Skip to main content

Enhanced Signal Processing Using Modified Cyclic Shift Tree Denoising

  • Conference paper
  • First Online:
  • 523 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1435))

Abstract

The cortical pyramidal neurons in the cerebral cortex, which are positioned perpendicularly to the brain’s surface, are assumed to be the primary source of the electroencephalogram (EEG) reading. The EEG reading generated by the brainstem in response to auditory impulses is known as the Auditory Brainstem Response (ABR). The identification of wave V in ABR is now regarded as the most efficient method for audiology testing. The ABR signal is modest in amplitude and is lost in the background noise. The traditional approach of retrieving the underlying wave V, which employs an averaging methodology, necessitates more attempts. This results in a protracted length of screening time, which causes the subject discomfort. For the detection of wave V, this paper uses Kalman filtering and Cyclic Shift Tree Denoising (CSTD). In state space form, we applied Markov process modeling of ABR dynamics. The Kalman filter, which is optimum in the mean-square sense, is used to estimate the clean ABRs. To save time and effort, discrete wavelet transform (DWT) coefficients are employed as features instead of filtering the raw ABR signal. The results show that even with a smaller number of epochs, the wave is still visible and the morphology of the ABR signal is preserved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Afsana, F., Asif-Ur-Rahman, M., Ahmed, M.R., Mahmud, M., Kaiser, M.S.: An energy conserving routing scheme for wireless body sensor nanonetwork communication. IEEE Access 6, 9186–9200 (2018)

    Article  Google Scholar 

  2. Al Nahian, M.J., et al.: Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9, 39413–39431 (2021)

    Article  Google Scholar 

  3. Al Nahian, M.J., et al.: Social group optimized machine-learning based elderly fall detection approach using interdisciplinary time-series features. In: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 321–325. IEEE (2021)

    Google Scholar 

  4. Causevic, E., Morley, R.E., Wickerhauser, M.V., Jacquin, A.E.: Fast wavelet estimation of weak biosignals. IEEE Trans. Biomed. Eng. 52(6), 1021–1032 (2005)

    Article  Google Scholar 

  5. Corona-Strauss, F.I., Schick, B., Delb, W., Strauss, D.J.: Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses. Audiol. Res. 2(1), 30–38 (2012)

    Article  Google Scholar 

  6. Dau, T., Wegner, O., Mellert, V., Kollmeier, B.: Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J. Acoust. Soc. Am. 107(3), 1530–1540 (2000)

    Article  Google Scholar 

  7. Davis, M.H., et al.: Dissociating speech perception and comprehension at reduced levels of awareness. Proc. Natl. Acad. Sci. 104(41), 16032–16037 (2007)

    Article  Google Scholar 

  8. De Silva, A., Schier, M.: Evaluation of wavelet techniques in rapid extraction of ABR variations from underlying EEG. Physiol. Meas. 32(11), 1747 (2011)

    Article  Google Scholar 

  9. Dey, N., Rajinikanth, V., Fong, S., Kaiser, M., Mahmud, M.: Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of Covid-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020)

    Article  Google Scholar 

  10. Farhin, F., Kaiser, M.S., Mahmud, M.: Secured smart healthcare system: blockchain and Bayesian inference based approach. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 455–465. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_36

    Chapter  Google Scholar 

  11. Freeman, W., Quiroga, R.Q.: Imaging Brain Function with EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals. Springer, Heidelberg (2012)

    Google Scholar 

  12. Gorga, M.P., Johnson, T.A., Kaminski, J.K., Beauchaine, K.L., Garner, C.A., Neely, S.T.: Using a combination of click-and toneburst-evoked auditory brainstem response measurements to estimate pure-tone thresholds. Ear Hear. 27(1), 60 (2006)

    Article  Google Scholar 

  13. Kaiser, M.S., Chowdhury, Z.I., Al Mamun, S., Hussain, A., Mahmud, M.: A neuro-fuzzy control system based on feature extraction of surface electromyogram signal for solar-powered wheelchair. Cogn. Comput. 8(5), 946–954 (2016)

    Article  Google Scholar 

  14. Maglione, J., Pincilotti, M., Acevedo, R., Bonell, C., Gentiletti, G.: Estimation of the auditory brainstem response’s wave V by means of wavelet transform. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 3, pp. 2631–2634. IEEE (2003)

    Google Scholar 

  15. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mohseni, H.R., Nazarpour, K., Wilding, E.L., Sanei, S.: The application of particle filters in single trial event-related potential estimation. Physiol. Meas. 30(10), 1101 (2009)

    Article  Google Scholar 

  17. Noor, M.B.T., Zenia, N.Z., et al.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of alzheimer’s disease, parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020)

    Article  Google Scholar 

  18. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  19. Omar, M.H.: Single trial estimation for auditory brainstem response signal analysis. Ph.D. thesis, Universiti Teknologi Malaysia (2013)

    Google Scholar 

  20. Purdy, S.C., Abbas, P.J.: ABR thresholds to tonebursts gated with Blackman and linear windows in adults with high-frequency sensorineural hearing loss. Ear Hear. 23(4), 358–368 (2002)

    Article  Google Scholar 

  21. Sharma, M.K., Ray, K., Yupapin, P., Kaiser, M.S., Ong, C.T., Ali, J.: Comparative analysis of different classifiers on EEG signals for predicting epileptic seizure. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 193–204. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_17

    Chapter  Google Scholar 

  22. Singh, A.K., Kumar, A., Mahmud, M., Kaiser, M.S., Kishore, A.: Covid-19 infection detection from chest X-ray images using hybrid social group optimization and support vector classifier. Cogn. Comput. 1–13 (2021)

    Google Scholar 

  23. Wang, X., et al.: The effects of random stimulation rate on measurements of auditory brainstem response. Front. Hum. Neurosci. 14 (2020)

    Google Scholar 

  24. Wilson, W.: The relationship between the auditory brain-stem response and its reconstructed waveforms following discrete wavelet transformation. Clin. Neurophysiol. 115(5), 1129–1139 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamim Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussain, H. et al. (2021). Enhanced Signal Processing Using Modified Cyclic Shift Tree Denoising. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics