Skip to main content

On the Spanning and Routing Ratios of the Directed \(\varTheta _6\)-Graph

  • Conference paper
  • First Online:
  • 1059 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12808))

Abstract

The family of \(\varTheta _k\)-graphs is an important class of sparse geometric spanners with a small spanning ratio. Although they are a well-studied class of geometric graphs, no bound is known on the spanning and routing ratios of the directed \(\varTheta _6\)-graph. We show that the directed \(\varTheta _6\)-graph of a point set P, denoted \(\overrightarrow{\varTheta }_6(P)\), is a 7-spanner and there exist point sets where the spanning ratio is at least \(4-\varepsilon \), for any \(\varepsilon >0\). It is known that the standard greedy \(\varTheta \)-routing algorithm may have an unbounded routing ratio on \(\overrightarrow{\varTheta }_6(P)\). We design a simple, online, local, memoryless routing algorithm on \(\overrightarrow{\varTheta }_6(P)\) whose routing ratio is at most 14 and show that no algorithm can have a routing ratio better than \(6-\varepsilon \).

Research supported in part by NSERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aichholzer, O., et al.: Theta-3 is connected. Comput. Geom.: Theory Appl. 47(9), 910–917 (2014)

    Article  MathSciNet  Google Scholar 

  2. Barba, L., Bose, P., De Carufel, J.L., van Renssen, A., Verdonschot, S.: On the stretch factor of the theta-4 graph. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 8037, pp. 109–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_10

    Chapter  Google Scholar 

  3. Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., Verdonschot, S.: Gabriel triangulations and angle-monotone graphs: local routing and recognition. In: International Symposium on Graph Drawing and Network Visualization, pp. 519–531. Springer, Heidelberg (2016)

    Google Scholar 

  4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) Graph Theoretic Concepts in Computer Science. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_25

    Chapter  Google Scholar 

  5. Bose, P., De Carufel, J.-L., Devillers, O.: Expected complexity of routing in \(\Theta _6\) and half-\(\Theta _6\) graphs. arXiv preprint arXiv:1910.14289 (2019)

  6. Bose, P., De Carufel, J.-L., Hill, D., Smid, M.H.M.: On the spanning and routing ratio of Theta-four. In: Symposium on Discrete Algorithms, pp. 2361–2370. SIAM (2019)

    Google Scholar 

  7. Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight bounds on theta-graphs: more is not always better. Theoret. Comput. Sci. 616, 70–93 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput. 44(6), 1626–1649 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chew, P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)

    Article  MathSciNet  Google Scholar 

  11. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 56–65 (1987)

    Google Scholar 

  12. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  13. Eppstein, D.: Spanning trees and spanners. In: Handbook of Computational Geometry, pp. 425–461 (1999)

    Google Scholar 

  14. Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices, 2nd edn. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  15. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  16. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discret. Comput. Geom. 7, 13–28 (1992). https://doi.org/10.1007/BF02187821

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, C.Y.: An algorithm for path connection and its applications. IRE Trans. Electron. Comput. EC–10(3), 346–365 (1961)

    Article  MathSciNet  Google Scholar 

  18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. Pearson, K.: The problem of the random walk. Nature 72, 294 (1865)

    Article  Google Scholar 

  20. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG 1991), pp. 207–210 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosenjit Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akitaya, H.A., Biniaz, A., Bose, P. (2021). On the Spanning and Routing Ratios of the Directed \(\varTheta _6\)-Graph. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics