problems Verify-OA, Verify-UOA, and Verify-SOA

admit kernels of size ℓ · (#alloc)2.

Proof. We provide the same kernel for all problems. The kernel relies on the fact
that only agents assigned to items different than b∅ can admit trading cycles.
Thus, if k = 1, or the input is an instance of Verify-UOA, the kernel begins
with a preprocessing step, in which it verifies whether each agent does not admit
self loops in at least α layers in polynomial time. If it finds that the given instance
is a No-instance after the preprocessing step, it returns No. After that (for any
problem and for any value of k), the kernel removes from the instance (i) all the
agents assigned to b∅ together with their preference lists, and (ii) all the items
which are not allocated to any agent and their appearances in the preferences
of the agents. In other words, the kernel first checks whether the optimality is
violated due to the optimality requirement regarding the self loops (possible only
when k = 1 or the instance is of Verify-UOA). After that, it keeps only the
agents and the items that are matched by the assignment p since they are the
only candidates that can appear in trading cycles. The resulting trading graphs
cannot contain self loops but only trading cycles (see Figure 1). The kernel is
given in Algorithm 1 and the preprocessing step is given in Algorithm 2.

22 Barak Steindl and Meirav Zehavi

if k = 1 or the input is an instance of Verify-UOA then

fewLoops←− preprocessing()

if fewLoops = false then

return No

end

end

A∅ ←− {a ∈ A | p(a) = b∅}

I∅ ←− {b ∈ I | there does not exist a ∈ A such that p(a) = b}

A←− A \A∅

I ←− I \ I∅
foreach i ∈ [ℓ] do

remove from Pi the preference lists of the agents in A∅

remove from the preference lists in Pi all the items from I∅

remove from p the entries that correspond to the agents from A∅

end

return the reduced instance

Algorithm 1: Kernel for Verify-OA, Verify-UOA and Verify-SOA

of size ℓ · (#alloc)2.

The preprocessing step can be implemented in polynomial time by con-
structing the trading graphs of the layers with respect to p and considering
for each a ∈ A the self loops it admits in each trading graph. The kernel can
clearly be implemented in polynomial time as well. The correctness of Algo-
rithm 2 is due to Observation 3. Suppose that we run the kernel on an instance
D1 = (A, I, P1, . . . , Pℓ, α, k, p) of Verify-OA, Verify-UOA, or Verify-SOA,
and the kernel outputs the instance D2 = (A′, I ′, P ′

1, . . . , P
′
ℓ , α, k, p

′). We claim
the following.

Claim 1 Let i ∈ [ℓ], and let Ci be the set of trading cycles in the trading graph
of Pi with respect to p. Let C′i be the set of trading cycles in the trading graph of
P ′
i with respect to p′. Then Ci = C′i.

Proof. ⊆: Let C = (a1, b1, . . . , at, bt) ∈ Ci be a trading cycle in the trading graph
of Pi with respect to p. Since for each j ∈ [t], aj is assigned to an item, and bj
is assigned to an agent, we have that aj ∈ A \ A∅ and bj ∈ I \ I∅. Thus, the
preferences of aj on the items from I \I∅ in layer i remain unchanged. Moreover,
we have that p′(aj) = p(aj). Then, C is a trading cycle in the trading graph of
P ′
i with respect to p′.

⊇: Let C = (a1, b1, . . . , at, bt) ∈ C′i be a trading cycle in the trading graph of P ′
i

with respect to p′. The kernelization algorithm keeps only the agents assigned

Verification of Multi-Layered Assignment Problems 23

input : An instance (A, I, P1, . . . , Pℓ, k, α, p)
output: Does every agent a ∈ A have at least α layers where it does not

admit self loops?

foreach a ∈ A do

if a admits self loops in at least ℓ− α+ 1 layers then

return false

end

end

return true

Algorithm 2: Preprocessing step for the kernel for Verify-OA,

Verify-UOA, and Verify-SOA.

: . . .

: . . .

...
...

: . . .

at most #alloc items

#alloc
agents

.

ℓ layers

Fig. 2. The kernel removes all the items which are not allocated and all the agents
which are not assigned to items. Thus, its total size is O(ℓ · (#alloc)2).

to items, and their assigned items. Thus, for each i ∈ [t], ai and bi are assigned
by p, i.e. p′ ⊆ p. We have that the trading graph of P ′

i with respect to p′ is a
sub-graph of the trading graph of Pi with respect to p. Hence, C is a trading
cycle in layer i of D1 with respect to p. ⊓⊔

By the correctness of the preprocessing step, and since the set of trading
cycles remains the same in each layer by Claim 1, we have that the resulting
instance of the kernel is equivalent to the input instance. Since the kernel keeps
only the agents and the items which are matched by the assignment, we have
that its size is O(ℓ · (#alloc)2) (see Figure 2). An example containing a trading
graph of a layer before and after executing the kernel is given in Figure 1. ⊓⊔

Since #alloc ≤ min{n,m}, we conclude the following.

Corollary 2. The problems Verify-OA, Verify-UOA, and Verify-SOA

admit polynomial kernels with respect to #alloc + ℓ, n+ ℓ and m+ ℓ.

24 Barak Steindl and Meirav Zehavi

Theorem 2. The problems Verify-OA, Verify-UOA, and Verify-SOA

are solvable in time O∗(2#alloc).

Proof. We provide a dynamic programming algorithm for each of the problems.
The algorithms perform an adaptation of the technique by Björklund et al. [9]
(to compute the Fast zeta and Möbius transform). Each algorithm begins by
running the kernelization algorithm (Algorithm 1) to reduce the number of the
agents to #alloc. Then, the algorithms construct ℓ tables with boolean values,
each containing (#alloc)2 · 2#alloc entries. Before we describe the algorithms,
let us define the following, which is required to understand the purpose of each
entry.

Definition 13. Let (A, I, P1, . . . , Pℓ, α, k, p) be an instance of Verify-OA,
Verify-UOA or Verify-SOA, and let s, t ∈ A. We say that there is a trading
path from s to t in layer i if there exist agents a1, . . . , ar ∈ A such that the
trading graph of Pi with respect to p contains the path p(s) → s → p(a1) →
a1 → . . .→ p(ar)→ ar → p(t)→ t.

Notice that a trading cycle is a trading path from an agent to itself. For an
agent s ∈ A and layer i, we denote

Ni(s) = {a ∈ A|(s, p(a)) is an edge in the trading graph of Pi}.

That is, Ni(s) is the set of agents whose items are preferred by s in layer i over
its assigned item p(s). Notice that the trading graph of Pi with respect to p
contains the path p(s) → s → p(a) → a for each a ∈ Ni(s). We now describe
each algorithm separately.

Verify-OA and Verify-UOA. Given an instance (A, I, P1, . . . , Pℓ, α, k, p) of
Verify-OA or Verify-UOA, the algorithm first performs the kernelization
algorithm defined in Algorithm 1, and updates the input instance accordingly
to have size O(ℓ(#alloc)2). If the kernelization algorithm returns No, then the
algorithm returns false because, by the correctness of the kernel, we are dealing
with a No-instance. Since the kernel reduces the number of agents to #alloc,
we assume that |A| = #alloc. The algorithm initializes ℓ tables, M1, . . . ,Mℓ,
whose entries will store boolean values defined as follows. For each i ∈ [ℓ], agents
s, t ∈ A and a subset of agents X ⊆ A: Mi[s, t,X] = true if there exists a trading
path from s to t that contains only the agents from X ∪{s, t} and their assigned
items; Mi[s, t,X] = false otherwise. Notice that:

Mi[s, t, ∅] =

{
true if (s, p(t)) is an edge in the trading graph of Pi w.r.t. p

false otherwise
and for

each X ⊆ A such that X 6= ∅:

Mi[s, t,X] =
∨

s′∈Ni(s)

Mi[s
′, t,X \ {s′}]

This is because each trading path from s to t must start with an item of some
agent from the set Ni(s). Each table Mi contains (#alloc)2 · 2#alloc entries and

Verification of Multi-Layered Assignment Problems 25

can be constructed in the same running time. Thus, the algorithm constructs
the ℓ tables M1, . . . ,Mℓ in total time of O(ℓ · (#alloc)2 ·2#alloc). Then, it verifies
if for each subset of agents K ⊆ A such that |K| = k (or |K| ≤ k if the
input is an instance of Verify-UOA), there exist α layers where the agents in
K do not admit trading cycles. To perform this, for each such subset K, the
algorithm picks a random agent a ∈ K and checks whether at least α values
among M1[a, a,K \{a}], . . . ,Mℓ[a, a,K \{a}] equal true (these values determine
whether the agents from K admit trading cycles, without additional agents).
If every such subset K satisfies this condition, then the algorithm returns true.
Otherwise, it returns false. The total running time of the algorithm isO∗(2#alloc).

Verify-SOA. Here, given an instance (A, I, P1, . . . , Pℓ, α, k, p) of Verify-SOA,
we first run the algorithm for Verify-OA. If it returns false, then we return
false as well. Otherwise, we have the ℓ tables M1, . . . ,Mℓ constructed by the
algorithm for Verify-OA. We need to verify that for each K ⊆ A such that
|K| = k, the agents in K do not admit trading cycles together with possibly
other agents in at least α layers. Recall that the tables M1, . . . ,Mℓ already verify
whether each such subset K does not admit trading cycles without additional
agents. In order to adapt to the definition of (k, α)-subset optimality, we define
ℓ new tables N1, . . . , Nℓ. For each i ∈ [ℓ], agents s, t ∈ A, and a subset X ⊆ A,
Ni[s, t,X] = true if there exists a trading path in layer i from s to t containing all
the agents fromX∪{s, t} with their assigned items and possibly additional agents
with their assigned items; Ni[s, t,X] = false otherwise. Notice that for each
i ∈ [ℓ]: Ni[s, t,X] =

∨
Y⊆A s.t. X⊆Y

Mi[s, t, Y] =
∨

Z⊆A\X

Mi[s, t,X ∪ Z] . To construct

the tables N1, . . . , Nℓ efficiently - in time O∗(2#alloc) rather than O∗(3#alloc) as
implied from the above equality, we perform the following. Assume that A =
{a1, . . . , ar} where r = #alloc. We represent each subset of agents X ⊆ A as
a vector of r bits (x1, . . . , xr) such that for each i ∈ [r], xi = 1 if ai ∈ X ,
and xi = 0 otherwise. Observe that for two subsets X = (x1, . . . , xr) and Y =
(y1, . . . , yr), X ⊆ Y if and only if for each i ∈ [r], xi ≤ yi. Thus, for every subset
X = (x1, . . . , xr) ⊆ A, and agents s, t ∈ A, we have that:

Ni[s, t, (x1, . . . , xr)] =
∨

y1,...,yr∈{0,1}

δ[x1 ≤ y1 ∧ . . . ∧ xr ≤ yr] ·Mi[s, t, (y1, . . . , yr)] where δ is an

indicator that equals 1 if the expression in it is true, and 0 otherwise. For each
j ∈ [r], we define:

N
(j)
i [s, t, (x1, . . . , xr)] =

∨
y1,...,yj∈{0,1}

δ[x1 ≤ y1 ∧ . . . ∧ xj ≤ yj] ·

Mi[s, t, (y1, . . . , yj, xj+1, . . . , xr)]. We also define N
(0)
i [s, t, (x1, . . . , xr)] =

Mi[s, t, (x1, . . . , xr)].

Notice that Ni[s, t, (x1, . . . , xr)] = N
(t)
i [s, t, (x1, . . . , xr)]. We can compute

the values N
(j)
i [s, t, (x1, . . . , xr)] efficiently by the following observation:

N
(j)
i [s, t, (x1, . . . , xr)] =

N
(j−1)
i [s, t, (x1, . . . , xr)] if xj = 1

N
(j−1)
i [s, t, (x1, . . . , xj−1, 1, xj+1, . . . , xr)] ∨ if xj = 0

N
(j−1)
i [s, t, (x1, . . . , xj−1, 0, xj+1, . . . , xr)]

26 Barak Steindl and Meirav Zehavi

Each tableN
(j)
i can be constructed in time O(2#alloc+2), thus constructing all

the tables will take time O(ℓ·#alloc·2#alloc) = O∗(2#alloc). Then, for each subset
K ⊆ A with |K| = k, the algorithm picks an arbitrary agent a ∈ K and checks
whether there exist α layers i1, . . . , iα such that Nij [s, t, (x1, . . . , xr)] = false for
each j ∈ [α]. If this is the case, it returns true, otherwise, it returns false. The
correctness of the algorithm follows directly by the definition of (k, α)-subset
optimality. ⊓⊔

Since the parameter #alloc is smaller or equal than min{n,m}, we conclude
the following.

Corollary 3. The problems Verify-OA and Verify-SOA are FPT with re-
spect to #alloc, n and m.

We prove now that Verify-OA and Verify-UOA are XP with respect to
k. We remark that this statement can also follow as a corollary of Theorem 4
by first using the kernel in Theorem 1 to reduce n to be exactly equal to #alloc,
which is lower-bounded by d. As a stand-alone proof is also simple, we opted for
it.

Theorem 3. The problems Verify-OA and Verify-UOA are solvable in time
O∗(nO(k)).

Proof. We provide an O∗(nO(k))-time algorithm. The algorithm relies on the
algorithm by Bellman [8] for Hamiltonian Cycle in directed graphs with
running time O∗(2n), where n is the number of vertices. Consider an instance
D = (A, I, P1, . . . , Pℓ, α, k, p) of Verify-OA. For each i ∈ [ℓ], we denote by Gi

the trading graph of layer i with respect to p. For any subset K ⊆ A, we denote
by Gi[K] the subgraph of Gi that contains only the vertices that correspond to
the agents in K and their assigned items. We first claim the following.

Claim 2 Let i ∈ [ℓ] and let K ⊆ A be a subset of agents such that |K| ≥ 2.
Then, the agents in K admit a trading cycle in layer i with respect to p if and
only if Gi[K] admits a directed Hamiltonian cycle.

Proof. ⇒: Assume that the agents in K admit a trading cycle in layer i with
respect to p. Then, Gi contains a cycle over the agents in K and their assigned
items. This cycle is a Hamiltonian cycle in Gi[K].

⇐: Assume that Gi[K] admits a directed Hamiltonian cycle. Since Gi[K] is a
subgraph of Gi, we have that the agents in K admit a cycle in Gi with their
assigned items. This implies that K admits a trading cycle in layer i. ⊓⊔

Claim 3 Given a subset K ⊆ A such that |K| ≥ 2 and a layer i ∈ [ℓ], it is
possible to determine whether the agents in K admit a trading cycle in layer i
in time O∗(2|K|).

Proof. By Claim 2, we can construct the trading graph of layer i with respect
to p, Gi. Then, we run the algorithm of Bellman [8] on the subgraph G[K] to

Verification of Multi-Layered Assignment Problems 27

check whether it admits a directed Hamiltonian cycle. If the answer is yes, this
means that K admits a trading cycle in layer i, thus we return true. Otherwise,
we return false. ⊓⊔

Using these claims, we provide the algorithm for Verify-OA and Verify-

UOA. If k = 1 or the instance is an instance of Verify-UOA, then the first step
of the algorithm is to verify whether for each a ∈ A, there exist at least α layers
where it does not admit self loops. This can be easily done in polynomial time
by constructing the trading graphs of all the layers, G1, . . . , Gℓ, and checking for
each of them whether a is contained in a cycle with another item and no other
vertex. If there exists some agent that appears in self loops in at least ℓ− α+ 1
layers, we return false. Otherwise, we need to verify that every subset of agents
K ⊆ A such that |K| = k (or |K| ≤ k for Verify-UOA) does not admit
trading cycles in at least α layers. To verify this, for each such subset K ⊆ A,
we check for each i ∈ [ℓ] whether the agents in K admit a trading cycle in layer
i using Claim 3 in time O∗(2|K|) = O∗(2k). If there exists a subset K whose
agents admit trading cycles in at least ℓ − α+ 1 layers, then by Observation 3,
we return false. Otherwise, we return true. Notice that the number of subsets
K ⊆ A with |K| ≤ k is O(nk). For each such subset, checking whether it admits
trading cycles in more than ℓ−α+1 layers takes time O∗(ℓ ·2k). Thus, the total
running time is O∗(nk · ℓ · 2k) = O∗(nO(k)). ⊓⊔

Corollary 4. The problems Verify-OA and Verify-UOA are XP with re-
spect to k.

We now turn to consider d as a parameter, in addition to k.

Theorem 4. Verify-OA and Verify-UOA are solvable in time O∗(dk).

Proof. We provide an algorithm for Verify-OA and Verify-UOA (formally
describe in Algorithm 3). The algorithm is based on the observation that since
each agent prefers at most d− 1 items over its own assigned item (or at most d
if it not allocated an item), the number of possible trading cycles with exactly
k agents (or at most k agents if the input is an instance of Verify-UOA) is at
most O(n · dk) (where n is the number of agents).

The algorithm first performs the kernelization algorithm in Theorem 1 in
order to test whether each agent does not admit self loops in at least ℓ− α+ 1
layers (when k = 1), and to reduce the instance size to O(ℓ · (#alloc)2). Then,
for each i ∈ [ℓ], the algorithm considers all the trading cycles in layer i with k
(or at most k) agents. For each such trading cycle C, it checks in which other
layers the agents in C admit trading cycles. If it finds out that there are at least
ℓ−α+1 layers in which the agents admit trading cycles, then by Observation 3,
it returns No. Otherwise, the algorithm returns Yes. In order to check in which
layers the agents in C admit trading cycles, we use a similar technique as in
Theorem 3, which uses the O∗(2n)-time algorithm for Hamiltonian Cycle

on directed graphs by Bellman [8]. For a subset AC of agents that appear in a
trading cycle C in layer i, the algorithm constructs for each j ∈ [ℓ]\{i} the graph

28 Barak Steindl and Meirav Zehavi

input : An instance (A, I, P1, . . . , Pℓ, k, α, p) of Verify-OA (or

Verify-UOA)

output: Is p (k, α)-optimal? (or (k, α)-upper-bounded optimal)

run the kernel of size ℓ(#alloc)2 from Theorem 1 on the input instance

if the kernel returns No then

return No

end

else

foreach i ∈ [ℓ] do

Gi ← the trading graph of Pi

end

foreach i ∈ [ℓ] do
foreach trading cycle C in Pi with k agents (or at most k

agents) do

AC ← the agents appearing in C

foreach j ∈ [ℓ] \ {i} do

Gj [AC]← sub-graph of Gi on AC and their items

end

if at least (ℓ− α) j ∈ [ℓ] \ {i} satisfy that Gj [AC] contains a

Hamiltonian cycle then
return No

end

end

end

end

return Yes

Algorithm 3: Algorithm for Verify-OA and Verify-UOA with run-

ning time O∗(dk).

Gj [AC], which is the sub-graph of the trading graph in layer j containing only
the agents from AC and their assigned items as well as the edges between them.
Using the algorithm of Bellman [8], and based on the previous observations, the
algorithm can be implemented in time O∗(ℓ ·n ·dk ·2k) = O∗(dk). Its correctness
is due to Observation 3, and the observation that Gj contains a trading cycle
over the agents set AC if and only if Gj [AC] admits a Hamiltonian cycle. ⊓⊔

Corollary 5. Verify-OA and Verify-UOA are FPT with respect to k + d.

Theorem 5. The problems Verify-OA, Verify-UOA and Verify-SOA are
coW[1]-hard with respect to k + ℓ.

Verification of Multi-Layered Assignment Problems 29

Proof. We provide a parameterized (and also polynomial) reduction from Mul-

ticolored Independent Set (defined immediately) to Verify-OA. We will
later explain why it is also a reduction to Verify-UOA and Verify-SOA. The
Multicolored Independent Set problem was proved to be W[1]-hard by
Fellows et al. [25]. The input of Multicolored Independent Set consists

of an undirected graph G = (V,E), an integer 2 ≤ k̃ ≤ |V |, and a coloring

c : V → [k̃] that colors the vertices in G with k̃ colors. The task is to decide

whether G admits a multicolored independent set of size k̃, which is an indepen-
dent set (i.e. a vertex subset with pair-wise non-adjacent vertices) V ′ ⊆ V that

satisfies {c(v′)|v′ ∈ V ′} = [k̃] and |V ′| = k̃.

Given an instance (G = (V,E), k̃, c) of Multicolored Independent Set,
denote V = {v1, . . . , vn}. We construct an instance ofVerify-OA with n agents,

n items,
(
k̃
2

)
layers, α = 1, k = k̃, and an assignment p. We will prove that there

exists a subset of agents of size k that admits trading cycles in all the layers with
respect to p if and only if G contains a multicolored independent set of size k̃. We
first create an agent ai and an item bi for each vertex vi ∈ V . Thus, the agent set
and the item set of the constructed instance are A = An and I = In, respectively.
We also set p = pn (recall that p(ai) = bi for each i ∈ [n]). Intuitively, if there
exists a multicolored independent set in G, then the agents corresponding to the
vertices in the multicolored independent set will admit trading cycles in all the
layers. Each layer corresponds to a pair of colors {u,w}, and ensures that (i)
every trading cycle contains exactly k agents that correspond to vertices colored
by all the colors; and (ii) the vertices with the colors u and w whose agents
appear in a trading cycle will not be adjacent in G.

For each s ∈ [k̃], denote A(s) = {ai ∈ A|c(vi) = s} and I(s) = {bi ∈ I|c(vi) =
s}, namely, the agents and the items that correspond to vertices colored s by the

coloring c, respectively. Let u,w ∈ [k̃] be two different colors such that u < w;

denote the other colors by s1, . . . , sk̃−2 ∈ [k̃] \ {u,w} such that s1 < . . . < s
k̃−2.

The preference profile PMCIS
{u,w} is defined as follows.

• ar : I(sj+1) > br ∀vr ∈ V, j ∈ [k̃ − 3] s.t. c(vr) = sj
• ar : I(u) > br ∀vr ∈ V s.t. c(vr) = s

k̃−2
• ar : I(w) ∩ {ai|{vi, vr} /∈ E} > br ∀vr ∈ V s.t. c(vr) = u
• ar : I(s1) > br ∀vr ∈ V s.t. c(vr) = w

An example of a possible trading cycle in layer PMCIS
{u,w} is given in Figure 3.

Let us now claim the following, regarding the trading cycles in such layers.

Claim 4 A sequence (ai1 , bi1 , . . . , aik̃ , bik̃) (up to cyclic shifts) is a trading cycle

in PMCIS
{u,w} if and only if:

1. c(vij) = sj for each j ∈ [k̃ − 2];

30 Barak Steindl and Meirav Zehavi

. . .

Agents and items that correspond to k̃ − 2 vertices colored with
[
k̃
]
\ {u,w}

Agents and items that correspond to
two non-adjacent vertices with colors u and w

Fig. 3. The form of possible trading cycles in PMCIS
{u,w} .

2. c(vi
k̃−1

) = u;

3. c(vi
k̃
) = w;

4. {vi
k̃−1

, vi
k̃
} /∈ E.

Proof. By the construction of PMCIS
{u,w} , notice that for each j ∈ [k̃ − 3], each

agent ar such that c(vr) = sj prefers all the items whose corresponding vertices
are colored with sj+1. Moreover, each agent ar whose corresponding vertex vr is
colored with u prefers all the items whose corresponding vertex is colored with w
and not adjacent to vr in G; and every ar whose corresponding vertex is colored
with w prefers all the items whose vertices are colored with s1. Thus, every
trading cycle must begin with a sequence (ai1 , bi1 , . . . , aik̃−2

, bi
k̃−2

), such that aij

corresponds to a vertex colored with sj for each j ∈ [k̃ − 2]; and after that, it
contains a sequence (ai

k̃−1
, bi

k̃−1
, ai

k̃
, bi

k̃
) such that ai

k̃−1
and ai

k̃
correspond to

non-adjacent vertices colored with u and w, respectively. An illustration of the
form of possible trading cycles in PMCIS

{u,w} is given in Figure 3. ⊓⊔

We prove now that the resulting instance is a Yes-instance of Verify-OA

if and only if G admits a multicolored independent set. By Observation 3, we
need to show that G admits a multicolored independent set of size k if and only
if there exists a subset of agents of size k that admits trading cycles in all the
layers (since α = 1).

⇒: Assume that G admits a multicolored independent set V ′ = {vi1 , . . . , vik̃}.
Denote K = {ai1 , . . . , aik̃} (namely, the agents which correspond to the vertices

in V ′). Let u,w ∈ [k̃] be two different colors such that u < w, and assume that

s1, . . . , sk̃−2 ∈ [k̃] \ {u,w} such that s1 < . . . < s
k̃−2. Suppose w.l.o.g. that

c(vj) = sj for each j ∈ [k̃− 2], c(v
k̃−1) = u, and c(v

k̃
) = w (since the vertices in

V ′ are colored with all the colors). Since V ′ is an independent set, we have that

Verification of Multi-Layered Assignment Problems 31

v
k̃−1 and v

k̃
are not adjacent in G. Thus, by Claim 4, K admits a trading cycle

in PMCIS
{u,w} . Therefore, the resulting instance is a Yes-instance.

⇐: Assume that there exists a subset K = {ai1 , . . . , aik̃} ⊆ An of size k = k̃,
which admits trading cycles in all the layers of the constructed instance. By
Claim 4, K contains agents which correspond to vertices colored with all the
colors. Moreover, for each u,w ∈ [k̃] such that u < w, K contain two agents, air
and ait , such that c(vir) = u, c(vit) = w, and {vir , vit} /∈ E. This implies that
the vertices in V ′ = {vi1 , . . . , vik̃} are pair-wisely non-adjacent, and colored with

all the colors. Thus, V ′ is a multicolored independent set in G of size k̃.
Since the parameter k + ℓ of the constructed instance depends only on the

parameter k̃, we have that Verify-OA is coW[1]-hard with respect to k + ℓ.
Notice that Claim 4 implies that all the possible trading cycles in each layer
necessarily have exactly k̃ agents. Thus, by Observation 8 and Observation 6,
the resulting instance can represent an equivalent instance of Verify-SOA or
Verify-UOA. So, the results apply to Verify-SOA and Verify-UOA as well.

⊓⊔

5 coNP-Hardness

In this section, we prove that the problems Verify-OA, Verify-UOA, and
Verify-SOA are coNP-hard even when k = n, α = ℓ = 1 (ℓ = 2 for Verify-

UOA), and d = 3. Before that, let us define two preference profiles that we will
use in our next proofs. Let G = (V,E) be a directed graph, and suppose that
V = {v1, . . . , vn}. For each vertex vi in G, we create one agent ai and one item
bi. We denote the agent set An = {a1, . . . , an}, the item set In = {b1, . . . , bn},
and the assignment pn by pn(ai) = bi for each i ∈ [n]. We will construct the first
preference profile, P1(G), over the agent set An and the item set In so that its
trading graph with respect to pn will be derived from the graph G. Namely, if a
subset of vertices V ′ ⊆ V admits a directed cycle in G, then the corresponding
agents and items of these vertices will admit a trading cycle in the trading graph
of P1(G) with respect to pn. Formally, we construct P1(G) as follows.

• ai : {bj|(vi, vj) ∈ E} (in arbitrary order) > bi ∀i ∈ [n]

An example of the construction of P1(G) is given in Figure 4. Let us now
prove the following lemma.

Lemma 6. A directed graph G contains a directed cycle (vi1 , . . . , vit) if and only
if P1(G) contains the trading cycle (ai1 , bi1 , . . . , ait , bit) with respect to pn.

Proof. ⇒: Suppose that (vi1 , . . . , vit) is a directed cycle in G. Note that there
exists a directed edge from vij to vij+1 for each j ∈ [t − 1] and from vt to

32 Barak Steindl and Meirav Zehavi

v1

v3

v4v2

v5
a1

a3 a4

a5

a2

b2

b1

b5

b3

b4

A directed graph G The trading graph of P1(G) with respect to pn

Fig. 4. G is a directed graph with n = 5 vertices that contains a Hamiltonian cycle
v1 → v5 → v3 → v4 → v2 → v1. Each vertex vi has an agent ai and an item bi such
that bi is assigned to ai by the assignment pn. Observe that the trading graph of P1(G)
with respect to pn contains the trading cycle (a1, b1, a5, b5, a3, b3, a4, b4, a2, b2), which
corresponds to the aforementioned Hamiltonian cycle.

v1. Thus, by the construction of P1(G), aij prefers bij+1 over its assigned item
pn(aij) = bij , and ait prefers bi1 over its assigned item pn(ait) = bit . This yields
the trading cycle (ai1 , bi1 , . . . , ait , bit).

⇐: Suppose that (ai1 , bi1 , . . . , ait , bit) is a trading cycle in P1(G) with respect
to pn. Then, for each j ∈ [t − 1], aij prefers bij+1 over bij , and ait prefers bi1
over bit . By the construction of P1(G), (vij , vij+1) ∈ E for each j ∈ [t − 1], and
(vit , vi1) ∈ E. This implies that G contains the cycle (vi1 , . . . , vit). ⊓⊔

Intuitively, if all the agents in An admit a trading cycle in P1(G), then we
can conclude that G contains a directed cycle over all the vertices, namely, a
Hamiltonian cycle, and vice versa.

Corollary 6. The set An admits a trading cycle in P1(G) with respect to pn if
and only if G contains a Hamiltonian Cycle.

Proof. ⇒: Suppose that An admits a trading cycle in P1(G) with respect to pn.
Assume that this trading cycle is (ai1 , bi1 , . . . , ain , bin). By Lemma 6, G contains
the cycle (vi1 , . . . , vin), which is a Hamiltonian cycle.

⇐: Suppose that G contains a Hamiltonian cycle (vi1 , . . . , vin). Then, by
Lemma 6, P1(G) contains the trading cycle (ai1 , ai1 , . . . , ain , bin) with respect to
p. Observe that this is a trading cycle over all the agents. ⊓⊔

For every n, the second preference profile, P2(n), will be used to enforce the
size of subsets of agents admitting trading cycles in all the layers to be equal
to exactly n. This will help us to prove hardness results for the Verify-UOA

problem.

Verification of Multi-Layered Assignment Problems 33

b1

a1

b2

a2

b3

...

...

an

Fig. 5. The trading graph of P2(n) is a single cycle consisting of all the agents and
items from An ∪ In. This is because in P2(n), for each i ∈ [n− 1], ai prefers only bi+1

over bi, and an prefers only b1 over bn.

Informally speaking, we will construct the second preference profile, P2(n),
so that its trading graph with respect to pn will contain a single trading cycle
consisting of all the agents and items from An ∪ In (see Figure 5). It is formally
constructed as follows.

• a1 : b2 > b1
• a2 : b3 > b2
• . . .
• an−1 : bn > bn−1

• an : b1 > bn

Observation 9 The only trading cycle in P2(n) with respect to pn is
(a1, b1, . . . , an, bn).

Proof. For each i ∈ [n− 1], the only item that ai prefers over its assigned item
pn(ai) = bi is bi+1; and an only prefers b1 over its assigned item pn(an) = bn. ⊓⊔

Intuitively, we defined the second preference profile to ensure that if there
exists a subset of agents that admits trading cycles in both P1(G) and P2(n)
with respect to pn, this subset must be equal to An. Thus, by Corollary 6, we
will conclude that G contains a Hamiltonian cycle.

Lemma 7. A set K ⊆ An admits trading cycles in both P1(G) and P2(n) with
respect to pn if and only if K = An and G contains a Hamiltonian cycle.

Proof. ⇒: Suppose that K admits trading cycles in both P1(G) and P2(n) with
respect to pn. By Observation 9, we have that K = An. Thus, by Corollary 6,
G contains a Hamiltonian cycle.

34 Barak Steindl and Meirav Zehavi

⇐: Suppose that K = An and that G contains a Hamiltonian cycle. Then, by
Corollary 6, K admits a trading cycle in P1(G), and by Observation 9, K admits
a trading cycle in P2(n). ⊓⊔

We now use these results to prove that Verify-OA, Verify-UOA, and
Verify-SOA are para-coNP-hard for the parameter (n−k)+ ℓ+d. We will rely
on the result of Plesńik [35], who proved that Hamiltonian Cycle is NP-hard
on directed graphs with maximum degree 3. In particular, the degree bound will
help us bound the maximum length of a preference list in the preference profile
P1(G).

Theorem 6. The problems Verify-OA, Verify-UOA and Verify-SOA are
coNP-hard when k = n, ℓ = 1 (ℓ = 2 for Verify-UOA), α = 1, and d = 3.

Proof. We provide a polynomial reduction from Hamiltonian Cycle on di-
rected graphs with maximum degree 3 (proved to be NP-hard by Plesńik [35])
to the complement of Verify-OA (Verify-OA) where k = n, α = ℓ = 1,
and d = 3. We then explain why the reduction yields the same result for
Verify-SOA. Afterwards, we will extend the proof to have the same result
also for Verify-UOA.

Let G = (V,E) be a directed graph of maximum degree 3 with n vertices. We
construct an instance of Verify-OA consisting of one layer, n = |V | agents and
n items as well, which is a Yes-instance if and only if G contains a Hamiltonian
cycle. By Observation 3, in order to prove that the resulting instance is a Yes-
instance, we will show that the set of all agents admits a trading cycle in the only
layer. Assume that V = {v1, . . . , vn} is the vertex set of G. We construct the
agent set An, the item set In and the assignment pn : An → In (as defined at the
beginning of the section). The single layer contains the preference profile P1(G).
The resulting instance of Verify-OA is D = (An, In, P1(G), α = 1, k = n, pn)
which can be clearly constructed in polynomial time. Since the maximum degree
of G is 3, by the definition of P1(G), we have that the maximum length of a
preference list in the resulting instance is d = 3. We now prove that G contains
a Hamiltonian cycle if and only if D is a Yes-instance of Verify-OA.

⇒: Assume that G contains a Hamiltonian cycle. By Corollary 6, the set An

admits a trading cycle in P1(G). Then, by Observation 3, D is a Yes-instance.

⇐: Assume that D is a Yes-instance. Then, by Observation 3, An admits a
trading cycle in the only layer P1(G). By Corollary 6, G contains a Hamiltonian
cycle.

By Corollary 1, Verify-SOA is equivalent to Verify-OA when k = n.
Therefore, the result holds for Verify-SOA as well.

Verify-UOA. We extend the proof to the problem Verify-UOA. We add an-
other layer to the constructed instance containing the preference profile P2(n).
By Observation 9, since the only trading cycle in P2(n) contains exactly n agents
(by Observation 9), we conclude that pn is (k, α)-optimal for each k < n (since
each subset of less than n agents does not admit trading cycles in P2(n)). So, by

Verification of Multi-Layered Assignment Problems 35

Observation 6, pn is (n, α)-optimal if and only if it is (n, α)-upper-bounded opti-
mal. Thus, the reduction can be equivalently a polynomial reduction to Verify-

UOA. ⊓⊔

Since ℓ+ d+ (n− k) is bounded by a constant in the resulting instances, we
conclude the following.

Corollary 7. The problems Verify-OA, Verify-UOA and Verify-SOA are
para-coNP-hard with respect to the parameter ℓ+ d+ (n− k).

6 Non-Existence of Polynomial Kernels

In this section, We prove that the three problems are unlikely to admit polyno-
mial kernels with respect to n+m+α and n+m+(ℓ−α). So, considering α or
(ℓ− α) rather than ℓ, even while considering the larger parameter n+m rather
than #alloc, yields negative results. So, our classification is complete in this
sense. To prove this, we will rely on the results in Section 5 to provide an OR-
cross-composition and an AND-cross-composition from Hamiltonian Cycle

on directed graphs with maximum degree 3 to the complements of the problems.
We first define the polynomial equivalence relation R that we will use. We say
that two directed graphs are equivalent with respect to R if they share the same
number of vertices. This is known to be a polynomial equivalence relation, yet
we present the proof for completeness.

Proposition 10 (Folklore). R is a polynomial equivalence relation.

Proof. It is clear that R is an equivalence relation. Moreover, if we restrict R
on encodings of graphs of length at most n, we have that R admits at most n
equivalence classes since every such graph can contain at most n vertices. Given
two graphs G1 and G2, it can clearly be verified in time O(|G1|+ |G2|) whether
the graphs are equivalent with respect to R by checking if they have the same
number of vertices. ⊓⊔

Theorem 7. The problems Verify-OA, Verify-UOA, and Verify-SOA do
not admit polynomial kernels with respect to n + m + α and n + m + (ℓ − α),
unless NP⊆coNP/poly.

Proof. We provide a cross-composition from Hamiltonian Cycle on directed
graphs with maximum degree 3 to to complement of Verify-OA (Verify-OA).
So, this will prove that Verify-OA does not admit a polynomial kernel with
respect to these parameters. It can be easily shown that a problem admits a
polynomial kernel if and only if its complement admits a polynomial kernel (the
same kernel can be used for both problems). So, for the parameter n +m + α,
we will treat the cross-composition as an AND-cross-composition, and for the
parameter n+m+(ℓ−α), we will treat it as an OR-cross-composition. Similarly
to the proof of Theorem 6, we will explain why they are also cross-compositions to

36 Barak Steindl and Meirav Zehavi

G1, G2, G3, . . . , Gt

P1(G1) P1(G2)
.

P1(Gt)

Layer 1 Layer 2 Layer t

P2(n)

Layer t+ 1

(for Verify-UOA)

Fig. 6. The cross-compositions construct an instance containing P1(Gi) in layer i, for
each i ∈ [t]. The AND-cross-composition for Verify-UOA constructs an additional
layer containing P2(n).

Verify-SOA. After that, we will explain how to extend the cross-compositions
to derive the same results on Verify-UOA.

Consider t directed graphs with maximum degree 3 (G1 = (V1, E1), . . . , Gt =
(Vt, Et)) that are equivalent with respect to R. We assume that each graph
Gi contains n vertices, and Vi = V = {v1, . . . , vn} for each i ∈ [t]. Informally
speaking, the cross-compositions are “compositions” of the instances created
by applying the reduction in the proof of Theorem 6 on each input graph (see
Figure 6). The agent set of the constructed instance is An = {a1, . . . , an}, the
item set is In = {b1, . . . , bn}, and there are t layers, such that for each i ∈
[t], layer i contains the preference profile P1(Gi). We set k = n, and we also
use the assignment p = pn. Notice that the resulting instance can clearly be
constructed in time poly(

∑t
i=1 |Gi|). We complete the constructions for each

parameter separately.

The parameter n + m + α. We treat this reduction as an AND-cross-
composition, and we set α = 1. We prove that the set of agents, An, admits
trading cycles in all the layers of the constructed instance with respect to pn if
and only if all the graphs Gi, i ∈ [t], admit a Hamiltonian cycle.

⇒: Suppose that the agents in An admit trading cycles in all the layers of the
constructed instance with respect to pn. This implies that the agents in An

admit trading cycles in P1(Gi) for all i ∈ [t]. By Corollary 6, each Gi admits a
Hamiltonian cycle.

⇐: Suppose that all the graphs Gi admit a Hamiltonian cycle. Then, by Corol-
lary 6, the agents in An admit trading cycles in P1(Gi) for all i ∈ [t]. Then, the
agents in An admit trading cycles in all the layers of the constructed instance.

Due to Observation 3, this proves that the resulting instance is a Yes-instance
of Verify-OA if and only if all the input instances are Yes-instance. We also
have that n+m+α ≤ 2n+1 = O(maxti=1 |Gi|). Thus, by Proposition 5, Verify-

Verification of Multi-Layered Assignment Problems 37

OA does not admit a polynomial kernel with respect to the parameter n+m+α,
unless NP⊆coNP/poly. Since we set k = n, by Corollary 1, the resulting instance
can also represent an equivalent instance of Verify-SOA. Then, the same result
also holds for Verify-SOA.

The parameter n+m+(ℓ−α). For this parameter, we treat the reduction as
an OR-cross-composition, and we set α = ℓ = t. We will prove that the resulting
instance is a Yes-instance of Verify-OA if and only if there exists i ∈ [t], such
that Gi contains a Hamiltonian cycle. By Observation 3, we need to show that
the set An admits trading cycles in ℓ−α+1 = 1 layer if and only if there exists
i ∈ [t] such that Gi is a Yes-instance.

⇒: Suppose that An admits a trading cycle in layer i ∈ [t]. Thus, An admits a
trading cycle in P1(Gi). Then, by Corollary 6, Gi contains a Hamiltonian cycle.

⇐: Suppose that there exists i ∈ [t] such that Gi contains a Hamiltonian
cycle. Then, by Corollary 6, An admits a trading cycle in P1(Gi), which appears
in layer i.

This proves the correctness of the OR-cross-composition. Notice that n +
m + (ℓ − α) = 2n = poly(maxti=1 |Gi|) for the constructed instance. Then, by
Proposition 5, Verify-OA does not admit a polynomial kernel with respect to
n+m+ (ℓ− α), unless NP⊆coNP/poly. Since we set k = n, by Corollary 1, the
resulting instance can also represent an equivalent instance of Verify-SOA.
Thus, the result holds for Verify-SOA as well.

Verify-UOA. In order to adapt the first AND-cross-composition to prove the
same result for Verify-UOA, we need to control the size of the subsets admit-
ting trading cycles in all the layers. To do so, similarly to the proof of Theorem 6,
we add another layer to the constructed instance, which contains the preference
profile P2(n). By Lemma 7, a subset K ⊆ An admits trading cycles in all the lay-
ers if and only if K = An and each Gi contains a Hamiltonian cycle. Namely, pn
is (n, 1)-optimal if and only if it is (n, 1)-upper-bounded optimal. Thus, we have
that the resulting instance represents an equivalent instance of Verify-UOA,
and the result holds for this problem as well.

We now adapt the second OR-cross-composition to prove the same result
for Verify-UOA. On a high level, we insert 2(⌊log t⌋ + 1) additional agents,
2(⌊log t⌋+1) additional items, and t additional layers. We insert into each layer
of the original instance a unique set of preference lists that correspond to the
new 2(⌊log t⌋ + 1) agents, and we add another layer after it containing P2(n),
appended with the same set of preference lists for the new agents.

Formally, we define the new agent set C = {ci|i ∈ [⌊log t⌋ + 1]} ∪ {ci|i ∈
[⌊log t⌋+1]}, and the new item set D = {di|i ∈ [⌊log t⌋+1]}∪{di|i ∈ [⌊log t⌋+1]}.
The agent set and the item set of the constructed instance are A = An ∪C and
I = In ∪D, respectively. We define the assignment p : A → I by p(ai) = bi for
each i ∈ [n]; and p(ci) = di, p(ci) = di for each i ∈ [⌊log t⌋ + 1]. Notice that
the restriction of p to An is equal to pn. We now construct 2t new layers as
follows. Informally speaking, each input graph Gi will have two corresponding
layers, 2i − 1 and 2i, which are compositions of the preference profiles P1(Gi)
or P2(n) for each graph Gi (defined in Section 5) together with 2(⌊log t⌋ + 1)

38 Barak Steindl and Meirav Zehavi

unique preference lists for the agents in C. Intuitively, the goal of the agents
and items in C ∪ D is to ensure that for each i ∈ [t], there is a unique subset
C′ ⊆ C of size ⌊log t⌋+1 that is part of trading cycles in both layers 2i− 1 and
2i. This will imply that if there exists a subset of agents from An ∪C admitting
trading cycles in both of these layers, then this subset is a unique subset of size
exactly n + ⌊log t⌋ + 1 which does not admit trading cycles in the rest of the
layers. If Gi contains a Hamiltonian cycle, then we will have in layers 2i− 1 and
2i similar trading cycles as in P1(Gi) and P2(n), but appended with a chain of
⌊log t⌋+1 agents from C. For i ∈ [t], we denote by i[j] the j’th bit in the binary
representation of i, for each j ∈ [⌊log t⌋ + 1]. Denote cij = cj if i[j] = 1 and

cij = cj if i[j] = 0. Similarly, dij = dj if i[j] = 1 and dij = dj if i[j] = 0. Notice

that p(cij) = dij . Assume that cj = cj for each j ∈ [⌊log t⌋+ 1].
We now construct the layers formally. For each i ∈ [t], we create two prefer-

ence profiles, Q2i−1 and Q2i, that appear in layers 2i − 1 and 2i, respectively.
The preference profile Q2i−1 extends (and slightly modifies) P1(Gi) as follows.

• ai : {bj|(vi, vj) ∈ Ei} (in arbitrary order) > bi ∀i ∈ [n− 1]
• an : di1 > bn
• cij : dij+1 > dij ∀j ∈ [⌊log t⌋]

• ci⌊log t⌋+1 : {bj|(vn, vj) ∈ Ei} (in arbitrary order) > di⌊log t⌋+1

• cij : dij ∀j ∈ [⌊log t⌋+ 1]

The preference profile Q2i extends (and slightly modifies) P2(n) as follows.

• a1 : b2 > b1
• a2 : b3 > b2
• . . .
• an−1 : bn > bn−1

• an : di1 > bn
• cij : dij+1 > dij ∀j ∈ [⌊log t⌋]

• ci⌊log t⌋+1 : b1 > di⌊log t⌋+1

• cij : d
i
j ∀j ∈ [⌊log t⌋+ 1]

The possible trading cycles in Q2i−1 and Q2i are shown in Figure 7. We
finally set k = n + ⌊log t⌋ + 1 and α = ℓ − 1 = 2t − 1 (then ℓ − α + 1 = 2).
Let us now claim the following, to relate trading cycles in the original and new
preference profiles P1(Gi) and Q2i−1

Claim 5 Let i ∈ [t] and let W = (aj1 , bj1 , . . . , ajn , bjn) be a sequence of
agents and their assigned items with respect to pn such that jn = n. Then,

Verification of Multi-Layered Assignment Problems 39

G1, G2, G3, . . . , Gt

Chain of all agents and items from An ∪ In

that may appear in P1(Gi)

Unique chain of ⌊log t⌋+ 1 agents and

items from Ct ∪Dt

Q2i−1

.

Chain of all agents and items from An ∪ In

that appears in P2(n)

Unique chain of ⌊log t⌋+ 1 agents and

items from Ct ∪Dt

Q2i

an

d1i

c1i

dsi

c2i

d2i

csi

a2 a1

bn b2 b1

.

.

ajn

d1i

c1i

dsi

c2i

d2i

csi

aj2 aj1

bjn bj2 bj1

.

Fig. 7. Q2i−1 is a composition of a modification of P1(Gi) with 2s unique pref-
erence lists for the agents in C (where s = ⌊log t⌋ + 1). (aj1 , bj1 , . . . , ajn , bjn)
is a trading cycle in P1(Gi) where jn = n (this occurs only when Gi is a
Yes-instance) if and only if (aj1 , bj1 , . . . , ajn , bjn , c

i
1,d

i
1, . . . , c

i
⌊log t⌋+1,d

i
⌊log t⌋+1) is a

trading cycle in Q2i−1. The trading graph of Q2i contains the trading cycle
(a1, b1, . . . , an, bn, c

i
1,d

i
1, . . . , c

i
⌊log t⌋+1,d

i
⌊log t⌋+1), which corresponds to the trading cy-

cle (a1, b1, . . . , an, bn) in P2(n).

W is a trading cycle in P1(Gi) with respect to pn if and only if W ′ =
(aj1 , bj1 , . . . , ajn , bjn , c

i
1, d

i
1, . . . , c

i
⌊log t⌋+1, d

i
⌊log t⌋+1) is a trading cycle in Q2i−1

with respect to p (see Figure 7).

Proof. ⇒: Assume that W is a trading cycle in P1(Gi) with respect to pn. By
the construction of Q2i−1, observe that the trading graph of Q2i−1 contains the
paths bi1 → ai1 → . . . → bin → ain , and bn → an → di1 → ci1 → . . . →
di⌊log t⌋+1 → ci⌊log t⌋+1 → bi1 . By concatenating these two paths, we have that

Q2i−1 contains the trading cycle W ′.

⇐: Assume that W ′ is a trading cycle Q2i−1 with respect to p. By the con-
struction of Q2i−1, note that the trading graph of P1(Gi) contains the path
bi1 → ai1 → . . . → bin → ain . Since ci⌊log t⌋+1 prefers all the items that corre-

spond to neighbors of vn to which vn points, we have that (vn, vi1) ∈ Ei, and an
prefers bi1 over bn in P1(Gi). Thus, P1(Gi) contains the trading cycle W with
respect to pn. ⊓⊔

40 Barak Steindl and Meirav Zehavi

We proceed to consider trading cycles in the new profiles, now for Q2i.

Claim 6 For each i ∈ [t], the only trading cycle in Q2i with respect to p is
(a1, b1, . . . , an, bn, c

i
1, d

i
1, . . . , c

i
⌊log t⌋+1, d

i
⌊log t⌋+1).

Proof. By Observation 9, the only trading cycle in P2(n) with respect to pn is
(a1, b1, . . . , an, bn). Observe that the trading graph of Q2i contains the paths
b1 → a1 → . . . → bn → an and an → di1 → ci1 → . . . → di⌊log t⌋+1 → ci⌊log t⌋+1,
and the only trading cycle is constructed by concatenating these two paths. ⊓⊔

By these results, we conclude the following.

Claim 7 Let i ∈ [t]. The only subset of agents that can admit trading cycles in
both Q2i−1 and Q2i with respect to p is An ∪ {cij |j ∈ [⌊log t⌋+ 1]}.

Claim 8 Let i, j ∈ [t] such that i 6= j, and let Ki,Kj ⊆ A. Suppose that Ki

admits a trading cycle in Q2i−1 or in Q2i and suppose that Kj admits a trading
cycle in Q2j−1 or in Q2j. Then, Ki 6= Kj.

We now prove that the resulting instance is a Yes-instance of Verify-UOA

if and only if there exists i ∈ [t] such that Gi admits a Hamiltonian cycle.
By Observation 3, we will show that there exists subset K ⊆ A with |K| ≤
n+ ⌊log t⌋+ 1 such that there exist two layers i, j where the agents in K admit
trading cycles if and only if there exists i ∈ [t] such that Gi admits a Hamiltonian
cycle.

⇒: Suppose that there exists K ⊆ A, with |K| ≤ n + ⌊log t⌋ + 1, and i, j ∈ [t]
such that i 6= j, and the agents in K admit trading cycles in both layers i, j. By
Claims 7 and 8, we have that there exists ĩ ∈ [t] such that i = 2ĩ− 1, j = 2ĩ, and

K = An∪{cĩj |j ∈ [⌊log t⌋+1]}. By Claim 5, P1(Gĩ) contains a trading cycle that
contains all the agents in An. Moreover, by Observation 9, notice that P2(n) also
contains a trading cycle over all the agents from An. Then, by Corollary 6, Gi

admits a Hamiltonian cycle.

⇐: Suppose that there exists i ∈ [t] such that Gi admits a Hamiltonian cycle.
Then, by Lemma 6, P1(Gi) contains some trading cycle (ai1 , bi1 , . . . , ain , bin)
over all the agents in An. By Claim 5, Q2i−1 contains a trading cycle over all
the agents from K = An ∪ {cij|j ∈ [⌊log t⌋+1]}. In addition, by Claim 6, K also
admits a trading cycle in Q2i with respect to p. Then, we have that K admits
trading cycles in both layers 2i− 1 and 2i, thus the resulting instance is a Yes-
instance by Observation 3. The construction can be clearly be implemented in
polynomial time in

∑t
i=1 |Gi|. Notice that n+m+(ℓ−α) = 2n+4(⌊log t⌋+1)+1 =

2n+4 ⌊log t⌋+5 = poly(maxti=1 |Gi|+log(t)) for the constructed instance. So, by
Proposition 5, Verify-UOA does not admit a polynomial kernel with respect
to n+m+ (ℓ − α), unless NP⊆coNP/poly. ⊓⊔

Verification of Multi-Layered Assignment Problems 41

7 Conclusion and Future Research

In this paper, we introduced a generalization of the verification variant of the
general assignment problem where each agent is equipped with multiple incom-
plete preference lists. We defined three natural concepts of optimality, we con-
sidered several natural parameters and we presented an almost comprehensive
picture of the parameterized complexity of the corresponding problems with re-
spect to them. We proved that the problems are para-coNP-hard with respect to
ℓ+d+(n−k). We also proved that the three problems admit polynomial kernels
when parameterized by #alloc + ℓ, but that they are unlikely to admit polyno-
mial kernels with respect to n+m+α and n+m+(ℓ−α). Additionally, we proved
that the problems are coW[1]-hard with respect to k + ℓ. However, we showed
that Verify-OA andVerify-UOA admit XP algorithms with respect to k, and
even FPT algorithms with respect to k + d. We also provided O∗(2#alloc)-time
algorithms for the three problems. This proved that the problems are FPT with
respect to the parameters #alloc, n, and m. Still, two questions remained open:

1. Is it possible to obtain an O∗((2 − ε)#alloc)-time algorithm, for some fixed
ε > 0, for each one of the problems?

2. Does Verify-UOA admit XP algorithms with respect to the parameters k,
k + ℓ, and k + d?

Additional Directions for Future Research. Continuing our research,
it may be interesting to consider a new concept of optimality: We intro-
duce the new notion of (k, α)-ordered optimality, which weakens the notion
of (k, α)-optimality as follows. Consider an instance (A, I, P1, . . . , Pℓ, k, α, p) of
Verify Optimal Assignment for which p is not (k, α)-optimal. Thus, there
exists a group of agents K of size k which admits trading cycles (where agents
may appear in any order) in some ℓ − α + 1 layers. Since the trading cycles in
these layers are not necessarily the same, there may not exist one “strategy”
that solves all these conflicts and improves the status of the agents in K at once.
In particular, if the agents in K perform a possible beneficial trade in one layer,
their status may get worse in other layers. Thus, one can claim that p can be
“optimal” since each “small” group cannot benefit in some ℓ − α + 1 layers in
parallel. Informally, (k, α)-ordered optimality considers the order of the trading
cycles and requires that for each subset of agents of size k, there exist some α
layers where the agents in the subset cannot perform the same beneficial trade.
It is formally defined as follows:

Definition 14 ((k, α)-ordered optimality). An assignment p is (k, α)-
ordered optimal for an instance (A, I, P1, . . . , Pℓ) if it satisfies the following
conditions:

1. For each subset of agents K ⊆ A such that |K| = k, there exist α layers
i1, . . . , iα such that there does not exist a trading cycle C containing all the
agents in K (with no additional agents) such that C appears in layer ij, for
each j ∈ [α].

42 Barak Steindl and Meirav Zehavi

2. If k = 1, then for each a ∈ A, there exist α layers i1, . . . , iα such that there
does not exist a self loop L such that a admits L in layer ij, for each j ∈ [α].

Thus, as a direction for future research we propose to study the new decision
and verification problems: Ordered Optimal Assignment and Verify Or-

dered Optimal Assignment (which correspond to the notion of (k, α)-ordered
optimality).

Another direction is to extend the optimality notions to support more com-
plicated “inter-list interactions”. To explain this, suppose that some assignment
p is not (k, α)-ordered optimal. So, there exists a subset of k agents and α layers
where they can trade, using the same trading cycle, and benefit. However, per-
forming the trading cycle may make the assignment worse for them in a large
number (potentially ℓ−α) of other layers. So, perhaps such assignments should
still be considered optimal.

We remark that no notion of optimality is better or worse, but the choice
depends on the scenario at hand. For example, will a subset of k agents rebel if it
finds many layers where it is dissatisfied, or only if it actually has a strategy that
improves its situation? More philosophically, how do we know if our assignment
is good or bad? From a public opinion point of view, the unordered variant may
make more sense, but from a practitioner’s point of view (who should actually
improve an assignment if need be), the ordered variant might make more sense.
We also remark that when k = n, the unordered version corresponds to global
optimality, while the ordered version does not.

Another direction is to consider weighted versions of the problems. In this
paper, we considered the basic “unweighed” model of the problems (since this
is the first study of this kind). That is, all the criteria (layers) have the same
importance. There are cases where some criteria may have higher importance
than others, and we would like to give them a higher weight. A straightforward
way to model these cases is by having several copies of layers. However, if weights
are high and varied, this might lead to inefficiency.

Another approach is to generalize our model and concepts to allow ties in
the preference lists. It is interesting to see how adding this feature will affect our
results.

Lastly, we suggest to test our results practically, i.e. implementing the algo-
rithms for the problems, and testing them on real data sets. Besides the analysis
of running times in practice, we find it interesting to see how much effect does
using different notions of optimality has on the solutions, in particular, how do
the solutions vary.

Verification of Multi-Layered Assignment Problems 43

References

1. Abdulkadirog, A.: House allocation with existing tenants 1 (1999)
2. Abdulkadiroglu, A., Sonmez, T.: Random Serial Dictator-

ship and the Core from Random Endowments in House Al-
location Problems. Econometrica 66(3), 689–702 (May 1998),
https://ideas.repec.org/a/ecm/emetrp/v66y1998i3p689-702.html

3. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto opti-
mality in house allocation problems. In: Proceedings of the 15th International
Conference on Algorithms and Computation. p. 3–15. ISAAC’04, Springer-
Verlag, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4 3,
https://doi.org/10.1007/978-3-540-30551-4_3

4. Alderfer, C.P., McCord, C.G.: Personal and situational factors in the recruitment
interview. Journal of Applied Psychology 54(4), 377 (1970)

5. Ashlagi, I., Gamarnik, D., Rees, M.A., Roth, A.E.: The need for (long) chains in
kidney exchange. Tech. rep., National Bureau of Economic Research (2012)

6. Aziz, H., Biro, P., de Haan, R., Rastegari, B.: Pareto optimal allocation under
compact uncertain preferences. In: Thirty Third AAAI Conference on Artificial
Intelligence (01/02/19) (October 2018), https://eprints.soton.ac.uk/425734/

7. Aziz, H., de Haan, R., Rastegari, B.: Pareto optimal alloca-
tion under uncertain preferences. In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17. pp. 77–83 (2017). https://doi.org/10.24963/ijcai.2017/12,
https://doi.org/10.24963/ijcai.2017/12

8. Bellman, R.: Dynamic programming treatment of the travelling salesman prob-
lem. J. ACM 9(1), 61–63 (Jan 1962). https://doi.org/10.1145/321105.321111,
https://doi.org/10.1145/321105.321111

9. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: Fast
subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing. p. 67–74. STOC ’07, Association for Computing Ma-
chinery, New York, NY, USA (2007). https://doi.org/10.1145/1250790.1250801,
https://doi.org/10.1145/1250790.1250801

10. Björklund, A., Husfeldt, T., Nina, T.: Shortest cycle through specified elements.
In: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms. pp. 1747–1747. Association for Computing Machinery (ACM) (2012)

11. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.:
On problems without polynomial kernels. J. Comput. Syst. Sci.
75(8), 423–434 (2009). https://doi.org/10.1016/j.jcss.2009.04.001,
https://doi.org/10.1016/j.jcss.2009.04.001

12. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014).
https://doi.org/10.1137/120880240, https://doi.org/10.1137/120880240

13. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
J. Economic Theory 100, 295–328 (2001)

14. Browne, A.: Lives ruined as nhs leaks patients’ notes. The Observer, June 25th
(2000)

15. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Parameterized and Exact Computation, 4th International Work-
shop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised
Selected Papers. pp. 75–85 (2009). https://doi.org/10.1007/978-3-642-11269-0 6,
http://dx.doi.org/10.1007/978-3-642-11269-0_6

https://ideas.repec.org/a/ecm/emetrp/v66y1998i3p689-702.html
https://doi.org/10.1007/978-3-540-30551-4_3
https://doi.org/10.1007/978-3-540-30551-4_3
https://eprints.soton.ac.uk/425734/
https://doi.org/10.24963/ijcai.2017/12
https://doi.org/10.24963/ijcai.2017/12
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1007/978-3-642-11269-0_6

44 Barak Steindl and Meirav Zehavi

16. Chen, J., Niedermeier, R., Skowron, P.: Stable marriage with multi-modal
preferences. In: Proceedings of the 2018 ACM Conference on Economics
and Computation. p. 269–286. EC ’18, Association for Computing Machin-
ery, New York, NY, USA (2018). https://doi.org/10.1145/3219166.3219168,
https://doi.org/10.1145/3219166.3219168

17. Chernichovsky, D., Kfir, R.: The state of the acute care hospitalization system in
Israel

18. Clinedinst, M.: State of college admission (2019)

19. Cools, M., Moons, E., Wets, G.: Assessing the impact of weather on traffic intensity.
Weather, Climate, and Society 2(1), 60–68 (2010)

20. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algo-
rithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3,
http://dx.doi.org/10.1007/978-3-319-21275-3

21. Dickerson, J.P., Manlove, D.F., Plaut, B., Sandholm, T., Trimble, J.: Position-
indexed formulations for kidney exchange. In: Proceedings of the 2016 ACM Con-
ference on Economics and Computation. pp. 25–42 (2016)

22. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with
transplant chains: Theory and reality. In: Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. pp. 711–
718 (2012)

23. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1,
http://dx.doi.org/10.1007/978-1-4471-5559-1

24. Fearnhead, P., Taylor, B.M.: On estimating the ability of nba players. Journal of
Quantitative analysis in sports 7(3) (2011)

25. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-
plexity of multiple-interval graph problems. Theoretical Computer Science 410,
53–61 (01 2009). https://doi.org/10.1016/j.tcs.2008.09.065

26. Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345
(1962). https://doi.org/http://doi.acm.org/10.1145/367766.368168

27. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press (2019)

28. Gourvès, L., Lesca, J., Wilczynski, A.: Object Allocation via
Swaps along a Social Network. In: 26th International Joint Con-
ference on Artificial Intelligence (IJCAI’17). pp. 213–219. Mel-
bourne, Australia (2017). https://doi.org/10.24963/ijcai.2017/31,
https://hal.archives-ouvertes.fr/hal-01741519

29. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Com-
put. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727,
http://dx.doi.org/10.1006/jcss.2000.1727

30. Impagliazzo, R., Paturi, R., Zane, F.: Which problems
have strongly exponential complexity? J. Comput. Syst. Sci.
63(4), 512–530 (2001). https://doi.org/10.1006/jcss.2001.1774,
http://dx.doi.org/10.1006/jcss.2001.1774

31. Kinicki, A.J., Lockwood, C.A.: The interview process: An examination of factors
recruiters use in evaluating job applicants. Journal of Vocational Behavior 26(2),
117–125 (1985). https://doi.org/https://doi.org/10.1016/0001-8791(85)90012-0,
https://www.sciencedirect.com/science/article/pii/0001879185900120

https://doi.org/10.1145/3219166.3219168
https://doi.org/10.1145/3219166.3219168
https://doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/http://doi.acm.org/10.1145/367766.368168
https://doi.org/10.24963/ijcai.2017/31
https://hal.archives-ouvertes.fr/hal-01741519
https://doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
https://doi.org/https://doi.org/10.1016/0001-8791(85)90012-0
https://www.sciencedirect.com/science/article/pii/0001879185900120

Verification of Multi-Layered Assignment Problems 45

32. Lian, J.W., Mattei, N., Noble, R., Walsh, T.: The conference paper assign-
ment problem: Using order weighted averages to assign indivisible goods (2018),
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17396

33. Mulder, J., de Bruijne, M.: Willingness of online respondents to participate in
alternative modes of data collection. Surv. Pract 12(1), 1–11 (2019)

34. Nass, S.J., Levit, L.A., Gostin, L.O., et al.: The value and importance of health
information privacy. In: Beyond the HIPAA Privacy Rule: Enhancing Privacy, Im-
proving Health Through Research. National Academies Press (US) (2009)

35. Plesńik, J.: The np-completeness of the hamiltonian cycle problem in pla-
nar diagraphs with degree bound two. Information Processing Letters 8(4),
199 – 201 (1979). https://doi.org/https://doi.org/10.1016/0020-0190(79)90023-1,
http://www.sciencedirect.com/science/article/pii/0020019079900231

36. Saleh, S.M., Sugiarto, S., Hilal, A., Ariansyah, D.: A study on the traffic impact of
the road corridors due to flyover construction at surabaya intersection, banda aceh
of indonesia. In: AIP Conference Proceedings. vol. 1903, p. 060005. AIP Publishing
LLC (2017)

37. Steindl, B., Zehavi, M.: Parameterized analysis of assignment under multiple pref-
erences. arXiv preprint arXiv:2004.00655 (2020)

38. The Council for Higher Education and The Planning and Budgeting Committee:
The higher education system in Israel (2014)

39. Topcu, M., Gulal, O.S.: The impact of covid-19 on emerg-
ing stock markets. Finance Research Letters 36, 101691
(2020). https://doi.org/https://doi.org/10.1016/j.frl.2020.101691,
https://www.sciencedirect.com/science/article/pii/S1544612320306966

40. Wahlström, M.: Abusing the tutte matrix: An algebraic instance com-
pression for the k-set-cycle problem. CoRR abs/1301.1517 (2013),
http://arxiv.org/abs/1301.1517

41. Wu, K., DeVriese, A.: How students pick their housing situations: Factors and
analysis (2016)

42. Zeren, F., HIZARCI, A.: The impact of covid-19 coronavirus on stock markets:
evidence from selected countries. Muhasebe ve Finans İncelemeleri Dergisi 3(1),
78–84 (2020)

43. Zhou, L.: On a conjecture by gale about one-sided matching
problems. Journal of Economic Theory 52(1), 123–135 (1990),
https://EconPapers.repec.org/RePEc:eee:jetheo:v:52:y:1990:i:1:p:123-135

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17396
https://doi.org/https://doi.org/10.1016/0020-0190(79)90023-1
http://www.sciencedirect.com/science/article/pii/0020019079900231
https://doi.org/https://doi.org/10.1016/j.frl.2020.101691
https://www.sciencedirect.com/science/article/pii/S1544612320306966
http://arxiv.org/abs/1301.1517
https://EconPapers.repec.org/RePEc:eee:jetheo:v:52:y:1990:i:1:p:123-135

	Verification of Multi-Layered Assignment Problems

