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Abstract. Reconstructing the evolutionary history of a set of species
is a central task in computational biology. In real data, it is often the
case that some information is missing: the Incomplete Directed Perfect
Phylogeny (IDPP) problem asks, given a collection of species described
by a set of binary characters with some unknown states, to complete
the missing states in such a way that the result can be explained with
a directed perfect phylogeny. Pe’er et al. [SICOMP 2004] proposed a
solution that takes Õ(nm) time (the Õ(·) notation suppresses polylog
factors) for n species and m characters. Their algorithm relies on pre-
existing dynamic connectivity data structures: a computational study
recently conducted by Fernández-Baca and Liu showed that, in this
context, complex data structures perform worse than simpler ones with
worse asymptotic bounds.

This gives us the motivation to look into the particular properties of
the dynamic connectivity problem in this setting, so as to avoid the use
of sophisticated data structures as a blackbox. Not only are we successful
in doing so, and give a much simpler O(nm logn)-time algorithm for the
IDPP problem; our insights into the specific structure of the problem
lead to an asymptotically optimal O(nm)-time algorithm.

1 Introduction

A rooted phylogenetic tree models the evolutionary history of a set of species:
the leaves are in a one-to-one correspondence with the species, all of which have
a common ancestor represented by the root. A standard way of describing the
species is by a set of characters that can assume several possible states, so that
each species is described by the states of its characters. Such a representation is
naturally encoded by a matrix A, ai,j being the state of character j in species i.
When, for each possible character state, the set of all nodes that have the same
state induces a connected subtree, a phylogeny is called perfect. The problem of
reconstructing a perfect phylogeny from a set of species is known to be linearly-
solvable in the case when the characters are binary [11], and it is NP-hard in the
general case [2]. A popular variant of binary perfect phylogeny requires that the
characters are directed, that is, on any path from the root to a leaf a character
can change its state from 0 to 1, but the opposite cannot happen [5].
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In this paper, we study the Incomplete Directed Perfect Phylogeny problem
(IDPP for short) introduced by Pe’er et al. [20]. The input of this problem is a
matrix of binary character vectors in which some character states are unknown,
and the question is whether it is possible to complete the missing states in such
a way that the result can be explained with a directed perfect phylogeny.

Related work. Besides being relevant in its own right [1,18,19,22,24], the prob-
lem of handling phylogenies with missing data is crucial in various tasks of com-
putational biology, like resolving genotypes with some missing information into
haplotypes [13,17] and inferring tumor phylogenies from single-cell sequencing
data with mutation losses [21]; a generalization of the perfect phylogeny model
where a character can be gained only once and can be lost at most k times,
called the k-Dollo model [3,4,6,12], has also been extensively studied. A deep
understanding of the IDPP problem leading to new efficient solutions may thus
highlight novel approaches for all such important tasks.

The algorithm proposed in [20] solves the IDPP problem for a matrix of
n species and m characters in Õ(nm) time1 with a graph-theoretic approach.
A crucial step of such algorithm is to maintain the connected components of
a graph under a sequence of edge deletions. The use of pre-existing dynamic
connectivity data structures for this purpose is the bottleneck in the overall
time complexity.

A connectivity data structure is fully-dynamic when both edge insertion and
deletion are allowed, and decremental when only edge deletion is considered. A
long line of results brought down the computational time required for updat-
ing the data structure after edge insertions and/or deletions, and for answering
connectivity queries, to roughly logarithmic: the following table summarizes the
existing results for a graph with N vertices and M edges. For fully-dynamic
connectivity we report the update time required for a single edge insertion or
deletion, while for decremental connectivity we report the overall time required
to eventually delete all the edges. All the listed results, except for [14], assume
that edge deletions can be interspersed with connectivity queries. The algorithm
of Henzinger et al. [14], in contrast, deletes edges in batches (b0 is the number
of batches that do not result in a new component) and connectivity queries can
be only asked between one batch of deletions and another.

Fully-dynamic Update time Query time

Holm et al. [15] O(log2 N), amortized O(log N/ log log N)

Gibb et al. [10] O(log4 N), worst case O(log N/ log log N) w.h.p.

Huang et al. [16] O(log N(log log N)2), expected amortized O(log N/ log log log N)

Decremental Total update time Query time

Even et al. [8] O(MN) O(1)

Thorup [25] O(M log2(N2/M) + N log3 N log log N), expected O(1)

Henzinger et al. [14] O(N2 log N + b0 min{N2, M log N}) O(1)

1 The Õ(·) notation suppresses polylog factors.
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By plugging in a dynamic connectivity structure, the worst case running time
of the algorithm of [20], given a matrix of n species and m characters, becomes
deterministic O(nm log2(n + m)) (using fully dynamic connectivity structure
of Holm et al. [15]), expected O(nm log((n + m)2/nm) + (n + m) log3(n +
m) log log(n + m)) (using decremental connectivity structure of Thorup [25]),
expected O(nm log(n + m)(log log(n + m))2) (using fully dynamic connectivity
structure of Huang et al. [16]), or deterministic O((n + m)2 log(n + m)) (using
decremental structure of Henzinger et al. [14]). This should be compared with a
lower bound of Ω(nm), following from the work of Gusfield on directed binary
perfect phylogeny [11] (under the natural assumption that the input is given
as a matrix). For n = m, the algorithm of [20] using [25] achieves this lower
bound at the expense of randomisation (and being very complicated), while for
the general case the asymptotically fastest solution is still at least one log factor
away from the lower bound.

A closer look to the algorithm of [20], that we describe in more details in
Sect. 2, reveals that it operates on bipartite graphs and only deletes vertices on
one of the sides. It seems plausible that some of the known dynamic connectivity
structures are actually asymptotically more efficient on such instances. However,
all of them are very complex (with the result of Holm et al. [15] being the
simplest, but definitely not simple), and this is not clear. Furthermore, recently
Fernández-Baca and Liu [9] performed an experimental study of the algorithm of
Pe’er et al. for IDPP [20] with the aim of assessing the impact of the underlying
dynamic graph connectivity data structure on their solution. Specifically, they
tested the use of the data structure of Holm et al. [15] against a simplified version
of the same method, and showed that, in this context, simple data structures
perform better than more sophisticated ones with better asymptotic bounds.

Our Results and Techniques. We are motivated to look for simpler, ad-hoc meth-
ods for the specific type of decremental connectivity that is used in IDPP: vertex
deletion from just one side of a bipartite graph. We start by describing a simple
structure that dynamically maintains the connected components of a bipartite
graph with N vertices on each side, whilst vertices are removed from one of the
sides. The starting point for our solution is an application of a particular ver-
sion of the sparsification technique of Eppstein et al. [7]: we define a hierarchical
decomposition of a bipartite graph, and maintain a forest representing the con-
nected components of each subgraph in this decomposition. Recall that the orig-
inal description of this technique focused on inserting and deleting edges, while
we are interested in deleting vertices (and only from one side of the graph). We
thus tweak the decomposition for our particular use case, obtaining an extremely
simple data structure with O(N2 log N) total update time, which we show to
imply an O(nm log n) algorithm for IDPP.

The main technical part of our paper refines this solution to shave the loga-
rithmic factor and thus obtain an asymptotically optimal algorithm. We stress
that while Eppstein et al. [7] did manage to avoid any extra log factors by
applying a more complex decomposition of the graph than a complete binary
tree (used in the conference version of their paper), this does not seem to trans-
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late to our setting, as we operate on vertices instead of edges. The high-level
idea of our solution is to amortize the time spent on updating the forest rep-
resenting the components of every subgraph with the progress in disconnecting
its vertices, and re-use the results from the subgraph on the previous level of
the decomposition to update the subgraph on the next level. As a consequence,
the IDPP problem can be solved in time linear in the input size. Under the
natural assumption that the input is given as a matrix, this is asymptotically
optimal [11].

Theorem 1. Given an incomplete matrix An×m, the IDPP problem can be
solved in time O(nm).

Paper Organization. In Sect. 2 we provide a description of the algorithm of
Pe’er et al. [20] and a series of preliminary observations. In Sect. 3 we show a
simple and self-contained decremental connectivity data structure that consid-
ers the removal of vertices from one side of a bipartite graph. This structure
implies an O(nm log n) time solution for the IDPP problem. Finally, in Sect. 4
we present our main result and describe a decremental connectivity data struc-
ture for removing vertices from one side of a bipartite graph that implies a
linear-time algorithm for IDPP.

2 Preliminaries

Let G = (V,E) be a graph. The subgraph induced by a subset of vertices V ′ ⊆ V
is GV ′ = (V ′, E ∩ (V ′ × V ′)). We say that a forest F = (V,E′) represents
the connected components of a graph G when the connected components of
F and G are the same (note that we do not require E′ ⊆ E). We denote by
S = {s1, . . . , sn} the set of species and by C = {c1, . . . , cm} the set of characters.
A matrix of character states An×m = [aij ]n×m, where each entry is a state from
{0, 1, ?} and the rows correspond to the species, is said to be incomplete. The
state aij is one, zero or ? depending on whether character j is present, absent
or unknown for species i. A completion Bn×m of such An×m is obtained by
replacing the ? entries of An×m with either 0 or 1: formally, Bn×m is a binary
matrix with entries bij = aij for each i, j such that aij �= ?.

A directed perfect phylogeny for a binary matrix Bn×m is a rooted tree T
whose leaves are bijectively labelled by S and such that there is a surjection
from the characters C to the internal nodes of T with the following property:
if cj ∈ C is associated with a node x, then si is a leaf of the subtree rooted at
x if and only if bij = 1. In particular, the term directed means that characters
can be gained but not lost on any root-to-leaf path. We say that an incomplete
matrix admits a directed perfect phylogenetic tree if there exists a completion
of the matrix that has such a tree. The Incomplete Directed Perfect Phylogeny
problem (IDPP for short), introduced in [20], asks, given an incomplete matrix
A, to find a directed perfect phylogenetic tree for A, or determine that no such
tree exists.
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Algorithm 1: The high-level structure of Alg A [20].
1 while there is at least one character in G(A) do
2 Find the connected components of G(A)
3 for each connected component Ki of G(A) with at least one character do
4 Compute the set U of all characters in Ki which are

S(Ki)-semiuniversal in A
5 if U = ∅ then return FALSE

6 Deactivate every c ∈ U

7 return TRUE

The 1-set (resp. 0-set and ?-set) of a character cj in an incomplete matrix A
is the set of species {si|aij = 1} (resp. aij = 0 and aij = ?). For a subset S′ ⊆ S,
a character c is S′-semiuniversal in A if its 0-set does not intersect S′, that is, if
A[s, c] �= 0 for all s ∈ S′. It is convenient to represent the character state matrix
A as a graph: the vertices are V = S ∪ C and the edges are S × C, partitioned
into E1 ∪ E? ∪ E0, with Ex = {(si, cj)|aij = x} for x ∈ {0, 1, ?}. The edges of
E1, E?, E0 are called solid, optional, and forbidden, respectively. We denote by
G(A) = (S ∪C,E1) the bipartite graph consisting only of the solid edges. A Σ is
a subgraph induced by three vertices from S and two vertices from C, consisting
of exactly four edges that form a path of length 4.

Previous solutions. Pe’er et al. [20] consider a graph representation of the input
matrix A, and show that finding a subset D ⊆ (E1 ∪ E?) such that E1 ⊆ D
and (S ∪ C,D) is Σ-free, or determining that no such D exists, is equivalent
to solving IDPP. Their main algorithm exploits this characterization and the
following properties: (i) if A admits a phylogenetic tree, then so does the matrix
obtained by setting to 1 all the entries of column c, for each S-semiuniversal
c; (ii) given a partition (K1, . . . ,Kr) of S ∪ C, where each Ki is a connected
component of G(A), the matrix obtained by setting to 0 all entries corresponding
to edges between Ki and Kj , for i �= j, admits a phylogenetic tree if A does;
and (iii) if there is a component Ki with no S(Ki)-semiuniversal characters,
then for any D ⊆ (E1 ∪ E?) such that E1 ⊂ D, the graph (S ∪ C,D) is not Σ-
free (and thus A has no phylogenetic tree). It follows that there is no interaction
between the species and characters belonging to different connected components,
and therefore the whole reasoning can be repeated on each such component
separately.

We denote by S(K) and C(K) the set of species and characters, respectively,
of a connected component K of G(A); A|K denotes the submatrix of A consisting
of the species and characters in K. Deactivating a character c in G(A) consists
in deleting c and all its incident edges. At a high level Alg A, the main algorithm
of [20], works as follows. At each step, for each connected component Ki of G(A),
it computes the set U of S(Ki)-semiuniversal characters. If U = ∅, because
of property (iii) A does not admit a phylogenetic tree, and the process halts.
Otherwise, it sets to 1 the entries of A|Ki

corresponding to U , and sets to 0
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the entries of A between vertices that lay in different connected components. It
then deactivates all the characters in U and updates the connected components
of G(A) using some dynamic connectivity structure. Algorithm 1 summarizes
this process: for the sake of clarity, we only included the steps that compute the
information needed for determining whether A has a phylogenetic tree, and we
left out the operations that actually construct the tree.

2.1 Preliminary Results

Our goal is to improve Alg A by optimizing its bottleneck, that is maintaining
the connected components of G(A). We start by describing a data structure that
conveniently represents the connected components of a bipartite graph G.

Lemma 1. The connected components of a bipartite graph G = (S ∪ C,E) can
be represented in O(|S| + |C|) space so that, given a vertex, we can access its
component, including the size and a pointer to the list of species and characters
inside, in constant time, and move a vertex to another component (or remove it
from the graph) also in constant time.

Proof. Each component of G is represented by a doubly-linked list of its vertices
(more precisely, a list of species and a list of characters), and also stores the
size of the list. An array of length n + m, indexed by the vertices of G, stores
a pointer from each vertex to its component and a pointer from each vertex to
its position in the list of its component. The components are, in turn, organised
in a doubly-linked list. Such representation takes space linear in the number of
vertices and allows us to access all the required information in constant time.
Further, removing or moving a vertex to another component takes constant time.

	

We denote by cc(G) the data structure of Lemma 1, which encodes the connected
components of G. A graph F = (V,E′) consisting of a forest of rooted stars [23]
can be straightforwardly obtained from cc(G) as follows. For each component
K, we define the central vertex v ∈ K to be the head of the doubly-linked list
of characters of K in cc(G). Then, we add an edge (u, v) to E′, for any u ∈ K
with u �= v. This construction can be implemented in O(|V |) time. Although
we do not require E′ to be a subset of the edges of G, by construction the
connected components of F and G are the same. The useful property is that we
can use cc(G) to simulate access to the adjacency lists of F without constructing
it explicitly, as stated by the following lemma.

Lemma 2. Given a bipartite graph G = (S ∪C,E) and cc(G), the access to the
adjacency lists of a forest of rooted stars F with the same connected components
as G can be simulated in constant time without constructing F explicitly.

Proof. To simulate the access to the adjacency list of a vertex v, we first look
up its component K in cc(G) and retrieve the head u of the doubly-linked list of
characters of K. By Lemma 1, this operation requires constant time. If u = v,
then the adjacency list of v is the list of vertices of K stored in cc(G). Otherwise,
the adjacency list of v consists only of a single vertex u. 	
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Our intent is to solve the following special case of decremental connectivity.

Problem: (N�, Nr)-DC
Input: a bipartite graph G = (S ∪ C,E) with N� = |S| and Nr = |C|.
Update: deactivate a character c ∈ C.
Query: return the connected components of the subgraph induced by S and
the remaining characters.

When analysing the complexity of (N�, Nr)-DC, we allow preprocessing the
input graph G in O(N�Nr) time, and assume that all characters will be eventually
deactivated when analysing the total update time. We can of course deactivate
multiple characters at once by deactivating them one-by-one. The overall time
complexity of Algorithm 1 depends on the complexity of (N�, Nr)-DC as follows.

Lemma 3. Consider an n × m incomplete matrix A. If the (n,m)-DC problem
can be solved in f(n,m) total update time and g(n,m) query time, then the IDPP
problem can be solved for A in time O(nm + f(n,m) + min{n,m} · g(n,m)).

Proof. There are three nontrivial steps in every iteration of the while loop: find-
ing the connected components in line 2, computing the semiuniversal characters
of every connected component in line 4, and finally deactivating characters in
line 6. Every character is deactivated at most once, so the overall complexity
of all deactivations is O(f(n,m)). We claim that in every iteration of the while
loop, except possibly for the very last, (1) at least one character is deactivated,
and (2) there exist two species that cease to belong to the same connected com-
ponent. (1) is immediate, as otherwise we have a connected component Ki with
no S(Ki)-semiuniversal characters and the algorithm terminates. To prove (2),
assume otherwise, then we have a connected component Ki such that S(Ki)
does not change after deactivating all S(Ki)-semiuniversal characters. But then
in the next iteration the set of S(Ki)-semiuniversal characters is empty and
the algorithm terminates. (1) and (2) together imply that the number of itera-
tions is bounded by min{n,m}. The overall complexity of finding the connected
components is thus O(min{n,m} · g(n,m)).

It remains to bound the overall complexity of computing the semiuniversal
characters by O(nm). This has been implicitly done in [20, proof of Theorem
12], but we provide a full explanation for completeness. For every character
c ∈ C, we maintain the count of solid and optional edges connecting c (in the
graph representation of A) with the species that belong to its same connected
component of G(A) (recall that G(A) consists only of the solid edges of the graph
representation of A). Assuming that we can indeed maintain these counts, in
every iteration all the semiuniversal characters can be generated in O(m) time,
so in O(min{n,m} · m) = O(nm) overall time.

To update the counts, consider a connected component K that, after deac-
tivating some characters, is split into possibly multiple smaller components
K1,K2, . . . ,Kk. Note that we can indeed gather such information in O(n + m)
time, assuming access to a representation of the connected components before
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and after the deactivation. We assume that the connected components are main-
tained with the representation described in Lemma 1, and therefore we can access
a list of the vertices in every Ki. Then, we consider every pair i, j ∈ {1, 2, . . . , k}
such that i �= j, C(Ki) �= ∅ and S(Kj) �= ∅. We iterate over every c ∈ Ki and
s ∈ Kj , and if (s, c) is an edge in the graph of A (observe that it cannot be a solid
edge, as Ki and Kj are distinct connected components) we decrease the count of
c. By first preparing lists of components Ki such that C(Ki) �= ∅ and S(Ki) �= ∅,
this can be implemented in time bounded by the number of considered possible
edges (s, c), and every such possible edge is considered at most once during the
whole execution. Therefore, the overall complexity of maintaining the counts is
O(nm). Additionally, we need O(nm) time to initialise the (n,m)-DC structure.

	


Before proceeding to design an efficient solution for the (N�, Nr)-DC prob-
lem, we show that it is in fact enough to consider the (N,N)-DC problem.

Lemma 4. Assume that the (N,N)-DC problem can be solved in f(N) total
update time and g(N) query time. Then, for any N ′ ≥ N , both the (N,N ′)-DC
problem and the (N ′, N)-DC problem can be solved in O(N ′/N · f(N)) total
update time and O(N ′/N · g(N)) query time.

Proof. We first consider the (N,N ′)-DC problem, in which |S| < |C|. We create
�N ′/N
 instances of (N,N)-DC by partitioning C into groups of N vertices
(the last group might be smaller). In each instance we have the same set of
species S. Deactivating a character c ∈ C is implemented by deactivating it in
the corresponding instance of (N,N)-DC. Overall, this takes O(N ′/N · f(N))
time. To answer a query, we first query all the instances in O(N ′/N ·g(N)) time.
The output of each instance can be converted to a forest of rooted stars with the
same connected components in O(N) time. We take the union of all these forests
to obtain an auxiliary graph with at most �N ′/N
 · (N − 1) = O(N ′) edges, and
find its connected components in O(N ′) time. Assuming that f(N) ≥ N , this
takes O(N ′/N · f(N)) overall time and gives us the connected components of
the whole input graph.

Now we consider the (N ′, N)-DC problem. We create �N ′/N
 instances of
(N,N)-DC by partitioning S into groups of N vertices, and in each instance
we have the same set of characters C. Thus, deactivating a character c ∈ C is
implemented by deactivating it in every instance. This takes O(N ′/N · f(N))
total time. A query is implemented exactly as above by querying all the instances
and combining the results in O(N ′/N · f(N)) time. 	


3 (N,N)-DC in O(N2 logN) Total Update Time
and O(N) Time per Query

Our solution for the (N,N)-DC problem is based on a hierarchical decompo-
sition of G into multiple smaller subgraphs as in the sparsification technique
of Eppstein et al. [7] (as mentioned in the introduction, appropriately tweaked
for our use case). The decomposition is represented by a complete binary tree
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Fig. 1. The decomposition tree of K4,4.

DT(G) of depth log N . We identify the leaves of DT(G) with the characters C.
Each node v corresponds to the set of characters Cv identified with the leaves
in the subtree of v, and is responsible for the subgraph Gv of G induced by Cv

and the whole set of species S. Thus, the root is responsible for the whole G,
see Fig. 1. Each node v maintains cc(v), the connected components of Gv repre-
sented as per Lemma 1. We stress that, while cc(v) is explicitly maintained, we
do not explicitly store Gv at every node v. Given G, the preprocessing required
to construct DT(G) together with cc(v) for every node v takes O(N2) time by
the following argument. First, we construct cc(Gc) for every leaf c. This can be
done in O(N) time per leaf by simply iterating the neighbours of c in G. We
then proceed bottom-up and compute cc(v) for every inner node v in O(N) time
using the following lemma.

Lemma 5. Let v be an inner node of DT(G), and v�, vr be its children. Given
cc(v�) and cc(vr) we can compute cc(v) in O(N) time.

Proof. We construct the forests of rooted stars representing the connected
components of cc(v�) and cc(vr) in O(N) time and take their union. Then we
find the connected components of this union in O(N) time and save them as
cc(v). 	


We proceed to explain how to solve the (N,N)-DC problem in O(N log N)
time per update and O(N) time per query. The query simply returns cc(r), where
r is the root of DT(G). The update is implemented as follows. Deactivating a
character c possibly affects cc(v) for all ancestors v of leaf c. In particular, cc(c)
becomes a collection of isolated vertices and can be recomputed in O(1 + |S|) =
O(N) time. We iterate over all ancestors v, starting from the parent of c. For
each such v, let v� and vr be its left and right child, respectively. We can assume
that cc(v�) and cc(vr) have been already correctly updated. We compute cc(v)
from cc(v�) and cc(vr) by applying Lemma 5 in O(N) time. When summed over
all the ancestors, the update time becomes O(N log N), so O(N2 log N) over all
deactivations. By Lemmas 3 and 4, this implies that, given an incomplete matrix
An×m, the IDPP problem can be solved in time O(nm log(min{n,m})) without
using any dynamic connectivity data structure as a blackbox.
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Fig. 2. After having removed c from K to obtain K1,K2, . . . ,Kk, we want to remove
c from L.

4 (N,N)-DC in O(N2) Total Update Time and O(N)
Time per Query

Our faster solution is also based on a hierarchical decomposition DT(G) of G. As
before, every node v stores cc(v), so a query simply returns cc(r). The difference
is in implementing an update. We observe that, if for some ancestor v of a leaf c
the only change to cc(v) is removing c from its connected component, then this
also holds for all the subsequent ancestors, and therefore each of them can be
updated in constant time. This suggests that we should try to amortise the cost
of an update with the progress in splitting cc(v) into smaller components.

We will need to compare the situation before and after an update, and so
we introduce the following notation. A node v of DT(G) is responsible for the
subgraph Gv before the update and for the subgraph G′

v after the update; cc(v)
and cc′(v) denote the connected components of Gv and G′

v, respectively. The
crucial observation is that cc′(v) is obtained from cc(v) by removing c from
its connected component and, possibly, splitting this connected component into
multiple smaller ones, while leaving the others intact.

Deactivating a character c begins with updating naively cc(c) in O(N) time.
Then we iterate over the ancestors of c in DT(G). Let vi+1 be the currently
considered ancestor, vi the ancestor considered in the previous iteration, and ui

be the other child of vi+1 (sibling of vi). Let the component of Gvi
containing c be

K. As observed above, the components of G′
vi

are the same as the components of
Gvi

, except that K is replaced by possibly multiple components K1,K2, . . . ,Kk,
where

⋃k
j=1 Kj = K \{c}. If k = 1 then we trivially remove c from its connected

component in every Gvj
, for j = i + 1, i + 2, . . . and terminate the update, so

we can assume that k ≥ 2. We further assume that, after having updated the
components of Gvi

, we obtained a list of pointers to K1,K2, . . . ,Kk. Let L be
the connected component of c in Gvi+1 , with K ⊆ L because the subgraphs
are monotone with respect to inclusion on any leaf-to-root path. Now the goal
is to transform Gvi+1 into G′

vi+1
, to update its components (using cc′(vi) and

cc(ui)), and additionally to obtain a list of pointers to the components obtained
by splitting L. See Fig. 2 for an illustration.
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Fig. 3. The auxiliary graph implicitly constructed for a node vi+1 after deactivating
c8. Black edges are used for the star forest of vi, grey edges for the star forest of ui;
an inner circle identifies the central vertices. K1 is the component of c9; c7 is the next
vertex to be considered in the visit, and it will eventually become red.

We start by initialising G′
vi+1

to be Gvi+1 , and by removing c from L. As in
the proof of Lemma 5, we will use an auxiliary graph consisting of the union of
two star forests representing the connected components of G′

vi
and Gui

, respec-
tively. However, instead of explicitly constructing them, we simulate access to
the adjacency lists of every vertex in both forests using cc′(vi) and cc(ui), as per
Lemma 2. In turn, this allows us to simulate access to the adjacency list of every
vertex in the auxiliary graph. See Fig. 3 for an example of the auxiliary graph.

By renaming the components we can assume that |K1| ≥ |K2|, |K3|, . . . , |Kk|.
In order to determine the new connected components after the removal of c,
we will visit the vertices of L: when doing so, we will use different colours to
represent vertices whose new connected component contains K1 (red), vertices
whose new component is different from the one of K1 (black) and vertices whose
new component is still unknown (white). Initially, the vertices of K1 are red
and all of the other vertices of the auxiliary graph are white. This initialisation
is done implicitly, meaning that we will assume that all the vertices of K1 are
red and the rest are white without explicitly assigning the colours; whenever
retrieving the colour of a vertex u, we first check if u ∈ K1, and if so assume
that it is red. This allows us to implement the initialisation in constant time
instead of O(N) time. We will perform the visit of L by running the following
search procedure from an arbitrarily chosen vertex of each Kj , for j = 2, 3, . . . , k.

The search procedure run from a vertex x first checks if x is white, and
immediately terminates otherwise. Then, it starts visiting the vertices of the
connected component of x in the auxiliary graph: at any moment, each vertex
in such component is either white or red. As soon as the search encounters a red
vertex, it is terminated and all the vertices visited in the current invocation are
explicitly coloured red. Otherwise, the procedure has identified a new connected
component K ′ of G′

vi+1
. The vertices of K ′ are removed from L, all vertices of

K ′ are coloured black in the auxiliary graph, and a new component K ′ of G′
vi+1

is created in O(|K ′|) time. See Fig. 3 for an example.

Lemma 6. The total time spent on all calls to the search procedure in the cur-
rent iteration is O(|L| − |K1|).
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Proof. All vertices visited in the current iteration belong to L. The search is
terminated as soon as we encounter a red vertex, and all vertices of K1 are red
from the beginning. Therefore, each run of the search procedure encounters at
most one vertex of K1, and we can account for traversing the edge leading to
this vertex separately paying O(k − 1) = O(|L| − |K1|) overall. It remains to
bound the number of all other traversed edges. This is enough to bound the
overall time of the traversal, because every edge is traversed at most twice, and
the number of visited isolated vertices is at most k − 1 = O(|L| − |K1|).

For any other edge e = {u, v}, we have u, v ∈ L but u, v /∈ K1. These edges
can be partitioned into two forests, depending on whether they originate from
cc′(vi) or cc(ui). Consequently, we must analyse the total number of edges in a
union of two forests spanning L \ K1; but this is of course O(|L| − |K1|). 	


We now need to analyse the sum of |L|− |K1| over all the iterations. Because
⋃k

j=1 Kj ⊆ L, we can split this expression into two parts:

1. L \
⋃k

j=1 Kj ,
2.

∑k
j=2 |Kj |.

Because the sets L \
⋃k

j=1 Kj considered in different iterations are disjoint, the
first parts sum up to O(n). It remains to bound the sum of the second parts.
This will be done by the following argument. Consider an arbitrary Gv corre-
sponding to a subgraph induced by all the species and a subset of 2d characters.
Whenever its connected component K is split into smaller connected compo-
nents K1,K2, . . . ,Kk after deactivating a character c in the subtree of v, the
second part

∑k
j=2 |Kj | is distributed among the vertices of

⋃k
j=2 Kj . That is,

each vertex of
⋃k

j=2 Kj pays 1. Observe that the size of the connected com-
ponent containing such a vertex decreases by a factor of at least 2, because
|K2|, |K3|, . . . , |Kk| ≤ |K|/2. To bound the sum of second parts, we analyse the
total cost paid by all the vertices of Gv due to deactivating the characters in the
subtree of v (recall that in the end all such characters are deactivated).

Lemma 7. The total cost paid by the vertices of Gv, over all 2d deactivations
affecting v, is O(N · d).

Proof. We claim that in the whole process there can be at most 2t+1 deactiva-
tions incurring a cost from [N/2t+1, N/2t). Assume otherwise, then there exists
a vertex x charged twice by such deactivations. As a result of the first deactiva-
tion, the size of the connected component containing x drops from less than N/2t

to below N/2t+1. Consequently, during the next deactivation that charges x the
cost must be smaller than N/2t+1, a contradiction. As we have 2d deactivation
overall, the total cost can be at most:

d∑

t=0

2t+1 · N/2t = O(N · d)
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There are N/2d nodes of DT(G) affected by 2d deactivations, making the
sum of the second parts:

log n∑

d=0

N/2d · n · d < N2
∞∑

d=0

d/2d = O(N2).

Overall, the total update time is O(N2), so by Lemmas 3 and 4 we arrive at the
main result of this paper.

Theorem 1. Given an incomplete matrix An×m, the IDPP problem can be
solved in time O(nm).
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