
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 24:1, 2022, #19

The Neighborhood Polynomial
of Chordal Graphs∗

Helena Bergold1 Winfried Hochstättler2 Uwe Mayer2

1 Freie Universität Berlin, Department of Computer Science, Germany
2 FernUniversität in Hagen, Fakultät für Mathematik und Informatik, Germany

received 25th Aug. 2021, revised 22nd Apr. 2022, accepted 22nd Apr. 2022.

We study the neighborhood polynomial and the complexity of its computation for chordal graphs. The neighborhood
polynomial of a graph is the generating function of subsets of its vertices that have a common neighbor. We introduce
a parameter for chordal graphs called anchor width and an algorithm to compute the neighborhood polynomial which
runs in polynomial time if the anchor width is polynomially bounded. The anchor width is the maximal number of
different sub-cliques of a clique which appear as a common neighborhood. Furthermore we study the anchor width for
chordal graphs and some subclasses such as chordal comparability graphs and chordal graphs with bounded leafage.
The leafage of a chordal graphs is the minimum number of leaves in the host tree of a subtree representation. We
show that the anchor width of a chordal graph is at most n` where ` denotes the leafage. This shows that for some
subclasses computing the neighborhood polynomial is possible in polynomial time while it is NP-hard for general
chordal graphs.

Keywords: neighborhood polynomial, domination polynomial, chordal graph, comparability graph, leafage, anchor
width

1 Introduction
In this paper we study the neighborhood polynomial of graphs and give an algorithm to compute the
polynomial for chordal graphs in polynomial time for some subclasses. Throughout the paper, all graphs
are simple, finite and undirected. For a graph G = (V,E), the neighborhood of a vertex v ∈ V is the set
of all adjacent vertices, denoted by NG(v) = {u ∈ V | uv ∈ E}. The neighborhood complex of a graph
G, first introduced by Lovász (1978), consists of all subsets of vertices W ⊆ V which have a common
neighbor, that is

NG = {U ⊆ V | ∃v ∈ V : U ⊆ NG(v)}.
∗A short version of this paper appeared in the Proceedings of the 17th Algorithms and Data Structures Symposium (WADS

2021), see Bergold et al. (2021).
The authors thank Kolja Knauer and Manfred Scheucher for helpful discussions and the anonymous reviewers for helpful com-

ments.
Helena Bergold was supported by DFG-GRK 2434.

ISSN 1365–8050 © 2022 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:2

00
8.

08
34

9v
4

 [
m

at
h.

C
O

]
 2

 M
ay

 2
02

2

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/8388

2 Helena Bergold, Winfried Hochstättler, Uwe Mayer

This set-system is clearly hereditary and hence it is a simplicial complex. To count the number of sets
with cardinality k in NG, we define the neighborhood polynomial

NG(x) =
∑

U∈ NG

x|U |,

which is the generating function of the neighborhood complex NG. Since we only consider finite graphs,
the sum is finite and NG(x) is a polynomial such as all other generating functions considered in this
paper. We investigate the complexity of computing the neighborhood polynomial of some graph classes.
In particular, we look at chordal graphs and subclasses like interval graphs, split graphs and chordal
comparability graphs. In order to do this, we introduce the anchor width of a graph and develop an
algorithm for computing the neighborhood polynomial in Section 3. We will see that the anchor width is
the essential parameter for a polynomial runtime of our algorithm. If for any subclass of chordal graphs the
anchor width is polynomially bounded in the number of vertices, our algorithm is efficient. In particular
our main result is the following theorem.

Theorem 1. Let G be a chordal graph with n vertices and anchor width k. Computing the neighborhood
polynomial takes at most O(n3k + n2k2) time.

In Section 4 we investigate the complexity of the anchor width for different subclasses. For this we
look at chordal graphs with bounded leafage. The leafage `(G) was introduced in Lin et al. (1998) and
measures how close a chordal graph is to an interval graph. We show that a chordal graph G on n vertices
has anchor width at most n`(G) (cf. Theorem 7). Furthermore for interval graphs, which are the graphs
with leafage at most two, we give a family with quadratic anchor width. Another result of Section 4 is
that chordal comparability graphs have linearly bounded anchor width.

2 Preliminaries
The neighborhood polynomial was introduced by Brown and Nowakowski (2008) who investigated the
effect of some elementary graph operations on the neighborhood polynomial. Given two graphs G1 =
(V1, E1) and G2 = (V2, E2) on disjoint vertex sets, the union G1 ∪ G2 of the graphs is the graph on the
vertex set V1 ∪ V2 with edge set E1 ∪ E2. The join G1 +G2 of the two graphs is the graph on the vertex
set V1 ∪ V2 consisting of both graphs together with all possible edges between vertices in V1 and vertices
in V2, that is E = E1 ∪ E2 ∪ {v1v2 | v1 ∈ V1, v2 ∈ V2}.
Proposition 1 (Brown and Nowakowski (2008)). Let G1 and G2 be two graphs on disjoint vertex sets.
Then the neighborhood polynomial of the disjoint union G1 ∪G2 is

NG1∪G2
(x) = NG1

(x) +NG2
(x)− 1.

Proposition 2 (Brown and Nowakowski (2008)). Let G1 = (V1, E1), G2 = (V2, E2) be two graphs on
disjoint vertex sets. Then the neighborhood polynomial of the join G1 +G2 is

NG1+G2(x) = (1 + x)|V2|NG1(x) + (1 + x)|V1|NG2(x)−NG1(x)NG2(x).

The two graph operations, disjoint union and join, are used to define cographs. Cographs are exactly the
graphs which do not contain an induced P4, a path on four vertices. They can be constructed recursively.

The Neighborhood Polynomial of Chordal Graphs 3

Starting with a single vertex as a cograph, the disjoint union and the join of two cographs are cographs.
For this and other well-known graph theoretic facts, we refer to Golumbic (1980). The neighborhood
polynomial of a single vertex graph is N(K1, x) = 1 and the two operations disjoint union and join,
given by the two formulas in Proposition 1 and Proposition 2 are computable in linear time. Note that
(1 + x)n can be computed in linear time using the binomial theorem. Corneil et al. (1985) present a
linear time algorithm to recognize cographs and give the corresponding recursive construction rules using
disjoint union and join. Hence the neighborhood polynomial of a cograph is computable in quadratic time.

Another graph operation is attaching one vertex v to a subset of vertices of a graph G. This operation
was studied by Alipour and Tittmann (2021), who gave an explicit formula for a neighborhood polynomial
after attaching a vertex to a subset of vertices. More formally for a graph G = (V,E), a subset U ⊆ V of
vertices and an additional vertex v /∈ V , we denote by GU.v the graph with vertex set V ∪ {v} and edge
set E ∪ {uv | u ∈ U}. For simplification we use the following notation for all W ⊆ V :

N∩G(W) =
⋂

w∈W
NG(w) and

N∪G(W) =
⋃

w∈W
NG(w).

Proposition 3 (Alipour and Tittmann (2021)). Let G = (V,E) be a graph, U ⊆ V and v /∈ V . Then the
neighborhood polynomial of GU.v is

NGU.v
(x) = NG(x) +

∑
W⊆U,
W 6=∅

φW +
∑

W⊆U,
W 6=∅

(−1)|W |+1x(1 + x)|N
∩
G(W)|,

where

φW =

{
x|W |, if N∩G(W) = ∅;
0, otherwise.

Using this formula, Alipour and Tittmann showed that for a fixed integer k, computing the neighbor-
hood polynomial of k-degenerate graphs is possible in polynomial time, see Alipour and Tittmann (2021).
A k-degenerate graph is a graph where every subgraph has a vertex v with deg(v) ≤ k. Using the de-
generacy, we can pick one vertex of degree ≤ k after another and update the neighborhood polynomial
by the formula of Proposition 3 in order to get a polynomial runtime. As a corollary it follows that there
is a polynomial-time algorithm to compute the neighborhood polynomial for planar (or more general
graphs of bounded genus) and k-regular graphs, see Alipour and Tittmann (2021). This update formula
of Alipour and Tittman (see Proposition 3) was the starting point of our investigations for chordal graphs.

A graph G is said to be chordal if there is no induced cycle of length ≥ 4. Equivalently a graph
is chordal if and only if it has a perfect elimination order. A perfect elimination order is an ordering
v1, . . . , vn of the vertices such that for all i the neighborhood of vi in G[{vi, . . . vn}] is a clique. Here for
a subset U ⊆ V the graph G[U] denotes the subgraph of G induced by U . A vertex, whose neighborhood
is a clique is called simplicial. It is well-known that every non-trivial chordal graph has at least two sim-
plicial vertices, which gives us the perfect elimination order (cf. Golumbic (1980)). In order to study the
neighborhood polynomial of chordal graphs and their subclasses, we make use of the perfect elimination
order to build the chordal graph by attaching one vertex after another to a clique. We adapt the formula

4 Helena Bergold, Winfried Hochstättler, Uwe Mayer

of Alipour and Tittmann (Proposition 3) to our use. To get some complexity results of computing the
neighborhood polynomial, the connection to the domination polynomial is useful. For this we introduce
dominating sets. A dominating set of a graph G = (V,E) is a set of vertices D ⊆ V such that every
vertex of the graph is either in D or adjacent to a vertex of D, i.e.

D ∪N∪G(D) = V.

The family of all dominating sets of a graph G is denoted by DG and the domination polynomial DG(x)
is the generating function of DG that is

DG(x) =
∑

U∈DG

x|U |.

The following relation between domination polynomials and neighborhood polynomials holds. For a
proof see for example Heinrich and Tittmann (2018).

Proposition 4. For a graph G = (V,E) and its complement graph G it holds:

DG(x) +NG(x) = (1 + x)|V |.

With other words this proposition states that every vertex set has either a common neighbor in the graph
or is a dominating set in the complement graph. The connection of these two polynomials can be used
to determine the complexity of computing the neighborhood polynomial. In particular, the neighborhood
polynomial is computable in polynomial time if and only if the domination polynomial of the complement
graph is computable in polynomial time. Furthermore the contributions to the well-known graph problem
DOMSET, imply some complexity results for the neighborhood polynomial. DOMSET is the problem of
deciding whether a graph has a dominating set of size ≤ k for a given k.

Corollary 2. Let G be a class of graphs and G the class of the complement graphs of G. If DOMSET is
NP-complete on G, then computing the neighborhood polynomial on G is NP-hard.

DOMSET is NP-hard on many graph classes such as chordal graphs, see Booth and Johnson (1982).
Bertossi (1984) showed that it is NP-hard on bipartite graphs and split graphs. Split graphs are the graphs
where the vertex set can be partitioned into a clique and an independent set. Since split graphs are exactly
the graphs which are chordal and co-chordal (i.e. the complement graph is chordal), DOMSET is also
NP-hard on co-chordal graphs. This together with Corollary 2 shows the NP-hardness of computing the
neighborhood polynomial in split graphs (cf. Day (2017)) and hence in chordal graphs.

3 Algorithm for Chordal Graphs
Our algorithm relies on the perfect elimination order of chordal graphs and comes from the vertex-
attachment formula of Alipour and Tittmann, see Proposition 3. First, we adapt their formula to our
special case where we attach a vertex to a clique. To study the new arising neighborhood sets after vertex
attachment, we introduce anchor sets, which are subsets of a clique appearing as a common neighborhood
of a set of vertices. The maximal number of anchor sets of a clique, which we denote as anchor width, is
the essential parameter in our algorithm to get a polynomial runtime.

The Neighborhood Polynomial of Chordal Graphs 5

C

PC
A = AM

M

Fig. 1: An illustration of the introduced sets, the periphery PC and a periphery set M with corresponding anchor set
AG(M,C) of a clique C.

Let C be a clique in a graph G = (V,E). We define the set of neighbors of the clique C, not including
the clique itself as the periphery of C, denoted by

PG(C) = N∪G(C)\C.

A subset M ⊆ PG(C) of the periphery is called periphery set. Note that the empty set is also a periphery
set. We call a non-empty subset A of C anchor set, if it is the common neighborhood in C of some
periphery set M . See Figure 1 for an illustration. In general not all subsets of a clique are an anchor set.
For every M ⊆ PG(C) we define the corresponding anchor set in C as

AG(M,C) = N∩G(M) ∩ C

if the intersection is non-empty. The neighborhood of the empty periphery set M = ∅ is the empty
intersection and thus the corresponding anchor set is C. Moreover, several periphery sets M and M ′ can
correspond to the same anchor set AG(M,C) = AG(M

′, C). For an anchor set A of C, the periphery
sets M ⊆ PG(C) whose common neighborhood in C is A build the family

PG(A,C) = {M ⊆ PG(C) | AG(M,C) = A} .

The generating function of PG(A,C) is called periphery polynomial and defined by

PG(A,C, x) =
∑

M∈PG(A,C)

x|M |.

Note that PG(A,C) = ∅ and PG(A,C, x) = 0 if A is not an anchor set of C. The family of all anchor
sets of a clique C is

AG(C) = {A ⊆ C | A 6= ∅ and ∃M ⊆ PG(C) : A = AG(M,C)}.

Note that C ∈ AG(C) for every clique C, since C is the anchor set of the empty periphery set. The
anchor width of a graph G is the smallest number k such that |AG(C)| ≤ k for all cliques C in G.

For a maximal clique Cmax and a clique C contained in Cmax the following relations hold.

6 Helena Bergold, Winfried Hochstättler, Uwe Mayer

Lemma 3. Let C be a clique and Cmax a maximal clique containing C in a graph G = (V,E). Then the
following conditions hold:

(a) Cmax\C ⊆ PG(C) ⊆ PG(Cmax) ∪ (Cmax\C)

(b) AG(C) = {A ∩ C | A ∩ C 6= ∅ and A ∈ AG(Cmax)}

(c) For every A ∈ AG(C) the periphery polynomial is

PG(A,C, x) = (1 + x)|Cmax\C|
∑

A′∈AG(Cmax)
A′∩C=A

PG(A
′, Cmax, x).

Proof: (a) Since every vertex in the clique Cmax\C is adjacent to C, the first inclusion holds. Further-
more, every element which is adjacent to one of the elements in C is either an element of Cmax\C or it
is adjacent to an element of Cmax.

To show (b), we check which subsets of the clique C can appear as an anchor set. Let M ′ ⊆ PG(C) be
a periphery set such that AG(M,C) is a non-empty anchor set. Using (a) we distinguish three cases.

If M ′ ⊆ Cmax\C, the anchor set of M ′ is C itself. If M ′ ⊆ PG(Cmax) there exists an anchor set
A = AG(M,Cmax). Since M ′ only consists of elements of the periphery of C, the intersection of A
with C provides the anchor set AG(M,C), which is non-empty. In the final case, M ′ consist of elements
of Cmax\C and PG(Cmax). We only need to consider M = M ′ ∩ PG(Cmax), since the elements of
Cmax\C just lead to another intersection with C. We continue as in the second case.

On the other hand, a set A′ = A ∩ C 6= ∅ for A ∈ AG(Cmax) is always an anchor set. For A there
exists a periphery set M ⊆ PG(Cmax) which has A as common neighborhood AG(M,Cmax) in Cmax.
If we take all elements of M which are in the periphery of C, the common intersection of those elements
inside C is exactly A′. Hence A′ is an anchor set.

(c) The periphery polynomial PG(A,C, x) counts the different periphery sets with respective to the
size, where A is the corresponding anchor set. As we have seen in (b), an anchor set A is given by
A = A′ ∩ C for an anchor set A′ ∈ AG(Cmax). Since there are different possibilities to choose A′,
we sum over all corresponding periphery polynomials which are counted in PG(A

′, C, x). Furthermore
all elements in Cmax\C are in the periphery of C (see (a)) with neighborhood C. Hence we can add
elements of Cmax\C to any periphery set M ′ with anchor set AG(M

′, Cmax) = A′ and still have as
anchor set AG(M,C) = A. For the polynomial as generating function, we multiply PG(A

′, C, x) by
(1 + x)|Cmax\C|.

For different anchor sets A′ and A′′ with A′′ ∩ C = A = A′ ∩ C, the corresponding periphery sets
are pairwise different, since the common neighborhood inside Cmax is different. So in order to get all
periphery sets corresponding to A, we need to sum up these the polynomials.

This shows that it is sufficient to provide the information about anchor sets and periphery polynomials
for all maximal cliques of the graph. With this information we are able to compute the necessary infor-
mation for all other cliques. Furthermore the anchor width only depends on the size of the anchor family
of the maximal cliques.

In the following, we derive a formula for the neighborhood polynomial after vertex attachment using
the periphery polynomial. For every set U ⊆ V of vertices we define the local neighborhood NG(U) of

The Neighborhood Polynomial of Chordal Graphs 7

U as the family consisting of all vertex sets of G which have a common neighbor in U , that is

NG(U) = {W ⊆ V | ∃v ∈ U : W ⊆ NG(v)}.

Note that the local neighborhood NG(V) of the whole vertex set is equal to the neighborhood complex
NG. For every clique C, we can partition the local neighborhood NG(C) by the following lemma into
the disjoint sets

NG(A,C) = {N ∈ NG(C) | N ∩ PG(C) ∈ PG(A,C)}, A ∈ AG(C).

Lemma 4. For every clique C of the graph G, it holds

NG(C) =
⋃̇

A∈AG(C)

NG(A,C).

Proof: For every N ∈ NG(C) there is by definition a clique-vertex v ∈ C which is adjacent to every
element in N . Hence the common neighborhood of N ∩ PG(C) inside C is non-empty. Note that in
general N is not a periphery set since it can contain elements from C. The common neighborhood is an
anchor set A. Since these anchor sets differ for different families NG(A,C) the union is disjoint.

Lemma 4 is useful since we only have to determine the generating functions of NG(A,C) for every
A ∈ AG(C). Adding these generating functions, we maintain the generating function of the local neigh-
borhoodNG(C). In the next lemma, we derive a formula to compute the generating function ofNG(A,C)
for every A ∈ AG(C).

Lemma 5. For a given anchor set A ∈ AG(C) of a clique C, the generating function of NG(A,C) is

NG(A,C, x) = PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)
.

Proof: We count the number of sets with respect to the cardinality inNG(A,C). EveryM ∈ PG(A,C) is
in NG(A,C). Hence PG(A,C, x) must be a summand of NG(A,C, x). Furthermore there are supersets
N for all M which contribute to NG(A,C, x). Since we look at all M ∈ PG(A,C), it is enough to look
at supersetsN =M∪X , whereX is a subset ofC. In order to keepN in the local neighborhoodNG(C),
we need a common neighbor in C. Since the common neighborhood of M inside C is the anchor set A,
the common neighborhood of N must contain an element of A. Hence X cannot be the whole anchor set
A. In particular, the possibilities to extend M are the elements of the family

X = {X | ∃a ∈ A : X ⊆ C\{a}}.

All sets in X consist of a disjoint union of a proper subset of A and a subset of C\A. This leads to the
generating function(

(1 + x)|A| − x|A|
)
(1 + x)|C|−|A| = (1 + x)|C| − x|A|(1 + x)|C|−|A|

of X . The generating function of PG(A,C), which counts the different possibilities of M is counted by
PG(A,C, x).

We are now ready to prove the update formula for the neighborhood polynomial after attaching a vertex
to a clique. The proof and the formula are similar to Proposition 3 (cf. Alipour and Tittmann (2021)).

8 Helena Bergold, Winfried Hochstättler, Uwe Mayer

Proposition 5. Let G = (V,E) be a graph and C a clique in the graph. The neighborhood polynomial
of GC.v with vertex set V ∪ {v} is:

NGC.v
(x) = NG(x) + φG(C)

+ x
∑

A∈AG(C)

PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)
,

where

φG(C) =

{
x|C|, if C is a maximal clique in G;
0, otherwise .

Proof: Let X ∈ NGC.v
be a neighborhood set of the graph GC.v . We consider the following three cases:

• If X ⊆ V and X 6⊆ C, then X ∈ NG is in the neighborhood complex of G. Hence X is considered
in the first summand NG(x) of the above formula.

• Now let X ⊆ V and X ⊆ C. If X is a proper subset of C, it already has a common neighbor in
G, hence it is already counted in the first summand. Similarly this holds if X = C and C is not a
maximal clique in G. Thus the only case where a new neighborhood arises is if X = C and C is a
maximal clique in G. In GC.v the common neighbor of C is v. This is counted in the summand in
φG(C).

• Let us now consider the case v ∈ X , i.e. X 6⊆ V . Since v is connected to all elements in C, we
need to count all subsets Y ⊆ V which have a common neighbor in C. This is equivalent to count
the number of elements in NG(C). Combining Lemma 4 and Lemma 5, we obtain∑

A∈AG(C)

PG(A,C, x)
(
(1 + x)|C| − x|A|(1 + x)|C|−|A|

)
as the generating function of NG(C). In X there is one additional element v. Hence we have to
multiply the polynomial with x.

Since the above cases are disjoint, this leads to the formula of the neighborhood polynomial as stated.

With this formula, we are able to compute the neighborhood polynomial after attaching a vertex v to
a clique C in a graph. We will use this in connection with the perfect elimination order of the graph to
compute the neighborhood polynomial of chordal graphs. For this we start with a single vertex and add in
reverse order of the perfect elimination order the vertex one after another. After every step we compute the
neighborhood polynomial using Proposition 5. Furthermore we need to make sure to have the correct data
to compute the neighborhood polynomial after every step. Hence we need to update the anchor family
and periphery polynomials.

To go into a more detailed analysis we assume that the chordal graph is connected. If the chordal graph
is not connected we apply the algorithm for every connected component and compute the neighborhood
polynomial of the whole graph by adding the neighborhood polynomials of every connected component
(cf. Proposition 1). This operation can be done in linear time.

The Neighborhood Polynomial of Chordal Graphs 9

For a connected chordal graph we compute the elimination order v1, . . . , vn using a lexicographic
breadth-first search which has linear runtime. We then add the vertices in reverse order, starting with vn.
The neighborhood polynomial of this starting graph is 1. Then we add vi to the corresponding clique in
G[vi+1, . . . , vn] and compute the new neighborhood polynomial with Proposition 5.

In order to compute the formula of Proposition 5, we need the anchor family of C and the correspond-
ing periphery polynomials PG(A,C, x) for every A ∈ AG(C). With Lemma 3 it suffices to store these
informations for the maximal cliques of the graph and compute them in every step for the required clique
C where we attach the new vertex. The details of updating this information will be explained in the
next paragraph. Furthermore we have a list of the maximal cliques in the current graph which need to
be updated, too. Since every step gives at most one new maximal clique, there are at most n maximal
cliques in a chordal graph with n vertices. After attaching one vertex, updating the polynomial and the
corresponding information, we go on with the next step.

We now study how to update the anchor families and periphery polynomials for the maximal cliques
after attaching a vertex in order to have the correct ones in the next step. Fix a clique C of the graph
G. The graph with attached vertex v to C is denoted by G+ = GC.v . We get exactly one new maximal
clique C+ = C ∪{v} which we have to add to the list of maximal cliques in the graph. If C is a maximal
clique in G we have to delete the entry C from the list of maximal cliques.

We determine the anchor sets and periphery polynomial of the new arising maximal clique C+. The
periphery of C+ in G+ is PG+(C+) = PG(C) and the family of anchor sets is AG+(C+) = AG(C) ∪
{C+} if C was not maximal in G and AG+(C+) = AG(C)\{C} ∪ {C+} if C was maximal in G.
The periphery polynomials stay as in G that is PG+(A,C+, x) = PG(A,C, x) for all A ∈ AG(C) and
PG+(C+, C+, x) = 1.

Now we go through the list of maximal cliques and update the necessary information if needed. The
maximal cliques in G which have no intersection with C, do not change in G+. Let Cmax be a maximal
clique in G with Cmax ∩ C 6= ∅. It is C 6= Cmax. Note that we deleted C from the list in the case that C
was maximal in G. The periphery of Cmax in G+ consists of the periphery of Cmax in G together with
the new element v. More formally it holds

PG+(Cmax) = PG(C) ∪ {v}.

Every anchor set of Cmax in G remains an anchor set in G+. Since the new vertex v is attached to the
subset Cmax∩C of the considered clique Cmax, this subset Cmax∩C 6= ∅ is a new anchor set inG+, if it
was not already an anchor set in G. Furthermore all subsets of Cmax occurring as non-empty intersection
of Cmax ∩ C with an anchor set in AG(Cmax) build an anchor set of Cmax in G+. The family of anchor
sets of Cmax in G+ is:

AG+(Cmax) = (1)
AG(Cmax) ∪ {A ∩ (Cmax ∩ C) | A ∩ (Cmax ∩ C) 6= ∅ and A ∈ AG(Cmax)}.

Note that Cmax ∩ C is an element of the second set in the above equation since Cmax ∈ AG(Cmax). To
determine the periphery polynomial PG+(A,Cmax, x) for every anchor set A ∈ AG+(Cmax), we need to
distinguish the following three cases. Since C 6= Cmax, the intersection Cmax ∩ C is a proper subset of
Cmax.

10 Helena Bergold, Winfried Hochstättler, Uwe Mayer

(i) If A is a proper subset of C ∩ Cmax, all corresponding periphery sets in G are a corresponding
periphery set in G+ and we can add v to every corresponding periphery set M in G, since the
intersection with the neighborhood NG+(v) = C does not change the anchor set. In this case we
get:

PG+(A,Cmax, x) = (1 + x)PG(A,Cmax, x).

(ii) If A = C ∩ Cmax, the periphery sets in G with corresponding anchor set A which are counted in
PG(A,Cmax, x) still have the same anchor set in G+. Furthermore v is a new periphery set with
anchor set A = C ∩ Cmax and all periphery sets which have a superset A′ of A as corresponding
anchor set, form together with v a periphery set with anchor set A. Hence the updated periphery
polynomial is

PG+(A,Cmax, x) = PG(A,Cmax, x) + x

1 +
∑
A′⊇A

A′∈AG(Cmax)

PG(A
′, Cmax, x)

 .

(iii) In the remaining case A is not a subset of C ∩ Cmax, hence v is not in a periphery set with anchor
set A. So the periphery polynomial stays the same, which means

PG+(A,Cmax, x) = PG(A,Cmax, x).

This concludes the analysis of the cases and hence the algorithm to compute the neighborhood poly-
nomial of a chordal graph. This algorithm leads to a polynomial time algorithm if the anchor width is
polynomially bounded as stated in Theorem 1. We now give a detailed analysis of the runtime which
concludes the proof of Theorem 1.

Proof of Theorem 1: Using lexicographic breadth-first search, we get a perfect elimination order of
the chordal graph G in linear time (cf. Golumbic (1980)). After attaching one vertex, there is one new
maximal clique, containing v. We add this maximal clique to the list of all maximal cliques in the graph,
possibly removing the neighborhood of v if it was in the list. This shows that we have at most n maximal
cliques. Furthermore we have an ordering of the vertices given by the perfect elimination order which is
the reverse order of attaching the vertices to the graph. Hence in order to compute an intersection or test a
subset relation, we only need to compare the elements in the clique in the attached order. Both is possible
in linear time.

For every step we need to update the neighborhood polynomial and afterwards the other informations.
In total we attach n vertices and hence have n steps.

To update the neighborhood polynomial after vertex attachment to a clique C, we first need to find a
maximal clique, containing C and compute its anchor family and its periphery polynomials. In order to
find this maximal clique we test for every maximal clique (at most n) whether C is a subset. This needs
at most O(n2) time.

Computing the anchor family takesO(nk) and for one anchor set the periphery polynomial takesO(nk)
and since we have at most k anchor sets in a clique, we need O(nk2) for this step (cf. Lemma 3). Now

The Neighborhood Polynomial of Chordal Graphs 11

using the update formula to compute the neighborhood polynomial is possible in O(k). Updating the
neighborhood polynomial takes for every step at most O(nk2) time.

Afterwards we update the anchor families and periphery polynomials for all maximal cliques with
non-empty intersection with C. We have at most n maximal cliques, where we need to update this
information. Updating the anchor family for one maximal clique takes O(nk) time (see (1)) Hence for
all maximal cliques this takes at most O(n2k). For one anchor set, updating the periphery polynomials
takes at most O(nk) in case (ii). This case appears at most once and compute the periphery polynomial
in the other cases is possible in linear time. Updating the necessary information for anchor sets and their
periphery polynomials leads to a runtime of at most O(n2k) for all maximal cliques. Since we add in
total n vertices, one after another, this leads to a total runtime of O(n3k + n2k2).

4 Complexity of the Anchor Width
In this section, we will discuss some subclasses of chordal graphs and study their anchor width. We show
that there are subclasses with polynomially bounded anchor width. We arrived at these graph classes
starting from interval graphs, the first class for which we found a polynomial bound. For these subclasses
the algorithm explained in Section 3 runs in polynomial time. In contrast to this result, we show that the
anchor width of split graphs, a simple well-known subclass, is not polynomially bounded (see the follow-
ing proposition). Hence the algorithm introduced in Section 3 might take super-polynomial time.

Proposition 6. For all n ∈ N there is a split graph on n vertices with anchor width at least 2
n
2 − 1.

Proof: We construct an infinite family of split graphs Sm on n = 2m vertices such that the anchor width is
2m−1. We start with a clique C = {c1, . . . , cm} of size m and attach vertices v1, . . . , vm such that every
vi (1 ≤ i ≤ m) is adjacent to cj for all j 6= i. This constructed graph is a split graph since C is a clique
and {v1, . . . , vm} an independent set. All vertices vi are in the periphery PC , hence |PC | = m = n

2 .
For a periphery set M ⊆ PC we denote by IM the indices of those vertices vi which are in M . The
corresponding anchor set is then {Cj | j /∈ IM}. In such a way we can construct every non-empty subset
of C as an anchor set. Hence the anchor width of Sm is 2m − 1 = 2

n
2 − 1.

Another interesting family of subclasses are the chordal graphs with bounded leafage. For those graphs
we can show a polynomial upper bound of the anchor width. The leafage is a parameter which stems
from the intersection graph representation of chordal graphs. An intersection graph of a family of sets
F is the graph consisting of one vertex for every set in F such that two vertices are adjacent if and only
if the corresponding sets have a non-empty intersection. An interval graph is an intersection graph of a
family of subtrees of a path and chordal graphs are exactly the graphs which are the intersection graph of
a family of subtrees of a host tree Gavril (1974). We call a representation of a chordal graph by a family
of subtrees a subtree representation. Lin et al. (1998) introduced the leafage of a chordal graph, which
measures how close a chordal graph is to an interval graph. More precisely, the leafage `(G) of a chordal
graph G is defined as the minimum number of leaves of the host tree among all subtree representations of
G. We call a subtree representation optimal if it has the minimum number of leaves in the host tree. The
interval graphs are exactly the chordal graphs with leafage at most 2. The split graphs Sm constructed in
Proposition 6 have leafage m and a possible optimal host tree is the star K1,m. Habib and Stacho (2009)
present a polynomial-time algorithm in order to compute the leafage of a chordal graph. As mentioned in

12 Helena Bergold, Winfried Hochstättler, Uwe Mayer

Lin et al. (1998) we may restrict to host trees whose number of vertices is the number of maximal cliques
of G.

Lemma 6. There exists an optimal representation such that the vertices of the host tree are in one-to-one
correspondence with the maximal cliques of the graph.

Proof: Since every pairwise intersecting family of subtrees has the Helly property, i.e. the intersection
of all subtrees of a subtree representation of a clique is non-empty Golumbic (1980), there is at least
one common vertex vC for every clique C in the host tree. A vertex in the host tree cannot belong to
different maximal cliques since their union has to form a clique as well and hence the cliques would not
be maximal. Furthermore all subtrees intersecting in a vertex v of the host tree build a clique C. If C is
not maximal, there is a maximal clique Cmax containing C. Contracting the path from v to vCmax

in the
host tree does not increase the number of leaves. Thus, if we choose an optimal representation with few
vertices as possible, the claim follows.

We study the connection between the anchor width and the leafage of a chordal graph and show an
upper bound of the anchor width. In the following, we identify a subtree of the host tree by its vertices.

Theorem 7. For a chordal graph G with leafage ` = `(G) and n vertices, the anchor width is at most n`.

Proof: LetC = Cmax be a maximal clique in the graphG. We consider an optimal subtree representation
of G such that the vertices of the host tree T are in one-to-one correspondence with the maximal cliques
of G (cf. Lemma 6). Let vC be the vertex in the host tree which corresponds to the clique C of G. From
vC there is a unique path in the host tree to all ` leaves which we denote by P1, . . . , P`.

For a periphery set M ⊆ PC , the corresponding anchor set consists of those elements of the clique
whose neighborhood contains M . For every w ∈ M , there is a tree Tw representing w in the subtree
configuration. Since C is a maximal clique, these trees Tw do not contain vC since otherwise w would
belong to C. For every path Pi, we define a vertex vi representing M on Pi as follows:

vi ∈ argmin
v∈Twi

∩Pi

dist(v, vc),

where wi is an element from the periphery such that

wi ∈ argmax
w∈M

min
v∈Tw∩Pi

dist(v, vc).

So for every w ∈ M such that Tw ∩ Pi 6= ∅, we choose the closest vertex vw to vC on the path Pi of the
corresponding tree Tw. Among those vertices {vw}w, the vertex vi is the vertex with maximal distance to
vC . If there is no subtree Tw of the periphery which has a non-empty intersection with the path Pi, we set
vi = vC . Note that the vi’s are not necessarily distinct.

Now the anchor set A = AG(M,C) consists exactly of all subtrees of the clique C, which contain
all v1, . . . , v` and vC . If there is no such subtree corresponding to an element of the clique, there is no
corresponding anchor set to M in C. The anchor set A is fully determined by the vertices vi.

A chordal graph with n vertices has at most n maximal cliques. Hence the host tree has at most n
vertices which gives at most n choices for every vi. In total we have at most n` choices for the tuple

The Neighborhood Polynomial of Chordal Graphs 13

vC

C

Fig. 2: Construction of an interval graph with 21 vertices and a maximal clique of size 11 and 25 anchor sets.

(v1, . . . , v`) and hence at most n` different anchor sets. This shows the upper bound for the anchor
width.

Since interval graphs are the graphs with leafage at most 2, it follows:

Corollary 8. The anchor width of interval graphs on n vertices is at most n2.

The magnitude of the bound is optimal for interval graphs since there is an infinite family of interval

graphs on n = 4m+1 vertices with a clique of size 2m+1 which has at leastm2 =
(

(n−1)
4

)2
different an-

chor sets. For the construction (see Figure 2), we take the path P on 2m+1 vertices v−m, . . . , v0, . . . , vm
as a host tree. The subtrees corresponding to the clique C are the 2m+ 1 paths on the vertices

{v−m, . . . , vi} for i = 0, . . . ,m and
{vi, . . . , vm} for i = −m+ 1, . . . , 0.

The common intersection vC of the clique is the vertex v0. Furthermore we define the following subpaths,
which are in the periphery of C:

{v−m, . . . , vi} for i = −m, . . . ,−1 and
{vi, . . . , vm} for i = 1, . . . ,m.

For every choice of i ∈ {−m, . . . ,−1} and j ∈ {1, . . . ,m}, we consider the two paths:

{v−m, . . . , vi} and {vj , . . . , vm}

14 Helena Bergold, Winfried Hochstättler, Uwe Mayer

C = Cmax

cj

ci

w

v

Fig. 3: Hasse diagram of a poset corresponding to a comparability graph with induced C4 which gives a contradiction
in the proof of Proposition 7;

of the periphery. The anchor set corresponding to this two-element periphery set consists of all paths in
the host tree corresponding to a clique vertex which contain vi and vj . For every choice of i and j these
anchor sets differ. Hence there are at least m2 anchor sets.

Another interesting subclass are the chordal comparability graphs. For these graphs we show a linear
bound on the anchor width. A graph G = (V,E) is a comparability graph if there is a poset (V,≺) such
that two vertices u, v ∈ V are adjacent in G if and only if u ≺ v or v ≺ u.

Proposition 7. The anchor width of a chordal comparability graph with n vertices is at most 2n.

Proof: Let G be a chordal comparability graph with corresponding poset (V,≺). Consider a maximal
clique Cmax = {c1, . . . , cm} in G. A clique in the graph corresponds to a chain in the poset. Hence the
maximal clique Cmax of size m corresponds to a maximal chain c1 ≺ . . . ≺ cm of length m − 1 in the
poset. So whenever there is a vertex v /∈ Cmax, which is adjacent to ci ∈ Cmax such that v ≺ ci then
v is adjacent to ck for all k ≥ i. Let i be the minimal element of the clique such that v ≺ ci. Since the
clique is maximal, i > 1 and v is not comparable to ci−1. Similar we get for every vertex w /∈ Cmax

which is connected to a vertex cj of the clique with w � cj that w is connected to all elements ck of the
clique with k ≤ j. Let cj be the maximal element of the clique connected to w, then j < m and cj+1 is
not comparable to w. Hence an anchor set in Cmax is a chain of the form ci ≺ ci+1 ≺ . . . ≺ cj−1 ≺ cj .
Assume there is an anchor set with 1 < i < j < m and vertices v and w such that v ≺ ci and w � cj .
Then v and w are connected by an edge since w � cj � ci � v holds. And since w and cj+1 do not share
an edge and analogously v and ci−1, we get an induced cycle of length 4 which is not possible since the

The Neighborhood Polynomial of Chordal Graphs 15

graph is chordal. In Figure 3 the poset is illustrated by its Hasse diagram and gives an illustration of the
contradiction. This shows that all anchor sets of Cmax are of the form c1 ≺ . . . ≺ cj−1 ≺ cj for j ≤ m
or ci ≺ ci+1 ≺ . . . ≺ cm for i ≥ 1. We have at most 2m− 1 ≤ 2n possibilities for those sets.

5 Discussion
In this paper we studied an algorithm for computing the neighborhood polynomial of chordal graphs,
which is in general an NP-hard problem. The runtime of the algorithm depends on the introduced param-
eter anchor width. If the anchor width of a subclass of chordal graphs is bounded, we have a polynomial-
time algorithm to compute the neighborhood polynomial. In Section 4 we investigated some subclasses
and showed that the anchor width is bounded for chordal graphs with bounded leafage and chordal com-
parability graphs. Furthermore we showed that the anchor width is not bounded for split graphs. It would
be interesting to get further subclasses of chordal graphs with bounded anchor width. It might be possible
to give an upper bound for the anchor width using the asteroidal number. In Lin et al. (1998) it is shown
that the leafage is an upper bound for the asteroidal number for all chordal graphs and they coincide for
chordal graphs whose host tree is a subdivision of K1,n as shown in Prisner (1992). Furthermore an infi-
nite family of graphs similar to the one for interval graphs, which shows that the magnitude of the upper
bound is optimal, would be interesting.

On top of that there might be other problems on chordal graphs which are hard in general but poly-
nomial solvable on those subclasses with bounded anchor width. One natural candidate would be graph
isomorphism, which is known to be graph-isomorphism-complete on general chordal graphs Lueker and
Booth (1979) but has recently been shown to be solvable in polynomial time for chordal graphs of bounded
leafage Arvind et al. (2021).

References
M. Alipour and P. Tittmann. Graph operations and neighborhood polynomials. Discussiones Mathemati-

cae Graph Theory, 41(3):697–711, 2021. doi: 10.7151/dmgt.2347.

V. Arvind, R. Nedela, I. Ponomarenko, and P. Zeman. Testing isomorphism of chordal graphs of bounded
leafage is fixed-parameter tractable. arXiv:2107.10689, 2021.

H. Bergold, W. Hochstättler, and U. Mayer. The neighborhood polynomial of chordal graphs. In Al-
gorithms and Data Structures - 17th International Symposium, WADS 2021, volume 12808 of LNCS,
pages 158–171. Springer, 2021. doi: 10.1007/978-3-030-83508-8 12.

A. A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing Letters, 19(1):
37–40, 1984. doi: 10.1016/0020-0190(84)90126-1.

K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM Journal on Computing, 11(1):
191–199, 1982. doi: 10.1137/0211015.

J. I. Brown and R. J. Nowakowski. The neighbourhood polynomial of a graph. Australasian Journal of
Combinatorics, 42:55–68, 2008.

https://arxiv.org/abs/2107.10689

16 Helena Bergold, Winfried Hochstättler, Uwe Mayer

D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM Journal on
Computing, 14(4):926–934, 1985. doi: 10.1137/0214065.

D. Day. On the neighbourhood polynomial, 2017. URL https://dalspace.library.dal.ca/
bitstream/handle/10222/72816/Day-Dylan-MSc-MATH-March-2017.pdf. Last
access on 24/04/2022.

F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combi-
natorial Theory, Series B, 16(1):47–56, 1974. doi: 10.1016/0095-8956.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. 1980. ISBN 978-0-12-289260-8. doi:
10.1016/C2013-0-10739-8.

M. Habib and J. Stacho. Polynomial-time algorithm for the leafage of chordal graphs. In Algorithms -
ESA 2009, 17th Annual European Symposium, volume 5757 of LNCS, pages 290–300. Springer, 2009.
doi: 10.1007/978-3-642-04128-0 27.

I. Heinrich and P. Tittmann. Neighborhood and domination polynomials of graphs. Graphs and Combi-
natorics, 34:1203–1216, 2018. doi: 10.1007/s00373-018-1968-7.

I. Lin, T. A. McKee, and D. B. West. The leafage of a chordal graph. Discussiones Mathematicae Graph
Theory, 18(1):23–48, 1998. doi: 10.7151/dmgt.1061.

L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory,
Series A, 25(3):319–324, 1978. doi: 10.1016/0097-3165(78)90022-5.

G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph isomorphism. Journal
of the ACM, 26(2):183–195, 1979. doi: 10.1145/322123.322125.

E. Prisner. Representing triangulated graphs in stars. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg, 62:29–41, 1992. doi: 10.1007/BF02941616.

https://dalspace.library.dal.ca/bitstream/handle/10222/72816/Day-Dylan-MSc-MATH-March-2017.pdf
https://dalspace.library.dal.ca/bitstream/handle/10222/72816/Day-Dylan-MSc-MATH-March-2017.pdf

	1 Introduction
	2 Preliminaries
	3 Algorithm for Chordal Graphs
	4 Complexity of the Anchor Width
	5 Discussion

