Skip to main content

Online Single-Machine Scheduling via Reinforcement Learning

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

  • 306 Accesses

Abstract

Online scheduling has been an attractive field of research for over three decades. Some recent developments suggest that Reinforcement Learning (RL) techniques can effectively deal with online scheduling issues. Driven by an industrial application, in this paper we apply four of the most important RL techniques, namely Q-learning, Sarsa, Watkins’s Q(\(\lambda \)), and Sarsa(\(\lambda \)), to the online single-machine scheduling problem. Our main goal is to provide insights into how such techniques perform in the scheduling process. We will consider the minimization of two different and widely used objective functions: the total tardiness and the total earliness and tardiness of the jobs. The computational experiments show that Watkins’s Q(\(\lambda \)) performs best in minimizing the total tardiness. At the same time, it seems that the RL approaches are not very effective in minimizing the total earliness and tardiness over large time horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plastic and Rubber 4.0. Piattaforma Tecnologica per la Fabbrica Intelligente (Technological Platform for Smart Factory), URL: https://www.openplast.it/en/homepage-en/.

  2. 2.

    https://github.com/Yuanyuan517/RL_OnlineScheduling.git.

References

  1. Adamu, M.O., Adewumi, A.: A survey of single machine scheduling to minimize weighted number of tardy jobs. J. Ind. Manag. Optim. 10, 219–241 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Behnamiana, J., Ghomi, S.F., Zandieh, M.: A multi-phase covering pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Syst. Appl. 36, 11057–11069 (2009)

    Google Scholar 

  3. Brucker, P.: Scheduling Algorithms, 5th edn. Springer Publishing Company, Incorporated (2010)

    MATH  Google Scholar 

  4. Castrogiovanni, P., Fadda, E., Perboli, G., Rizzo, A.: Smartphone data classification technique for detecting the usage of public or private transportation modes. IEEE Access 8, 58377–58391 (2020). https://doi.org/10.1109/ACCESS.2020.2982218

    Article  Google Scholar 

  5. Cerone, V., Fadda, E., Regruto, D.: A robust optimization approach to kernel-based nonparametric error-in-variables identification in the presence of bounded noise. In: 2017 American Control Conference (ACC), IEEE (2017). https://doi.org/10.23919/ACC.2017.7963056

  6. Correa, J.R., Wagner, M.R.: Lp-based online scheduling: from single to parallel machines. Math. Program. 119(1), 109–136 (2009)

    Article  MathSciNet  Google Scholar 

  7. Fadda, E., Plebani, P., Vitali, M.: Optimizing monitorability of multi-cloud applications. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) Advanced Information Systems Engineering. CAiSE 2016. Lecture Notes in Computer Science, vol. 9694, pp. 411–426. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_25

  8. Fadda, E., Perboli, G., Squillero, G.: Adaptive batteries exploiting on-line steady-state evolution strategy. In: Squillero, G., Sim, K. (eds.) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science, vol. 10199, pp. 329–341. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_22

  9. Fadda, E., Manerba, D., Tadei, R., Camurati, P., Cabodi, G.: KPIs for optimal location of charging stations for electric vehicles: the Biella case-study. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, IEEE, Annals of Computer Science and Information Systems, vol. 18, pp. 123–126 (2019). https://doi.org/10.15439/2019F171

  10. Fadda, E., Manerba, D., Cabodi, G., Camurati, P., Tadei, R.: Evaluation of Optimal Charging Station Location for Electric Vehicles: An Italian Case-Study, pp. 71–87 (2021). https://doi.org/10.1007/978-3-030-58884-7_4

  11. Fadda, E., Manerba, D., Cabodi, G., Camurati, P.E., Tadei, R.: Comparative analysis of models and performance indicators for optimal service facility location. Transp. Res. Part E: Logist. Transp. Rev. 145 (2021)

    Google Scholar 

  12. Fernandez-Viagas, V., Dios, M., Framinan, J.M.: Ecient constructive and composite heuristics for the permutation flowshop to minimise total earliness and tardiness. Comput. Oper. Res. 75, 38–48 (2016)

    Article  MathSciNet  Google Scholar 

  13. François-Lavet, V., Fonteneau, R., Ernst, D.: How to discount deep reinforcement learning: towards new dynamic strategies (2015). arXiv:151202011

  14. Gabel, T., Riedmiller, M.: Adaptive reactive job-shop scheduling with reinforcement learning agents. Int. J. Inf. Technol. Intell. Comput. 24(4), 14–18 (2008)

    Google Scholar 

  15. Giusti, R., Iorfida, C., Li, Y., Manerba, D., Musso, S., Perboli, G., Tadei, R., Yuan, S.: Sustainable and de-stressed international supply-chains through the synchro-net approach. Sustainability 11, 1083 (2019). https://doi.org/10.3390/su11041083

    Article  Google Scholar 

  16. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966). https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

    Article  MATH  Google Scholar 

  17. Graves, S.C.: A review of production scheduling. Oper. Res. 29(4), 646–675 (1981). https://doi.org/10.1287/opre.29.4.646

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaban, A., Othman, Z., Rohmah, D.: Comparison of dispatching rules in job-shop scheduling problem using simulation: a case study. Int. J. Simul. Model. 11(3), 129–140 (2012). https://doi.org/10.2507/IJSIMM11(3)2.201

    Article  Google Scholar 

  19. Kanet, J.: Minimizing the average deviation of job completion times about a common due date. Nav. Res. Logist. Q. 28, 643–651 (1981)

    Article  Google Scholar 

  20. Koulamas, C.: The single-machine total tardiness scheduling problem: review and extensions. Eur. J. Oper. Res. 202, 1–7 (2010)

    Article  MathSciNet  Google Scholar 

  21. Leksakul, K., Techanitisawad, A.: An application of the neural network energy function to machine sequencing. Comput. Manag. Sci. 2, 309–338 (2005)

    Google Scholar 

  22. Li, Y., Carabelli, S., Fadda, E., Manerba, D., Tadei, R., Terzo, O.: Machine learning and optimization for production rescheduling in industry 4.0. In: The International Journal of Advanced Manufacturing Technology, pp. 1–19 (2020). https://doi.org/10.1007/s00170-020-05850-5

  23. Lu, X., Sitters, R., Stougie, L.: A class of on-line scheduling algorithms to minimize total completion time. Oper. Res. Lett. 31(3), 232–236 (2003). https://doi.org/10.1016/S0167-6377(03)00016-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Marco Silve, N.M., Poss, Michael: Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty. Eur. J. Oper. Res. 283, 70–82 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013). arXiv:13125602

  26. Oliver Herr, G.: Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints. Eur. J. Oper. Res. 248, 123–135 (2016)

    Article  MathSciNet  Google Scholar 

  27. Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25(1), 45–61 (1977). https://doi.org/10.1287/opre.25.1.45

    Article  MathSciNet  MATH  Google Scholar 

  28. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York, NY, USA (2012)

    Book  Google Scholar 

  29. Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15, pp. 65–118. Elsevier (1976)

    Google Scholar 

  30. Schaller, J., Valente, J.: Branch-and-bound algorithms for minimizing total earliness and tardiness in a two-machine permutation flow shop with unforced idle allowed. Comput. Oper. Res. 109, 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  31. Sharma, H., Jain, S.: Online learning algorithms for dynamic scheduling problems. In: 2011 Second International Conference on Emerging Applications of Information Technology, pp. 31–34 (2011)

    Google Scholar 

  32. Singh, S., Jaakkola, T., Littman, M.L., Szepesvári, C.: Convergence results for single-step on-policy reinforcement-learning algorithms. Mach. Learn. 38(3), 287–308 (2000). https://doi.org/10.1023/A:1007678930559

    Article  MATH  Google Scholar 

  33. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)

    Google Scholar 

  34. Suwa, H., Sandoh, H.: Online Scheduling in Manufacturing: A Cumulative Delay Approach. Springer Science & Business Media (2012)

    Google Scholar 

  35. Takadama, K., Fujita, H.: Toward guidelines for modeling learning agents in multiagent-based simulation: implications from q-learning and sarsa agents. In: International Workshop on Multi-Agent Systems and Agent-Based Simulation, pp. 159–172. Springer (2004). https://doi.org/10.1007/978-3-540-32243-6_13

  36. Watkins, C.J.C.H.: Learning from delayed rewards. Thesis Submitted for Ph.D., King’s College, Cambridge (1989)

    Google Scholar 

  37. Xie, S., Zhang, T., Rose, O.: Online single machine scheduling based on simulation and reinforcement learning. In: Simulation in Produktion und Logistik 2019, Simulation in Produktion und Logistik 2019 (2019)

    Google Scholar 

  38. Ying, K.C.: Minimizing earliness-tardiness penalties for common due date single-machine scheduling problems by a recovering beam search algorithm. Comput. Ind. Eng. 55, 494–502 (2008)

    Article  Google Scholar 

  39. Zhang, T., Xie, S., Rose, O.: Real-time job shop scheduling based on simulation and markov decision processes. In: 2017 Winter Simulation Conference (WSC), IEEE, pp. 3899–3907 (2017). https://doi.org/10.1109/WSC.2017.8248100

Download references

Acknowledgements

This research was partially supported by the Plastic and Rubber 4.0 (P&R4.0) research project, POR FESR 2014–2020 - Action I.1b.2.2, funded by Piedmont Region (Italy), Contract No. 319-31. The authors acknowledge all the project partners for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Fadda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Fadda, E., Manerba, D., Roohnavazfar, M., Tadei, R., Terzo, O. (2022). Online Single-Machine Scheduling via Reinforcement Learning. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_5

Download citation

Publish with us

Policies and ethics