Lecture Notes in Networks and Systems

Volume 298

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas— UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA; Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/15179

Michael E. Auer · Kalyan Ram Bhimavaram · Xiao-Guang Yue Editors

Online Engineering and Society 4.0

Proceedings of the 18th International Conference on Remote Engineering and Virtual Instrumentation

Editors Michael E. Auer Carinthia University of Applied Sciences Villah, Austria

Kalyan Ram Bhimavaram Electrono Solutions Pvt. Ltd. Bangalore, Karnataka, India

Xiao-Guang Yue Wuhan University of Technology Wuhan, China

ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems ISBN 978-3-030-82528-7 ISBN 978-3-030-82529-4 (eBook) https://doi.org/10.1007/978-3-030-82529-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The REV Conference is the annual conference of the International Association of Online Engineering (IAOE) and the Global Online Laboratory Consortium (GOLC).

REV2021 on "Online Engineering and Society 4.0" was the 18th in a series of annual events concerning the area of remote engineering and virtual instrumentation.

In a globally connected world, the interest in online collaboration, teleworking, remote services and other digital working environments is rapidly increasing. In response to that, the general objective of this conference is to contribute and discuss fundamentals, applications and experiences in the field of online and remote engineering, virtual instrumentation and other related new technologies like cross-reality, data science and big data, Internet of Things and Industrial Internet of Things, Industry 4.0, cloud technologies, cyber security, and M2M and smart objects. Another objective of the conference is to discuss guidelines and new concepts for engineering education in higher and vocational education institutions, including emerging technologies in learning, MOOCs and MOOLs, and open resources.

REV2021 has been organized in cooperation with the International Engineering and Technology Institute (IETI), Hong Kong, and the Technical University of Tallinn, Estonia, as an online event from February 24 to 26, 2021.

REV2021 offered again an exciting technical program as well as networking opportunities. Outstanding scientists and industry leaders accepted the invitation for keynote speeches:

Jeff Kodosky

Co-founder of NI and The Father of LabVIEW

• Javier García-Zubía and Gustavo R. Alves

University of Deusto, Spain, and ISEP Porto, Portugal

• Raphael Rohde

Manager Technology Development, PHOENIX CONTACT GmbH & Co. KG

• Krishna Vedula

Executive Director, Indo Universal Collaboration for Engineering Education (IUCEE)

• Gabriel Xiao-Guang Yue

Rector Advisor of European University Cyprus and College Advisor of RICE, RMUTR, Thailand

• Mark Easley

University Marketing Manager and MCU Applications Specialist at Texas Instruments

It was in 2004 when we started this conference series in Villach, Austria, together with some visionary colleagues and friends from around the world. When we started our REV endeavor, the Internet was just 10 years old! Since then, the situation regarding online engineering and virtual instrumentation has radically changed. Both are today typical working areas of most of the engineers and are intrinsically tied to

- Internet of Things
- Industry 4.0 and Industrial Internet of Things
- Cloud Technologies
- Data Science
- Cross and Mixed Reality
- Remote Working Environments
- Online & Biomedical Engineering

to name only a few.

With our conference in 2004, we already tried to focus on the upcoming use of the Internet for engineering tasks and the opportunities as well as challenges around it. And as we can see today, it was the right decision.

The REV 2021 Conference takes up the following topics in its variety and discusses the state-of-the-art and future trends under the global theme "Cross Reality and Data Science in Engineering":

- Applications and Experiences
- Artificial Intelligence
- Augmented and Mixed Reality
- Big Data
- Biomedical Engineering
- Cyber Physical System
- Cyber Security

vi

Preface

- Collaborative Work in Virtual Environments
- Data Science
- Evaluation of Online Labs
- Human Machine Interaction and Usability
- Internet of Things and Industrial IoT
- Industry 4.0
- M2M Concepts
- Networking, Edge and Cloud Technology
- Online Engineering
- Process Visualization and Virtual Instrumentation
- Remote Control and Measurements
- Remote and Crowd Sensing
- Smart Objects
- Smart World (City, Buildings, Home, etc.)
- Society 4.0 (Impact of COVID on Engineering Education)
- Standards and Standardization Proposals
- Teleservice and Telediagnosis
- Telerobotics and Telepresence
- Teleworking Environments
- Virtual and Remote Laboratories

Special thematic tracks have been held on the following topics:

- Non-traditional Labs and Lab Networks in the IoT and Industry 4.0 Domain
- IoT—Smart Materials and Systems
- Biomedical Engineering and Computing

Submission types have been accepted:

- Full Paper, Short Paper
- Work in Progress, Poster
- Special Sessions
- Workshops, Tutorials

All contributions were subject to a double-blind review. The review process was extremely competitive. We had to review near to 200 submissions. A team of over 90 program committee members and reviewers did this terrific job. Our special thanks go to all of them.

Due to the time and conference schedule restrictions, we could finally accept only the best 65 submissions for presentation or demonstration. The conference had over 140 participants from 29 countries from all continents.

We thank our Estonian colleagues from the Technical University of Tallinn and Videal Productions OÜ for conducting the online conference.

Always Sebastian Schreiter did an excellent job to edit this book. REV2022 will be held at British University of Egypt in Cairo.

> Michael E. Auer REV General Chair Kalyan Ram Bhimavaram IAOE President, REV2021 Co-chair Xiao-Guang Yue IETI Hong Kong, REV2021 Co-chair

Committees

General Chair

Michael E. Auer	Founding President and CEO of the IAOE, CTI
	Frankfurt/Main New York, Vienna, Bangalore

REV2021 Co-chairs

Kalyan Ram Bhimavaram	IAOE President and Electrono Solutions Pvt Ltd,
	India
Xiao-Guang Yue	International Engineering & Technology
	Institute, Hong Kong

Program Co-chairs

University of Georgia, USA, and IAOE Vice
President
Transylvania University of Brasov and IAOE
Past President, Romania
Hong Kong Shue Yan University, Hong Kong

International Advisory Board

President, Global Online Laboratory Consortium,
USA
EPFL, Lausanne, Switzerland
Stanford University, USA
University of South Australia
University of Porto, Portugal
Université TÉLUQ, Montreal, Canada
University of Brasov, Romania

Committees

Franz Schauer	Tomas Bata University, Czech Republic
Tarek Sobh	University of Bridgeport, USA
Claudius Terkowsky	TU Dortmund University, Germany
Vasant Honavar	Penn State University, USA
Valerie Varney	RWTH Aachen, Germany
Krishna Vedula	IUCEE, India

Technical Program Co-chairs

Abul K. M. Azad	Northern Illinois University, DeKalb, IL,
	and GOLC President, USA
Sebastian Schreiter	IAOE, France

IEEE Liaison

D, Madrid, Spain

Workshop and Tutorial Chairs

Andreas Pester	The British University in Egypt, Cairo
Valerie Varney	RWTH Aachen, Germany

Special Session Chairs

Alexander Kist	University of Southern Queensland, Australia
Teresa Restivo	University of Porto, Portugal

Publication Chair and Web Master

International Program Committee

Akram Abu-Aisheh	Hartford University, USA
Yacob Astatke	Morgan State University, USA
Gustavo Alves	Polytechnic of Porto, Portugal, and IAOE Vice
	President
Nael Bakarad	Grand Valley State University, USA
David Boehringer	University of Stuttgart, Germany
Michael Callaghan	University of Ulster, Northern Ireland
Manuel Castro	UNED, Madrid, Spain
Torsten Fransson	KTH, Stockholm, Sweden
Javier Garcia-Zubia	University of Deusto, Spain
Denis Gillet	EPFL, Lausanne, Switzerland

Olaf Graven Buskerud University College, Norway Ian Grout University of Limerick. Ireland Graz University of Technology, Austria Christian Guetl University of Southern Oueensland, Australia Alexander Kist Virginia Tech, VA, USA Vinod Kumar Lohani Petros Lameras Coventry University, UK Sergio Cano Ortiz Universidad de Oriente, Cuba University of Crete, Greece **Stamatios Papadakis** Carlos Alberto Reyes Garcia INAOE, Puebla, Mexico Ananda Maiti University of Southern Queensland, Australia University of Georgia, Athens, USA Dominik May Zorica Nedic University of South Australia, Australia Stanford University, USA Ingmar Riedel-Kruse Franz Schauer Tomas Bata University, Czech Republic University of Santa Catarina, Brazil Juarez Silva Technical University of Munich, Germany Matthias Christoph Utesch Igor Verner Technion, Haifa, Israel TU Ilmenau, Germany Dieter Wuttke Katarina Zakova Slovak University of Technology, Slovakia Stefan Marks Auckland University of Technology, New Zealand James Wolfer Indiana University South Bend, IN, USA

Contents

Virtual and Remote Laboratories

Work-in Progress: Development of an E-learning FPGA PlatformFollowing the IEEE SA Std. 1876 - 2019 Standard for NetworkedSmart Learning Objects for Online LaboratoriesMarcelo Daniel Berejuck, Jhennifer Cristine Matias, Emilio Werner,	3
and Hamadou Saliah-Hassane	
On the Development of a Unified Online Laboratory Framework Johannes Nau, Johannes Richter, Detlef Streitferdt, Karsten Henke, Robert Niklas Bock, and Andreas Mitschele-Thiel	10
GOLDi 2.0: Beyond Raw Digital Signals – Electrical	
Interface Emulation	23
A Reliable Real-Time Web Interface for an Online Laboratory Ratchatin Chancharoen, Kantawatchr Chaiprabha, Keerati Tantrapirom, Pasawee Pungrasmi, Soravis Tangthavonsirikul, and Tanapoom Jitnaknan	35
Remote Labs for Communications	47
Automated Testing for Sustainable Remote Laboratory System Kyathsandra Narasimhamurthy Chandrashekar, Susheen Srivatsa Chelur Nataraja, Bharath Gangarpu Chandrasekhar, Adithya Prasanna, and Suchitra Vankalkunti	55
Interactive Lab Experimentation and Simulation Tools for Remote Laboratories Fariba Moghaddam, Denis Gillet, Aldo Vaccari, Christophe Salzmann,	66
and Yves Piguet	

Aligning Technic with Didactic – A Remote Laboratory Infrastructure for Study, Teaching and Research Anke Pfeiffer, Hadi Adineh, and Dieter Uckelmann	78
Simulation on Motion of a Trebuchet Karthik Baburao Mulamuttal, Komal Kattigenahally Nagaraj, Gangadharan V. Kalluvalappil, Pruthvi Raj, Narasimhamurthy Kyathsandra Chandrashekar, and Suchitra Vankalkunti	87
Human-Centered Design in Online Laboratories for GraduateEngineering StudentsZhongcheng Lei, Hong Zhou, Wenshan Hu, and Guo-Ping Liu	94
Termolabo Project: An Internet of Things Approach of Thermo-Fluids Online Laboratory	105
Main Attacks and Ways to Keep Security Guidelines Updated in Remote Laboratories Emilio Werner, Jhennifer Cristine Matias, Marcelo Daniel Berejuck, and Hamadou Saliah-Hassane	115
Design and Development of an Ultra-Concurrent Laboratory for the Study of an Acid–Base Titration (ABT) at the Universidad Estatal a Distancia (UNED), Costa Rica	122
RISC-V Online Tutor Fearghal Morgan, Arthur Beretta, Ian Gallivan, Joseph Clancy, Frédéric Rousseau, Roshan George, László Bakó, and Frank Callaly	131
FPGA Meets Breadboard: Integrating a Virtual Breadboard with Real FPGA Boards for Remote Access in Digital Design Courses Shuowei Li, Heran Wang, Luis Rodriguez-Gil, Pablo Orduña, and Rania Hussein	144
Non-traditional labs in the IoT and Industry 4.0 Domain	
Smart Innovative Engineering for Smart Agriculture Modernization Galyna Tabunshchyk, Peter Arras, Karsten Henke, and Heinz-Dietrich Wuttke	155
Internet of Postal Things - Current Issues of Scientific Research in the University Environment	164

Contents

Physically Realistic Simulation of Mechanical Assembly Operationsin a Virtual Reality Training EnvironmentFlorian Dyck, Marc Pilates, Lisa Masjutin, and Jörg Stöcklein	177
Challenges and Solutions to Integrate Remote Laboratories in a Cross-University Network	189
Remotely Teaching Engineering During a Pandemic	203
Forecasting and Monitoring Smart Buildings with the Internetof Things, Digital Twins and BlockchainXichun Yang, Ananda Maiti, Jinhao Jiang, and Alexander Kist	213
HoT Laboratory Model for Remote Control System Applications Marjan Golob, Božidar Bratina, Milan Rotovnik, and Nenad Muškinja	225
Quality Assurance for Remote-Lab Systems by New Reporting Tool Elmissaoui Taoufik, Charradi Sahbi, and Selmi Wafik	237
Batch Experiment: A Fruitful Way of Combining Hands-OnLaboratory and E-LearningEleonora Bottani, Davide Reverberi, Giovanni Romagnoli, Maria Ustenko,and Andrea Volpi	244
Towards the Operationalization of Trust Relationships in Networked Organizations	256
Real-Time Fluid Simulation for an Interactive Plate Column Virtual Lab Mario Wolf, Pascalis Trentsios, and Detlef Gerhard	268
Design of a Mixed Reality Game for Exploring How IoT Technologies Can Support the Decision Making Process Jannicke Baalsrud Hauge, Prabahan Basu, Fatima Sundus, Anindya Chowdhury, and Artem Schurig	281
IoT – Smart Materials and Systems	
Artificial Intelligence System for Predicting Cardiovascular Diseases	201

Artificial intelligence System for Fredering Cardiovascular Diseases	
Using IoT Devices and Virtual Instrumentation	291
Horia Alexandru Modran, Doru Ursuțiu, Cornel Samoilă,	
and Tinashe Chamunorwa	

Remote Experiment and Balance Between Monodisciplinarity and Pluridisciplinarity C. Samoila and D. Ursutiu	302
Electronic Educational Laboratory Platform for Students Tinashe Chamunorwa, Doru Ursuțiu, Cornel Samoilă, Horia Hedesiu, and Horia Alexandru Modran	311
Localized Vineyard Monitoring for Specific Diseases Petru Epure, Andra Perju, Doru Ursutiu, Cornel Samoila, and Petru P. Epure	323
Real-Time Monitoring of Indoor Healthcare Tracking Usingthe Internet of Things Based IBeaconMohamed Zied Chaari, Rashid Al-Rahimi, and Abdulaziz Aljaberi	332
Cloud Platform for Software Development: Review Anzhelika Parkhomenko, Yaroslav Zalyubovskiy, and Andriy Parkhomenko	343
Monitoring Air Decontamination by Photocatalysis Petru Epure, Andra Perju, and Petru P. Epure	352
Automation of IoT Based Services Using Digital Twin Daniel Anghel and Titus Constantin Balan	360
Purple Team Security Assessment of Firmware VulnerabilitiesLucian Florin Ilca and Titus Balan	370
Automated Testing of GUI Based Communication Elements Andreea Nica, Alexandra Balan, Corneliu Zaharia, and Titus Balan	380
Biomedical Engineering and Computing	
Large Scale Covid-19 Detection with Blood Platelets Using Artificial Neural Network Ahmed Tamer and Andreas Pester	393
Cloud-Based Data Storage System for eHealth Smart Devices Paulo Abreu and Maria Teresa Restivo	400
Impact of Biofeedback in the Motor Rehabilitation of Patients with Acquired Brain Injury Paulo Abreu, Maria Teresa Restivo, and Helena Sousa	408
A Different View on Artificial Intelligence Applications for Cardiac Arrhythmia Detection and Classification Dragoș-Vasile Bratu, Maria-Alexandra Zolya, and Sorin-Aurel Moraru	415

Contents

Assessing mHealth Applications for Medical Prescription: A Case Study	428
Mario A. Bochicchio, Lucia Vaira, Andrea Mortara, and Renata De Maria	420
GiroJampa: A Serious Game Prototype for Wheelchairs Rehabilitation Marieliza Araújo Braga, Liliane dos Santos Machado, Leonardo Wanderley Lopes, Clauirton de Albuquerque Siebra, Elaine Cappellazzo Souto, and Rebeca Raab Bias Ramos	439
Applications and Experiences	
Augmented Reality-Based Product Validation to SupportCollaborative Engineering of Complex Technical SystemsDaniel Eckertz, Harald Anacker, and Roman Dumitrescu	451
Collaborative and Contextual Learning Experience, Supported in Virtual Scenarios and Software Defined Radio Tools, for the Development of a Communications Laboratory in Engineering Mario Andrés Ramos, Paola Andrea Buitrago, and Raúl Camacho	464
Comparison of Two Technologies for Digital Payments: Challenges and Future Directions. Galena Pisoni, Bálint Molnár, and Ádám Tarcsi	478
Machine Learning: A Tool for Formulating Tracking Strategiesfor Covid-19 Pandemic in ColombiaHernando Vélez Sánchez and Luini Leonardo Hurtado Cortes	485
Towards a Universally Accessible Laboratory for the Teaching and Learning of Electronic and Computer Engineering Ian Grout	502
Promoting Microelectronic Through Remote FPGA Based Laboratory Pedro Plaza, Manuel Castro, Elio Sancristobal, Pablo Orduña, Luis Rodríguez, Javier Garcia, Félix García-Loro, Rosario Gil, Antonio Menacho, Manuel Blázquez, Blanca Quintana, Sergio Martin, Francisco Mur, Alejandro Macho, Pablo Baizán, Ramón Carrasco, German Carro, África López-Rey, Clara Pérez, and Slavka Tzanova	514
Data Collection: Use and Transformation in Predictive Maintenance Models Hernando Vélez Sánchez and Luini Leonardo Hurtado Cortés	525
Motivation Management of Domestic and International Engineering	
Students in the Digital Era Irina Makarova, Gulnar Nadirova, Azhar Serikkaliyeva, Polina Buyvol, Vadim Mavrin, Eduard Mukhametdinov, and Larisa Fatikhova	541

Virtual Learning of Engineering Students from the Low-Resource	
Environment During the Pandemic	557
Sasi Sekhar Mallampalli and Shriya Goyal	
Concept for a Teaching Medium for Immersive Forms of Teaching	
concept for a reaching medium for inimersive rorms of reaching	
in Automation Technology	565