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Abstract. The planar slope number psn(G) of a planar graph G is the minimum number of edge slopes
in a planar straight-line drawing of G. It is known that psn(G) ∈ O(c∆) for every planar graph G of
maximum degree ∆. This upper bound has been improved to O(∆5) if G has treewidth three, and to
O(∆) if G has treewidth two. In this paper we prove psn(G) ≤ max{4,∆} when G is a Halin graph,
and thus has treewidth three. Furthermore, we present the first polynomial upper bound on the planar
slope number for a family of graphs having treewidth four. Namely we show that O(∆2) slopes suffice
for nested pseudotrees.

1 Introduction

Minimizing the number of slopes used by the edge segments of a straight-line graph drawing is a well-studied
problem, which has received notable attention since its introduction by Wade and Chu [32]. A break-through
result by Keszegh, Pach and Pálvölgyi [24] states that every planar graph of maximum degree ∆ admits a
planar straight-line drawing using at most 2O(∆) slopes. That is, the planar slope number of planar graphs
is bounded by a function of ∆, which answers a question of Dujmović et al. [20]. In contrast, the slope
number of non-planar graphs has been shown to be unbounded (with respect to ∆) even for ∆ = 5 [5,29].
Besides the above mentioned upper bound, Keszegh et al. [24] also prove a lower bound of 3∆− 6, leaving
as an open problem to reduce the large gap between upper and lower bounds on the planar slope number
of planar graphs.

The open problem by Keszegh et al. motivated a great research effort to establish improvements for
subclasses of planar graphs. Jeĺınek et al. [23] study planar partial 3-trees and show that their planar slope
number is at most O(∆5). Di Giacomo et al. [16] study a subclass of planar partial 3-trees (those admitting
an outer 1-planar drawing) and present an O(∆2) upper bound for the planar slope number of these graphs.
Lenhart et al. [28] prove that the planar slope number of a partial 2-tree is at most 2∆ (and some partial
2-trees require at least ∆ slopes). Knauer et al. [27] focus on outerplanar graphs (a subclass of partial 2-trees)
and establish a tight bound of ∆− 1 for the (outer)planar slope number of this graph class. Di Giacomo et
al. [17] prove that the planar slope number of planar graphs of maximum degree three is four. Finally, the
problem of computing planar drawings with few slopes has also been studied in the setting where the edges
are polygonal chains rather than straight-line segments [1,8,18,24,25,26].

An algorithmic strategy to tackle the study of the planar slope number problem can be based on a
peeling-into-levels approach. This approach has been successfully used to address the planar slope number
problem for planar 3-trees [23], as well as to solve several other algorithmic problems on (near) planar
graphs, including determining their pagenumber [7,6,21,33], computing their girth [10], and constructing
radial drawings [15]. In the peeling-into-levels approach the vertices of a plane graph (i.e., a planar graph
with a given planar embedding) are partitioned into levels, based on their distance from the outer face. The
vertices in each level induce an outerplane graph and two consecutive levels form a 2-outerplane graph. One
key ingredient is an algorithm that deals with a 2-outerplane graph with possible constraints on one of the
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two levels. Another ingredient is an algorithm to extend a partial solution by introducing the vertices of new
levels, while taking into account the constraints defined in the already-considered levels. Intrinsic in this
approach is the construction of an embedding-preserving planar drawing of the input graph. The plane slope
number psn(G) of a plane graph G is the minimum number of slopes used by the edge segments over all
possible embedding-preserving planar straight-line drawings of G. Clearly, the planar slope number of G is
upper bounded by its plane slope number.

Fig. 1. A nested pseudotree: the edges of its pseu-
dotree are bold and the cycle of its pseudotree is red.

In an attempt to exploit the peeling-into-levels ap-
proach to prove a polynomial upper bound on the plane
slope number of general plane graphs, one must be able
to show a polynomial bound on the plane slope number
of 2-outerplane graphs. In this paper we take a first step
in this direction by focusing on a meaningful subfamily
of 2-outerplane graphs, namely the nested pseudotrees.
A nested pseudotree is a graph with a planar embedding
such that when removing the vertices of the outer face
one is left with a pseudotree, that is, a connected graph
with at most one cycle. See Fig. 1 for an example. The
family of nested pseudotrees generalizes the well studied
2-outerplane simply nested graphs and properly includes
the Halin graphs [22], the cycle-trees [12], and the cycle-
cycles [12]. Simply nested graphs were first introduced by
Cimikowski [11], who proved that the inner-triangulated
ones are Hamiltonian, and have been extensively studied
in various contexts, such as universal point sets [2,3], square-contact representations [12], and clustered
planarity [13]. Generally, nested pseudotrees have treewidth four and, as such, the best prior upper bound on
their planar slope number is the one by Keszegh et al., which is exponential in ∆. Halin graphs and cycle-trees
have instead treewidth three, and therefore the previously known upper bound for these graphs is O(∆5), as
shown by Jeĺınek et al. [23]. We prove significantly better upper bounds for all the above mentioned graph
classes. Our main results are the following.

Theorem 1. Every nested pseudotree G with maximum degree ∆ has psn(G) ∈ O(∆2).

Theorem 2. Every Halin graph G with maximum degree ∆ different from K4 has psn(G) ≤ max{4, ∆}.

The proofs of Theorems 1 and 2 are constructive. We first consider the case that G is a cycle-tree and we show
a recursive algorithm that computes a planar straight-line drawing of G using O(∆2) slopes (Section 3). The
algorithm first considers 3-connected instances which are treated by means of a suitable data structure called
SPQ-tree [12]. The case of general nested pseudotree is then handled in Section 4 where the input graph G is
transformed into a cycle-tree G′ by removing an edge e; G′ is drawn with the algorithm of Section 3 and the
invariants that we maintain in the construction are exploited to reintroduce e in the computed drawing so to
obtain a new drawing that still uses O(∆2) slopes. The technique for cycle-trees described in Section 3 gives
an upper bound of 12∆+ 10 when applied to a Halin graph; in Section 5 we prove for this family the finer
bound stated in Theorem 2. Section 6 discusses some open problems.

2 Preliminaries

We assume familiarity with standard graph theoretic and graph drawing notions (see, e.g., [14,19]). Let G be
a graph and let v be a vertex of G; let degG(v) denote the degree of vertex v of G. The degree ∆(G) of G is
maxv∈G degG(v). When clear from the context, we omit the specification of G in the above notation and say
that G is a degree-∆ graph.

Drawings and Embeddings. A drawing Γ of a graph G is a mapping of the vertices of G to distinct
points of the plane, and of the edges of G to Jordan arcs connecting their corresponding endpoints but not
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passing through any other vertex. In the remainder of the paper, if it leads to no confusion, in notation and
terminology we make no distinction between a vertex of G and the corresponding point of Γ and between an
edge of G and the corresponding arc of Γ . Drawing Γ is straight-line if its edges are straight-line segments. A
drawing is planar if no two edges intersect, except at a common endpoint, if any. A planar graph is a graph
that admits a planar drawing. A planar drawing subdivides the plane into topologically connected regions,
called faces. The infinite region is called the outer face; any other face is an inner face. A planar embedding
of a planar graph is an equivalence class of topologically equivalent (i.e., isotopic) planar drawings of G. A
planar embedding of a connected planar graph can be described by the clockwise circular order of the edges
around each vertex together with the choice of the outer face. A planar graph with a given planar embedding
is a plane graph. A plane drawing of a plane graph G is a planar drawing of G that preserves the planar
embedding of G.

The slope of a line ℓ is the smallest angle α ∈ [0, π) such that ℓ can be made horizontal by a clockwise
rotation by α. The slope of a segment is the slope of the line containing it. Let G be a plane graph and
let Γ be a plane straight-line drawing of G. The plane slope number psn(Γ ) of Γ is the number of distinct
slopes used by the edges of G in Γ . The plane slope number psn(G) of G is the minimum psn(Γ ) over all
planar straight-line drawings Γ of G. If G has degree ∆, then clearly psn(G) ≥ ⌈∆/2⌉, as in any straight-line
drawing the same slope can be used by at most two edges incident to the same vertex.

The following theorem rephrases a result proved in [28]. Fig. 2 shows an example of the construction.

Theorem 3 ([28]). Let G be a degree-∆ plane partial 2-tree and let (u, v) be a distinguished edge of G. Let
0 < β < π

2 , let s be a given slope, and let ♦(abcd) be any rhombus whose longer diagonal ac has slope s and
such that the interior angles at a and c are equal to β. There exists a set L(β, s,∆) of O(∆) slopes such that
G admits a plane straight-line drawing inside ♦(abcd) using the slopes in L(β, s,∆) and such that a ≡ v and
c ≡ u.

v

u
(a)

a c

b

d

β β

(b)

v u

L(β, s,∆)

(c)

Fig. 2. (a) A plane partial 2-tree with a distinguished edge (u, v); (b) A rhombus ♦(abcd) with s = 0 and angles at a
and c equal to β; (c) a plane straight-line drawing of G inside ♦(abcd); the slope set L(β, s,∆) used is shown in the
figure.

Nested pseudotrees. A planar drawing of a graph is outerplanar if all the vertices are incident to the
outer face, and 2-outerplanar if removing the vertices of the outer face yields an outerplanar graph. A graph
is 2-outerplanar (outerplanar) if it admits a 2-outerplanar drawing (outerplanar drawing). See Figs. 3(a)
to 3(d) for examples of 2-outerplanar graphs. In a 2-outerplanar drawing, vertices incident to the outer face
are called external, and all other vertices are internal. A 2-outerplane graph is a 2-outerplanar graph with
a planar embedding inherited from a 2-outerplanar drawing. A 2-outerplane graph is simply nested if its
external vertices induce a chordless cycle and its internal vertices induce either a chordless cycle or a tree.
See, for example, Figs. 3(b) to 3(d) As in [12], we refer to a simply nested graph whose internal vertices
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induce a chordless cycle or a tree as a cycle-cycle or a cycle-tree, respectively. See Fig. 3(b) for an example of
a cycle-cycle and Figs. 3(c) and 3(d) for two examples of cycle-trees. A Halin graph is a 3-connected plane
graph G such that, by removing the edges incident to the outer face, one gets a tree whose internal vertices
have degree at least 3 and whose leaves are incident to the outerface of G. See Fig. 3(d) for an example of a
Halin graph. By definition, Halin graphs are a subfamily of the cycle-trees. A pseudotree is a connected graph
containing at most one cycle. A nested pseudotree is a topological graph such that removing the vertices on
the outer face yields a non-empty pseudotree. See Fig. 1 for an example of a nested pseudotree. Note that the
external vertices of a nested pseudotree need not induce a chordless cycle. In fact, the outer boundary is a
closed walk. By definition, nested pseudotrees generalize 2-outerplane simply nested graphs. Moreover, this
class includes some graphs of treewidth 4, as formalized in the following.

(a) (b)

(c) (d)

Fig. 3. Examples of 2-outerplane graphs; In all figures, the external vertices are black and the internal ones are
white. The edges connecting external vertices are thin black; the edges connecting internal vertices are bold; the edges
connecting an internal and an external vertex are grey. (b), (c), and (d) are simply nested 2-outerplane graphs; (b) is
a cycle-cycle; (c) and (d) are Cycle-trees; (d) is a Halin graph.

Theorem 4. Nested pseudotrees have treewidth at most 4, which is tight.

Proof. Lower bound. The graph of the octahedron is a nested pseudotree whose cycle and pseudotree are
both triangles. This graph is one of the forbidden minors for treewidth-3 graphs [4]. Hence, there is a nested
pseudotree with treewidth at least 4.
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Upper bound. First, we show that each cycle-tree has treewidth at most 3, and then we improve this bound to
show that each nested pseudotree has treewidth at most 4.

Since each cycle-tree has radius r = 1 (defined as the maximum distance of an inner face from the outer
face), it follows from a theorem of Robertson and Seymour [30] that they have treewidth at most 3r + 1 = 4.
However, we can prove, more strongly, that any cycle-tree G has treewidth at most 3. To this aim we prove
that G has a tree decomposition of width 3. Let C be the cycle induced by the external vertices of G and let T
be the tree induced by the internal vertices of G. We can assume that G is 2-connected. If G is not 2-connected,
then it has a 2-connected component B that contains all the vertices of C; any other 2-connected component
only contains vertices of T and hence it is an edge. Since the treewidth of a graph is the maximum treewidth
of its 2-connected components [9], we can concentrate on the component B. The proof is by induction on the
number of edges in T . If T has no edge, then it has only one vertex and G is a subgraph of a wheel graph.
Since a wheel graph is a Halin graph, it has treewidth 3 [9].

u v

z

w

B1 u v

z

w

B2

z

w

Fig. 4. Illustration for the proof of Theorem 4

Suppose now that T has at least one edge (u, v). This edge is shared by two faces of G, each of which
contains at least one external vertex. Let w and z be two external vertices, one for each of the two faces.
Removing (u, v), the pair {w, z} becomes a 2-cut (see Fig. 4), which splits the graphs into two components,
one having w, z, and u on the outer boundary, call it B1, and one having w, z, and v on the outer boundary,
call it B2. We add to B1 the edges (w, z), (z, u), and (u,w), if they do not exist; analogously, we add to B2

the edges (w, z), (z, v), and (v, w), if they do not exist. After this addition both B1 and B2 are cycle-trees
whose trees have at least one edge less that the tree of G. By induction they admit a tree decomposition
of width 3. Since B1 contains the 3-cycle (w, z), (z, u), and (u,w), in the tree decomposition of B1 there is
a bag X1 containing the three vertices u, w and z. Analogously, in the tree decomposition of B2 there is a
bag X2 containing the three vertices v, w, and z. We combine these two tree decompositions by adding a
new bag containing the vertices u, v, w, and z and connecting it to both X1 and X2. This results in a tree
decomposition of G, with width 3.

We will use this result to establish that the treewidth of any nested pseudotree is at most 4. First, notice
that a cycle-psuedotree is simply a cycle-tree plus one edge. Moreover, adding one edge to any graph increases
the treewidth by at most one. Thus, since we have shown that every cycle-tree has treewidth at most 3, each
cycle-peseudotree has treewidth at most 4.

Finally, we extend this bound to each nested pseudotree. Consider any nested pseudotree G. Observe that
G consists of a cycle-pseudotree H together with a (possibly empty) set of partial 2-trees hanging from 2-cuts
formed by edges of the chordless cycle containing the psuedotree. Consequently, any tree decomposition of H
with width t can be extended to a tree decomposition of G where the width is max{2, t}. Thus, since H has
treewidth at most 4, we have that G also has treewidth at most 4. ⊓⊔
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3 Cycle-Trees and Proof of Theorem 2

In this section, we consider cycle-trees and prove that their plane slope number is O(∆2) in general and O(∆)
for Halin graphs. A degree-2 vertex v of a cycle-tree G whose neighbors are x and y is contractible if (x, y)
is not an edge of G, and if deleting v and adding the edge (x, y) yields a cycle-tree; this operations is the
contraction of v. A cycle-tree G is irreducible if it contains no contractible vertex.

Lemma 1. For every degree-∆ cycle-tree G and irreducible cycle-tree G′ obtained from G by any sequence
of contractions, psn(G) ≤ psn(G′).

Proof. First, G′ has at most degree ∆, as each contraction does not increase the degree of any vertex. Let
Γ ′ be a plane straight-line drawing of G′. A plane straight-line drawing Γ of G can be obtained from Γ ′

by subdividing the edges that stemmed from the contraction operations. Clearly, psn(Γ ) = psn(Γ ′), and
consequently psn(G) ≤ psn(G′). ⊓⊔

By Lemma 1, without loss of generality, the considered cycle-trees will have no contractible vertices.
Furthermore, if the outer face of an irreducible 2-connected cycle-tree G of degree ∆ has size k ≥ 3, then the
number of edges of G is O(k∆), which implies that psn(G) ∈ O(∆) if k is constant. This observation allows
us to assume k > 3 for 2-connected instances, which will simplify the description.

3.1 3-Connected Instances

A path-tree is a plane graph G that can be augmented to a cycle-tree G′ by adding an edge e = (ℓ, r) to
its outer face. Fig. 5(a) shows an example of a path-tree where the edge (ℓ, r) is the dashed edge. Suppose
that, in a clockwise walk along the outer face of G′, edge e is traversed from ℓ to r; then ℓ is the leftmost
path-vertex and v is the rightmost path-vertex of G. All vertices in the outer face of G′ are path-vertices, while
the other vertices are tree-vertices. The path induced by the path-vertices of G is the path of G. Analogously,
the tree induced by the tree-vertices of G is the tree of G. In Fig. 5 the path of G is shown with white vertices
and black solid edges, while the tree of G is shown with black vertices and bold edges. Let f be the internal
face of G′ that contains edge e. The path-tree G can be rooted at any tree-vertex ρ on the boundary of f ;
then vertex ρ becomes the root of G. Fig. 5(b) shows the path-tree of Fig. 5(a) rooted at a vertex ρ. If G is
rooted at ρ, then the tree of G is also rooted at ρ. A rooted path-tree with root ρ, leftmost path-vertex ℓ,
and rightmost path-vertex r is almost-3-connected if it becomes 3-connected by adding the edges (ρ, ℓ), (ρ, r),
and (ℓ, r), if missing. For example, the path-tree of Fig. 5 is almost-3-connected.

ℓ
r

f
ρ

(a)

ℓ r

ρ

(b)

Fig. 5. (a) An example of a path-tree G (solid edges). Vertex ℓ is the leftmost path vertex and r is the rightmost path
vertex of G. The path of G is shown with white vertices and black solid edges, while the tree of G is shown with black
vertices and bold edges. (b) The path-tree G rooted at ρ.
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`µ

ρµ

rµ

ρν

`µ=`ν rµ=rν

Gν

ρµ

rµ=rνk

ρµ=ρνi

`µ=`ν1

Gν1 GνkGνi Gνi+1

rνi=`νi+1

Fig. 6. Path-trees associated with a Q-node (left), an S-node (middle), and a P-node (right). Dashed edges may
or may not exist. Shaded triangles represent smaller path-trees Gνi rooted at ρi, with leftmost path-vertex ℓνi and
rightmost path-vertex rνi .

SPQ-decomposition of path-trees. Let G be an almost-3-connected path-tree rooted at ρ, with leftmost
path-vertex ℓ and rightmost path-vertex r. The SPQ-decomposition of G [12] constructs a tree T , called the
SPQ-tree of G, whose nodes are of three different kinds: S-, P-, and Q-nodes. Each node µ of T is associated
with an almost-3-connected rooted path-tree Gµ, called the pertinent graph of µ. To avoid special cases, we
extend the definition of path-trees so to include graphs whose path is a single edge (ℓ, r) and whose tree
consists of a single vertex ρ, possibly not adjacent to ℓ or r. As a consequence, we also extend the definition
of almost-3-connected path-trees to graphs such that adding (ρ, r), and (ℓ, r), if missing, yields a 3-cycle.

Q-node: the pertinent graph Gµ of a Q-node µ is an almost-3-connected rooted path-tree consisting of

three vertices: one tree-vertex ρµ and two path-vertices ℓµ and rµ. Vertices ρµ, ℓµ, and rµ are the root, the
leftmost path-vertex, and the rightmost path-vertex of Gµ, respectively. Gµ always has edge (ℓµ, rµ), while
(ρµ, ℓµ) and (ρµ, rµ) may not exist; see Fig. 6(left).

S-node: the pertinent graph Gµ of an S-node µ is an almost-3-connected rooted path-tree consisting of a
root ρµ adjacent to the root ρν of one almost-3-connected rooted path-tree Gν , and possibly to the leftmost
path-vertex ℓν and to the rightmost path-vertex rν of Gν . The node ν whose pertinent graph is Gν is the
unique child of µ in T . The leftmost and the rightmost path-vertices of Gµ are ℓν and rν , respectively;
see Fig. 6(middle).

P-node: the pertinent graph Gµ of a P-node µ is an almost-3-connected rooted path-tree obtained from
almost-3-connected rooted path-trees Gν1 , . . . , Gνk

, with k > 1, as follows. First, the roots of Gν1 , . . . , Gνk
are

identified into the root ρµ of Gµ. Second, the leftmost path-vertex of Gνi is identified with the rightmost path-
vertex of Gνi−1

, for i = 2, . . . , k. The nodes ν1, . . . , νk whose pertinent graphs are Gν1
, . . . , Gνk

, respectively,
are the children of µ in T , and the left-to-right order in which they appear in T is ν1, . . . , νk. The leftmost
and the rightmost path-vertices of Gµ are ℓν1

and rνk
, respectively; see Fig. 6(right).

The SPQ-tree T of G is such that: (i) Q-nodes are leaves of T . (ii) If the pertinent graph of an S-node
µ contains neither (ρµ, ℓµ) nor (ρµ, rµ), then the parent of µ is a P-node. (iii) Every P-node has at most
2∆+ 1 children. Fig. 7 provides two alternative SPQ-trees of the same graph.

For simplicity, we assume that the pertinent graphs of the children of a P-node µ are induced subgraphs
of Gµ. This implies that if Gµ contains an edge (ρµ, v), where v is a path-vertex, then such an edge belongs
to every child of µ whose pertinent graph contains v.

Let µ be a node of T . The left path of µ is the path directed from ℓµ to ρµ, consisting of edges belonging
to the outer face of Gµ, and not containing rµ. The definition of the right path of µ is symmetric. Observe
that, if µ is a Q-node whose pertinent graph Gµ does not contain the edge (ρµ, ℓµ), then the left path of µ is
the empty path. Similarly, the right path of µ is the empty path if Gµ does not contain the edge (ρµ, rµ).
We say that an SPQ-tree is canonical if each child of every P-node is either an S- or a Q-node.

Lemma 2. Every n-vertex almost-3-connected rooted path-tree G admits a canonical SPQ-tree. Furthermore,
a canonical SPQ-tree of G can be computed in O(n) time.

Proof. By [12], any almost-3-connected rooted path-tree G admits an SPQ-tree T . If T is not canonical, it
can be turned into a canonical SPQ-tree of G as follows. Let µ be a P-node in T with children ν1, . . . , νk
such that νj is a P-node, with 1 ≤ j ≤ k. We remove νj from T , and we update the children of µ in T to
be ν1, . . . , νj−1, λ1, . . . , λh, νj+1, . . . , νk, where λ1, . . . , λh are the children of νj in T . We repeat this procedure
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ℓµ

P ρµ

S Q S S

µ

ν1 ν2 ν3

ν4

Gν1

Gν4

P

S Q S

µ

ν1 ν2 ν3

ν4S

S

Gµ

Gν2

Gν3

P

Q S Q

rµ

Fig. 7. Two alternative partial SPQ-trees of the almost-3-connected path-tree in the center: The child of node ν4 is an
S-node on the left and a P-node on the right.

until T becomes canonical. In the following, we show how to directly compute a canonical SPQ-tree T of G
in linear time.

Since G is an almost-3-connected rooted path-tree, each internal face of G is incident to exactly one or
exactly two path vertices. In linear time, we label each internal face f of G with a list L(f) containing either
the single path vertex or the two path vertices f is incident to (in the left-to-right order in which they appear
along the path of G). Furthermore we orient the edges incident to tree-vertices as follows: the tree edges are
oriented from parent to children, while the edges connecting a tree-vertex to a path-vertex are oriented from
the tree-vertex to the path-vertex. Let ρ, ℓ and r be the root, the left-most path-vertex, and the right-most
path vertex of G. We compute T recursively. (Base case) If G has exactly three vertices, namely ρ, ℓ and r,
then T consists of a Q-node. Otherwise (Recursive case), let e1, e2, . . . , ek be the outgoing edges of ρ in
left-to-right order and denote by vi the end-vertex of ei different from ρ. Let f1, . . . , fk+1 be the faces of G
incident to ρ where fi is the face to the left of ei (for i = 1, 2, . . . , k) and fk+1 is the face to the right of ek.
Notice that f1 and fk+1 may coincide. Also, let Lρ be the list obtained by concatenating ℓ, v1, L(f2), v2,
L(f3), . . . , L(fk), vk, and r (i.e., we initialize Lρ = ℓ◦ v1 ◦L(f2)◦ v2 ◦L(f3)◦ v3 ◦ . . . vk−1 ◦L(fk)◦ vk ◦ r), and
by suppressing repeated vertices. Note that, Lρ contains all the path-vertices that are visible from ρ along the
path between ℓ and r. Let w1, w2, . . . , wh be such path-vertices. By construction, for each i = 1, . . . , h− 1,
either there is exactly one tree-vertex between wi and wi+1 in Lρ, or they are consecutive.

Suppose that Lρ contains exactly two path-vertices, namely ℓ and r. In this case the root of the SPQ-tree
T of G will be an S-node. Since G has more than three vertices, there must be a tree-vertex z between ℓ and
r in Lρ. We recursively construct the SPQ-tree T ′ of G′ = G − ρ, which is an almost-3-connected rooted
path-tree rooted at z with leftmost path-vertex ℓ and rightmost path-vertex r. The root of T is the S-node
whose single child is the root of T ′.

Suppose now that Lρ contains at least three path-vertices. In this case the root of the SPQ-tree T of G
will be a P -node. For every pair wi, wi+1, we recursively construct the SPQ-tree Ti of an almost-3-connected
rooted path-tree Gi rooted at ρ with leftmost path-vertex wi and rightmost path-vertex wi+1. If there is
no tree-vertex between wi and wi+1, then Gi is the subgraph of G induced by ρ, wi and wi+1. If there is a
tree-vertex zi between wi and wi+1, then Gi is the subgraph of G induced by ρ, wi, wi+1, the path-vertices
of G between wi and wi+1, and all the tree-vertices that are descendants of zi (including zi). Observe that

each Gi is an almost-3-connected rooted path-tree and
⋃h−1

i=1 Gi coincides with G. Furthermore, in the first
case above the root of Ti is a Q-node, while in the second case the root of Ti is an S-node. The root of T is
the P-node whose children are the roots of the trees Ti (none of which are P -nodes), for i = 1, 2, . . . , h− 1.
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Concerning the running time, observe that when we construct the SPQ-tree T of an almost-3-connected
rooted path-tree rooted at ρ, the running time of the non-recursive part of the algorithm is O(deg(ρ)) or
O(1) if the root of T is a P-node or a S-node, respectively. Furthermore, each tree-vertex ρ can occur at most
once as the root of the pertinent graph of a P-node and O(deg(ρ)) many times as the root of the pertinent
graph of an S- or Q-node. It follows that the overall running time is O(n). ⊓⊔

Based on Lemma 2, in the remainder we shall assume that our SPQ-trees are canonical. The cornerstone
of our contribution is a construction for almost-3-connected rooted path-trees using O(∆2) slopes. We start
by defining the slope set. Let a, b, and c be points in R2; ab denotes the straight-line segment whose endpoints
are a and b, and ▲(abc) denotes the triangle whose corners are a, b, and c.

Slope set. Let G be an almost-3-connected path-tree and let T be an SPQ-tree of G. For any node µ of T and
for any path-vertex v in Gµ we let δµ(v) = degGµ

(v) and we let δ∗ be the maximum δµ(v) over all nodes µ and
path-vertices v. Consider the equilateral triangle ▲(abc) with vertices a, b, and c in counter-clockwise order;
refer to Fig. 8(a). Assume that the side bc is horizontal, and that a lies above bc. Let b = u0, u1, . . . , u2∆+1 = c
be the 2∆+ 2 equispaced points along bc. We define the following slope sets:

Black slope: The slope 0, i.e., the slope of an horizontal line.

Orange slopes: The i-th orange slope Oi is the slope of aui, with 1 ≤ i ≤ 2∆.

Blue slopes: The i-th blue slope Bi is the slope of avi, where vi is the vertex of the equilateral triangle inside
▲(abc) with vertices vi, ui, and ui+1, with 0 ≤ i ≤ 2∆.

Magenta slopes: We have two sets of magenta slopes:

▶ Left-magenta slopes: The i-th l-magenta slope M l
i is iπ

3δ∗ , with 1 ≤ i ≤ δ∗ − 1. For convenience, we let
M l

δ∗ = B0 and consider B0 to be also left-magenta.

b=u0

a

c=u2∆+1u1 u2∆

B0 B2∆

v0 v1 v2∆O1 O2∆
M l

δ∗−2

M l
1

M r
δ∗−2

M r
1

M l
δ∗−1

≡ ≡
M r

δ∗−1

v2

u2 u3

v3

(a)

a′

M r
j−1

p∗

M l
i−1

M r
j

Rc
i,j

M l
i

b′ c′

(b)

M l
i

q

Rl
i,h

M l
i−1

p∗

p′ p′′

Oh

B2∆≡
M r

δ∗−1

(c)

q

M r
j

Oh

M r
j−1

p∗

Rr
h,j

p′ p′′

B0

M l
δ∗−1

≡

(d)

Fig. 8. (a) Black, orange, blue, left- and right-magenta slopes; (b) c-red slope Rc
i,j ; (c) l-red slope Rl

i,h; and (d) r-red
slope Rr

h,j .
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▶ Right-magenta slopes: The i-th r-magenta slope Mr
i is π − M l

i , with 1 ≤ i ≤ δ∗ − 1. Again, we let
Mr

δ∗ = B2∆ and consider B2∆ to be also right-magenta.

Red slopes: Let M l
i be a left-magenta slope, with 2 ≤ i ≤ δ∗, and let Mr

j be a right-magenta slope, with
2 ≤ j ≤ δ∗. Also, let 1 ≤ h ≤ 2∆. We have:

▶ Central-red slopes: Let ▲(a′b′c′) be a triangle such that the slope of b′c′ is the black slope, the slope of
c′a′ is Mr

j , and the slope of a′b′ is M l
i . Let p

∗ be the intersection point between the line with slope M l
i−1

passing through b′ and the line with slope M l
j−1 passing through c′. The c-red slope Rc

i,j is the slope of

the segment a′p∗; see Fig. 8(b).
▶ Left-red slopes: Let q be a point above the x-axis. Let p′ be the intersection point between the line with

slope M l
i passing through q and the x-axis. Also, let p′′ be the intersection point between the line with

slope Oh passing through q and the x-axis. Further, let p∗ be the intersection point between the line with
slope M l

i−1 passing through p′ and the line with slope B2∆ passing through p′′. The l-red slope Rl
i,h is the

slope of the segment qp∗; see Fig. 8(c).
▶ Right-red slopes: Let q be a point above the x-axis. Let p′ be the intersection point between the line with

slope Oh passing through q and the x-axis. Also, let p′′ be the intersection point between the line with
slope Mr

j passing through q and the x-axis. Further, let p∗ be the intersection point between the line with
slope B0 passing through p′ and the line with slope Mr

j−1 passing through p′′. The r-red slope Rr
h,j is the

slope of the segment qp∗; see Fig. 8(d).

Let S be the union of these slope sets together with the black slope. Note that,

|S| = 1+2∆+2∆+1+2(δ∗−1)+(δ∗−1)2+4∆(δ∗−1)

= δ∗2+4∆δ∗+1≤5∆2−1 (1)

Construction. In what follows we assume that G is rooted at ρ, with leftmost path-vertex ℓ and rightmost
path-vertex r. Further, recall that T is canonical. We say that a triangle ▲(aµbµcµ) is good for a node µ of
T , if it satisfies the following properties. First, the side bµcµ has the black slope. Second, the slopes sl and sr
of the sides aµbµ and aµcµ, respectively, are such that:

G.1 If sl = Oi and sr = Oj are orange, then j = i+ 1.
G.2 If µ is an S- or a Q-node, then sl is either (i) orange or (ii) a left-magenta slope such that sl ≥ M l

δµ(ℓµ)
;

G.3 If µ is an S- or a Q-node, then sr is either (i) orange or (ii) a right-magenta slope such that sr ≤ Mr
δµ(rµ)

;

G.4 If µ is an S-node whose pertinent graph contains neither the edge (ρµ, ℓµ) nor the edge (ρµ, rµ), then at
least one among sl and sr is an orange slope;

G.5 If µ is a P-node, sl is a left-magenta slope such that sl ≥ M l
δµ(ℓµ)

and sr is a right-magenta slope such

that sr ≤ Mr
δµ(rµ)

.

Let π be a planar straight-line drawing of a path (u1, . . . , uk) directed from u1 to uk, and let x(u) and y(u)
denote the x- and y-coordinate of a vertex u, respectively. We say that π is ↗-monotone, if y(ui+1) ≥ y(ui)
and x(ui+1) > x(ui), for i = 1, . . . , k − 1. Similarly, we say that it is ↖-monotone, if y(ui+1) ≥ y(ui)
and x(ui+1) < x(ui), for i = 1, . . . , k − 1. Let µ be a node of T and let ▲(aµbµcµ) be a good triangle for µ.
Let sl and sr be the slopes of aµbµ and aµcµ, respectively. We will recursively construct a planar straight-line
drawing Γµ of Gµ with the following geometric properties.

P.1 Γµ uses the slopes in S.
P.2 The convex hull of Γµ is the given triangle ▲(aµbµcµ), and the vertices ρµ, ℓµ, and rµ are mapped to

the points aµ, bµ, and cµ, respectively.
P.3 If sl (resp. sr) is left-magenta (resp. right-magenta), then the left path (resp. right path) is ↗-monotone

(resp. ↖-monotone); if sl (resp. sr) is orange, then the left path (resp. right path) is ↗-monotone (resp.
↖-monotone) except, possibly, for the edge incident to ρµ.
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(c)

bµ≡o0

aµ

M r
jM l

i

o1 o2∆−1o2 o3 cµ≡o2∆

Γν1 Γν2 Γνk

O1 O2∆−1

(d)

Fig. 9. (a)-(c) Construction of a good triangle for the child of an S-node: (a)-(b) sl is orange; (c) sl and sr are magenta.
(d) Construction of good triangles for the children of a P-node with k = 3 children. The triangle of each child has a
distinct opacity.

We remark Property P.3 is not needed to compute a drawing of a cycle-tree, but it will turn out to be
fundamental to handle nested pseudotrees.

We describe how to construct Γµ in a given good triangle ▲(aµbµcµ) for µ, based on the type of µ. When µ
is the root of T , the algorithm yields a planar straight-line drawing Γ of G using the slopes in S.
Q-nodes. If µ is a Q-node, we obtain Γµ by placing ρµ, ℓµ, and rµ at the points aµ, bµ, and cµ, respectively.

S-nodes. If µ is an S-node, then the construction of Γµ depends on the degree of ρµ in Gµ. Let ν be
the unique child of µ. For convenience, we let ℓ = ℓµ = ℓν and r = rµ = rν . We first recursively build a
drawing Γν of Gν in a triangle ▲(aνbνcν) that is good for ν, where aν is appropriately placed in the interior
of ▲(aµbµcµ) while bν = bµ and cν = cµ. Then, Γµ is obtained from Γν by simply placing ρµ at aµ, and by
drawing the edges incident to ρµ as straight-line segments.

Note that, ρµ is adjacent to the root ρν of Gν , and to either ℓ, or r, or both. In order to define the point
aν , we now choose the slopes s′l and s′r of the segments aνbν and aνcν , respectively, as follows. We start
with s′l. Since µ is an S-node, sl is either orange or a left-magenta slope M l

i . If sl is orange, then s′l = M l
δ∗ .

See Fig. 9(a) and Fig. 9(b). If sl = M l
i and (ρµ, ℓ) belongs to Gµ, we have that s′l = M l

i−1. Notice that, by
Property G.2 i ≥ δµ(ℓ), and since ℓ is incident at least to (ρµ, ℓ) and to an edge of the path of G, we have
i ≥ 2. If sl = M l

i and (ρµ, ℓ) does not belong to Gµ, we have that s′l = sl = M l
i . See Fig. 9(c). The choice
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of s′r is symmetric, based on the existence of (ρµ, r). Notice that, by Property G.4, if both sl and sr are
magenta, then one between (ρµ, ℓ) and (ρµ, r) exists.

P-nodes. If µ is a P-node, then let ν1, ν2, . . . , νk, with 2 ≤ k ≤ 2∆ + 1 be the children of µ. Since T is

canonical, no νi is a P-node. Refer to Fig. 9(d). Let oi be the intersection point between bµcµ and the line
passing through aµ with slope Oi, for i = 1, . . . , 2∆− 1. For convenience, we let o0 = bµ and o2∆ = cµ. We
recursively build a drawing Γνi of Gνi , with i = 1, . . . , k− 1, in the triangle ▲(aµoi−1oi), which is good for νi,
and a drawing Γνk

of Gνk
in the triangle ▲(aµok−1o2∆), which is good for νk. Γµ is the union of the Γνi ’s.

Proof of correctness. We now show that the construction satisfies Properties P.1, P.2, and P.3.
The fact that Properties P.1, P.2, and P.3 are satisfied by the drawing Γµ when µ is a Q-node trivially

follows by construction. Hence, it remains to consider S- and P-nodes.
Recall that the degree of a vertex v in Gµ is denoted by degGµ

(v); since this leads no confusion here, we
let degµ(v) = degGµ

(v).

Lemma 3. Let µ be an S-node. Γµ satisfies Properties P.1, P.2, and P.3.

Proof. For each of the cases in the construction of Section 3.1, we start by proving the following: (i) the
triangle ▲(aνbµcµ) is good for ν, (ii) the slope of aνaµ belongs to S, and (iii) Γµ satisfies Property P.3. Then,
we prove that Γµ is a planar straight-line drawing, and that it satisfies Properties P.1 and P.2.

Observe that, by construction, neither s′l nor s
′
r are orange. Thus, ▲(aνbµcµ) trivially satisfies Property

G.1. Furthermore, since Gµ is an almost-3-connected path-tree and since µ is an S-node, we have that if ν is
also an S-node, then at least one of the edges (ρν , ℓ) and (ρν , r) must exist. Thus, ▲(aνbµcµ) also trivially
satisfies Property G.4. Due to these observations, in order to prove (i), it remains to argue about Properties
G.2, G.3, and G.5. The proof splits into four cases, corresponding to the four possible combinations of colors
for the slopes of sl and sr. In all cases, we show that s′l (resp. s

′
r) is a left-magenta slope (resp. right-magenta

slope) which satisfies Properties G.2 and G.5 (resp. Properties G.3 and G.5). Along the way, we also prove
(ii) and (iii). We start by observing that if sl is a left-magenta slope M l

i and the edge (ρµ, ℓ) belongs to Gµ,
then i ≥ 2. Namely, by Property G.2 i ≥ δµ(ℓ), and since ℓ is incident to an edge of the path of G, if (ρµ, ℓ)
belongs to Gµ, then δµ(ℓ) ≥ 2. Analogously, if sr is a right-magenta slope Mr

j and the edge (ρµ, r) belongs to
Gµ, then j ≥ 2.

Case 1: Both sl and sr are magenta slopes, i.e., sl = M l
i and sr = Mr

j , with 1 ≤ i ≤ δ∗ and 1 ≤ j ≤ δ∗.
Since ▲(aµbµcµ) is good for µ, Property G.4 implies that at least one of (ρµ, ℓ) and (ρµ, r) belongs to Gµ.
There are three subcases Case 1.1, Case 1.2, and Case 1.3. Refer to Fig. 10.

Case 1.1: both (ρµ, ℓ) and (ρµ, r) belong to Gµ. In this case, s′l = M l
i−1 and s′r = Mr

j−1. Since i, j ≥ 2

both M l
i−1 and Mr

j−1 exist. We have degν(ℓ) = degµ(ℓ) − 1 and degν(r) = degµ(r) − 1. Therefore, s′l =

M l
i−1 ≥ M l

δν(ℓ)
, since sl = M l

i ≥ M l
δµ(ℓ)

, and s′r = Mr
j−1 ≤ Mr

δν(r)
, since sr = Mr

j ≤ Mr
δµ(r)

. It follows that

▲(aνbµcµ) is good for ν. The slope of the segment aνaµ is the c-red slope Rc
i,j . Furthermore, both the left

and the right path of µ consist of the edge (ρµ, ℓµ) and the edge (ρµ, rµ), respectively, and thus Γµ trivially
satisfies Property P.3.

Case 1.2: (ρµ, ℓ) belongs to Gµ and (ρµ, r) does not belong to Gµ. In this case, s′l = M l
i−1 and s′r = Mr

j .

Since i ≥ 2, M l
i−1 exists. We have degν(ℓ) = degµ(ℓ) − 1 and degν(r) = degµ(r). Similarly to Case 1.1,

s′l = M l
i−1 ≥ M l

δν(ℓ)
, and s′r = Mr

j ≤ Mr
δν(r)

. It follows that ▲(aνbµcµ) is good for ν. The slope of the

segment aνaµ is the r-magenta slope Mr
j . Furthermore, the left path of µ consists of the edge (ρµ, ℓ). Also,

the right path of µ consists of the right path πr of ν and the edge (ρν , ρµ). Since s′r is a right-magenta slope,
by Property P.3 of Γν , we have that πr is ↖-monotone. Finally, since the slope of the edge (ρν , ρµ) is M

r
j , we

have that ρµ lies above and to the left of ρν . Therefore, Γµ satisfies Property P.3.
Case 1.3: (ρµ, ℓ) does not belong to Gµ and (ρµ, r) belongs to Gµ. We have degν(ℓ) = degµ(ℓ) and

degν(r) = degµ(r) − 1. We have s′l = M l
i ≥ M l

δν(ℓ)
, and s′r = Mr

j−1 ≤ Mr
δν(r)

. Since j ≥ 2, Mr
j−1 exists. It

follows that ▲(aνbµcµ) is good for ν. The slope of the segment aνaµ is the l-magenta slope M l
i . Furthermore,

the right path of µ consists of the edge (ρµ, r). Also, the left path of µ consists of the left path πℓ of ν and the
edge (ρν , ρµ). Since s′ℓ is a left-magenta slope, by Property P.3 of Γν , we have that πℓ is ↗-monotone. Finally,
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Fig. 10. Construction of triangle ▲(a′bc) when both sl and sr are magenta.

since the slope of the edge (ρν , ρµ) is M
l
i , we have that ρµ lies above and to the right of ρν . Therefore, Γµ

satisfies Property P.3.

Case 2: The slopes sl and sr are orange and right-magenta, respectively. That is, sl = Oh, with
1 ≤ h ≤ 2∆, and sr = Mr

j , with 1 ≤ j ≤ δ∗. Note that, by construction, s′l = M l
δ∗ . We distinguish two

subcases, based on whether (ρµ, r) belongs to Gµ. Refer to Fig. 11.

aν

s′l=M
l
δ∗−1

M r
j

sl=Oh

aν

M r
j−1

(ρµ, r) /∈ Gµ

Case 2.1

(ρµ, r) ∈ Gµ

Case 2.2

Rr
h,j

aµ≡ρµ

cµ≡rbµ≡ℓ

Fig. 11. Construction of triangle ▲(aνbµcµ) when sl is orange and sr is right-magenta.

Case 2.1: (ρµ, r) does not belong to Gµ. In this case, s′r = Mr
j = sr. We have that degν(ℓ) ≤ degµ(ℓ)

and degν(r) = degµ(r). Therefore, s
′
l = M l

δ∗ ≥ M l
δν(ℓ)

, since M l
δ∗ is the largest left-magenta slope, and

s′r = Mr
j ≤ Mr

δν(r)
, since sr = Mr

j ≤ Mr
δµ(r)

. It follows that ▲(aνbµcµ) is good for ν. The slope of the

segment aνaµ is the r-magenta slope Mr
j . The proof that Γµ satisfies Property P.3 is the same as in Case 1.2.

Case 2.2: (ρµ, r) belongs to Gµ. In this case, s′r = Mr
j−1. Since j ≥ 2, Mr

j−1 exists. We have that degν(ℓ) ≤
degµ(ℓ) and degν(r) = degµ(r)− 1. Therefore, s′l = M l

δ∗ ≥ M l
δν(ℓ)

as for Case 2.1, and s′r = Mr
j−1 ≤ Mr

δν(r)
,

since sr = Mr
j ≤ Mr

δµ(r)
. It follows that ▲(aνbµcµ) is good for ν. The slope of the segment aνaµ is the r-red

slope Rr
h,j . The proof that Γµ satisfies Property P.3 is the same as in Case 1.1, if (ρµ, ℓ) belongs to Gµ.
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Otherwise, the right path of µ consists of the edge (ρµ, r). Also, the left path of µ consists of the left path
πℓ of ν and the edge (ρν , ρµ). Since s′ℓ is a left-magenta slope, by Property P.3 of Γν , we have that πℓ is
↗-monotone. Therefore, Γµ satisfies Property P.3.

Case 3: The slopes sl and sr are left-magenta and orange, respectively. I.e., sl = M l
i , with 1 ≤ i ≤ δ∗,

and sr = Oh, with 1 ≤ h ≤ 2∆. The proof of this case is based on two subcases symmetric to those of Case 2.
Namely, Case 3.1 (i.e., (ρµ, r) does not belong to Gµ) and Case 3.2 (i.e., (ρµ, r) belongs to Gµ). In particular,
the slope of the segment aνaµ is the l-magenta slope M l

i in Case 3.1 and the l-red slope Rl
i,h in Case 3.2.

The proof that Γµ satisfies Property P.3 is also symmetric to the one in Case 2.

B0

M l
δ∗−1

≡
B2∆≡
M r

δ∗−1

aν

sℓ=Oh sr=Oh+1

Bh

aµ≡ρµ

bµ≡ℓ cµ≡r

Fig. 12. Construction of triangle ▲(a′bc) when sl and sr are orange.

Case 4: The slopes sl and sr are orange. By Property G.1, we have that sl = Oh and sr = Oh+1,
with 1 ≤ h ≤ 2∆. Refer to Fig. 12. In this case, s′l = M l

δ∗ and s′r = Mr
δ∗ . We have that degν(ℓ) ≤ degµ(ℓ)

and degν(r) ≤ degµ(r). Therefore, s
′
l = M l

δ∗ ≥ M l
δν(ℓ)

, since M l
δ∗ is the largest left-magenta slope, and

s′r = Mr
δ∗ ≤ M l

δν(ℓ)
, since Mr

δ∗ is the smallest right-magenta slope. It follows that ▲(aνbµcµ) is good for ν.
The slope of the segment aνaµ is the blue slope slope Bh. Finally, we argue about Property P.3 of Γµ. We
only consider the left path of µ, as the right path can be treated symmetrically. Recall that, since sℓ is orange,
in order to satisfy this property, the left path of µ needs to be ↗-monotone, except for its edge incident to ρµ.
If the edge (ρµ, ℓ) belongs to Gµ, then the left path of µ consists of just the edge (ρµ, ℓ). Otherwise, the left
path of µ consists of the left path πℓ of ν and the edge (ρν , ρµ). Since s′ℓ is a left-magenta slope, by Property
P.3 of Γν , we have that πℓ is ↗-monotone. This proves that Γµ satisfies Property P.3, which concludes the
proof of (i), (ii), and (iii).

It remains to prove that Γµ is a planar straight-line drawing, and that it satisfies Properties P.1 and P.2.
First, since Gν contains one vertex less than Gµ (namely, the root ρµ of µ), the planar straight-line

drawing Γν of Gν can be recursively constructed in ▲(aνbµcµ) so to satisfy Properties P.1, P.2, and P.3.
Second, in all the cases described above, as depicted in Figs. 9(a) to 9(c), the point aν lies either on the

line-segment aµbµ, or on the line-segment of aµcµ, or in the interior of ▲(aµbµcµ) by construction. Thus,
▲(aνbµcµ) is contained in ▲(aµbµcµ). Furthermore, the placement of aν is such that it is possible to draw
the edges incident to ρµ in Gµ as straight-line segments aνaµ, aνbµ, and aνcµ that do not cross ▲(aνbµcµ),
except at its corners. Finally, as already shown, the slopes of these segments belong to S. ⊓⊔

Lemma 4. Let µ be a P-node. Γµ satisfies Properties P.1, P.2, and P.3.

Proof. First, we prove that the triangles defined above are good for the respective child of µ. Then, we prove
that Γµ is a planar straight-line drawing that satisfies Properties P.1, P.2, and P.3.
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First, observe that since T is canonical no νi is a P-node and therefore Property G.5 is trivially satisfied
by all the defined triangles.

For i = 2, . . . , k − 1, consider the triangle ▲(aµoi−1oi). We have that the slopes of aµoi−1 and aµoi are
the orange slopes Oi−1 and Oi, respectively. Therefore, Properties G.1, G.2, G.3, and G.4 are satisfied. It
follows that ▲(aµoi−1oi) is good for νi, for i = 2, . . . , k − 1.

If i = 1, consider the triangle ▲(aµo0o1). We have that the slope of ao0 is sl ≥ M l
δ(ℓ), since ▲(aµbµcµ)

satisfies Property G.5 as it is good for µ. Therefore, Property G.1 is trivially satisfied, since sl is not orange,
and Property G.2 is satisfied, since degν1

(ℓ) = degµ(ℓ). Furthermore, the slope of aµo1 is the orange slope O1.
Therefore, Properties G.3 and G.4 are satisfied. It follows that ▲(aµo0o1) is good for ν1.

If i = k, consider the triangle ▲(aµok−1o2∆). We have that the slope of aµok−1 is the orange slope Ok−1.
Therefore, Properties G.2 and G.4 are satisfied. Furthermore, we have that the slope of aµo2∆ is sr ≤ Mr

δ(r),

since ▲(aµbµcµ) satisfies Property G.5 as it is good for µ. Therefore, Property G.1 is trivially satisfied,
since sr is not orange, and Property G.3 is satisfied, since degνk

(r) = degµ(r). It follows that ▲(aµuk−1u2∆)
is good for νk. This concludes the proof that each triangle ▲(aµui−1ui) is good for νi, for i = 1, . . . , k.

It remains to prove that Γµ is a planar straight-line drawing that satisfies Properties P.1, P.2, and P.3.
First, the pertinent graph Gνi of each child νi, for i = 1, . . . , k, contains at least one vertex less than Gµ.

In fact, the vertex set of each pertinent graph Gνi contains at least three vertices and shares with any other
pertinent graph Gνj

, with j ̸= i, the root ρµ and at most one cycle-vertex. Therefore, the planar straight-line
drawing Γνi

of each child νi, for i = 1, . . . , k can be recursively constructed in the respective good triangle so
to satisfy Properties P.1, P.2, and P.3.

Second, observe that the triangles defined for the children of µ are all internally disjoint. Thus, Γµ is
a planar straight-line drawing of Gµ, given that each drawing Γνi is straight-line and planar. Finally, Γµ

satisfies Properties P.1 and P.2 due to the fact that each drawing Γνi satisfies the same properties, and
satisfies Properties P.3 since, in particular, Γν1

and Γνk
satisfy this property. ⊓⊔

The following lemma summarizes the results of this section.

Lemma 5. For any almost-3-connected path-tree G and any triangle ▲(abc) that is good for the root of an
SPQ-tree of G, the graph G admits an embedding-preserving planar straight-line drawing inside ▲(abc) that
satisfies Properties P.1, P.2, and P.3.

We conclude with two remarks concerning the allocation of slopes.

Remark 1. The slope of an edge incident to a path vertex is either orange, magenta, or blue, and in particular
it is not red.

The next remark is a consequence of the fact that red slopes are only used when constructing a drawing
of an S-node µ with child ν. In this case, at most one red slope is used inside the good triangle ▲(aµbµcµ) to
connect ρµ with ρν . Since none of the sides of ▲(aµbµcµ) uses a red slope, we have the following.

Remark 2. Let e1 and e2 be two edges having red slopes that are consecutive in the counterclockwise circular
order around a common vertex v. Let ri be the ray originating at v and containing the edge ei, for i = 1, 2,
and let W be any of the two wedges defined by r1 and r2. There exists a non-red slope s ∈ S such that the
ray originating at v with slope s lies inside W .

3-connected cycle-trees. Let G be a degree-∆ 3-connected cycle-tree. We show how to exploit Lemma 5
to draw G using O(|S|) = O(∆2) slopes. Similarly to path-trees, we call cycle-vertices the vertices on the
outer boundary of G and tree-vertices the remaining vertices of G. Let ℓ, v, and r be three cycle-vertices that
appear in this clockwise order along the outer face of G; refer to Fig. 13. Remove v and its incident edges
from G. Denote by G− the resulting topological graph. Let π be the graph formed by the edges that belong
to the outer face of G− and do not belong to the outer face of G.

Since G is 3-connected, we have that G− is at least 2-connected and that π is a path connecting ℓ and r
that contains at least one tree-vertex different from v. Let ρ be any such vertex encountered when traversing
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Fig. 13. How to draw a 3-connected cycle-tree.

π from ℓ to r. Moreover, the only degree-2 vertices of G−, if any, belong to π. Let G∗ be the graph obtained
from G− by replacing each degree-2 vertex of π different from ℓ, ρ, and r, if any, with an edge connecting
its endpoints. Graph G∗ is an almost-3-connected path-tree rooted at ρ, with leftmost path-vertex ℓ and
rightmost path-vertex r.

Lemma 6. Every 3-connected cycle-tree G with maximum degree ∆ has psn(G) ∈ O(|S|).

Proof. If the outer boundary of G has 3 vertices, the total number of edges of G is O(∆) and hence
psn(G) ∈ O(∆) ⊆ O(|S|). So assume that the outer boundary of G has more than 3 vertices.

Let T be the SPQ-tree of G∗ and let ▲(abc) be an equilateral triangle. Note that an equilateral triangle
is good for the root of T , regardless of its type. Let Γ ∗ be the planar straight-line drawing of G∗ inside
▲(abc), obtained by applying Lemma 5. We prove that there exists a planar straight-line drawing Γ of
G such that psn(Γ ) ≤ psn(Γ ∗) + ∆, which implies the statement because psn(Γ ∗) ∈ O(|S|) = O(∆2) by
Lemma 5. Note that, the slopes sℓ and sr of ab and ac are the largest l-magenta slope M l

δ∗ and the smallest
r-magenta slope Mr

δ∗ , respectively. Moreover, since the drawing Γ ∗ inside ▲(abc) has been obtained by
applying Lemma 5, we have that Γ ∗ satisfies Property P.3. We construct a planar straight-line drawing
Γ of G as follows; refer to Fig. 13. First, we obtain a planar straight-line drawing Γ− of G− from Γ ∗, by
subdividing the edges that stemmed from the contraction operations (which yielded G∗ from G−). Clearly,
psn(Γ−) = psn(Γ ∗). Γ− exhibits the following useful property: By Property P.3 of Γ ∗, we have that the
subpath of π from ℓ to ρ is ↗-monotone and that the subpath of π from r to ρ is ↖-monotone. Second, we
select a point q vertically above ρ such that all the straight-line segments connecting q to each of the vertices
of π do not cross Γ−. The existence of such a point is guaranteed by the above property. Finally, we obtain Γ
from Γ− by placing v at point q, and by drawing its incident edges as straight-line segments. Since v has at
most degree ∆, we have that psn(Γ ) ≤ psn(Γ−) +∆. ⊓⊔

By Remark 1 and since the slopes of the edges incident to q do not belong to the set S, we have the
following

Remark 3. The slope of an edge incident to a cycle vertex is not red.

In the next sections, we extend the result of Lemma 6 to 2-connected and then 1-connected graphs.

3.2 2-Connected Cycle-Tree Graphs

Throughout this section G is a 2-connected cycle-tree. We can assume that G is not series-parallel because
otherwise it can be drawn with O(∆) slopes by Theorem 3. By Lemma 1, we may further assume that G is
irreducible. We begin by proving the following.

Lemma 7. Let G be an irreducible 2-connected cycle-tree. If the cycle of G contains at least 4 vertices, then
any 2-cut of G consists of a tree-vertex and a cycle-vertex.
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z

w′

w

Fig. 14. A 2-connected cycle-tree with highlighted a (w, z)-flag (in gray) and a (w′, z)-flag (in light blue). The 2-cut
{w′, z} is dominated by the 2-cut {w, z}.

Proof. First, we show that G contains no 2-cuts composed of pairs of tree-vertices. If such 2-cut existed,
removing its vertices would yield one component containing all the cycle-vertices and at least one component
containing only tree-vertices. Such a component is either a path, which contradicts the fact that G is
irreducible, or it contains a cut-vertex which would also be a cut-vertex in G, thus contradicting the fact
that G is 2-connected. Second, we show that G contains no 2-cuts composed of pairs of cycle-vertices. If such
2-cut existed, removing it would yield one component containing all the tree-vertices, and either at least two
components containing cycle vertices, or exactly one component with at least two cycle vertices. Since the
cycle of G is chordless, both cases contradict the fact that G is irreducible. ⊓⊔

Let {w, z} be a 2-cut of G, where w is a tree-vertex and z is a cycle-vertex. By removing w and z from G,
we obtain k ≥ 2 connected subgraphs H0, H1, . . . ,Hk−1. The subgraph Ci of G induced by V (Hi) ∪ {w, z} is
a component of G with respect to {w, z} (0 ≤ i ≤ k − 1). One of such components, say C0, contains all the
cycle-vertices of G. The union of all components different from C0 is called the (w, z)-flag of G. See Fig. 14
for an example. Since z has degree at most ∆ and since G is irreducible, we have the following.

Property 1. For any 2-cut {w, z}, the (w, z)-flag has O(∆) vertices.

We say that a 2-cut {w′, z}, with w′ ̸= w, is dominated by {w, z} if w′ belongs to the (w, z)-flag of G.
We say that {w, z} is dominant when no other 2-cut dominates it. Let G2 be the graph obtained from G
as follows: (i) remove, for each dominant 2-cut {w, z}, all vertices of the (w, z)-flag of G except w and z,
and add the edge (w, z), called the virtual edge of {w, z}, if it does not already exist in G; (ii) contract all
contractible vertices, if any. We call G2 the 2-frame graph of G. Now we have removed all (w, z)-flags without
introducing new ones. By Lemma 7, G2 has no 2-cuts and therefore it is a 3-connected cycle-tree.

Let e be an edge of a straight-line drawing Γ and let R be a rhombus whose longer diagonal is e. If
R ∩ Γ = {e} we say that R is a nice rhombus for e.

Lemma 8. Every 2-connected cycle-tree G with maximum degree ∆ has psn(G) ∈ O(∆2).

Proof. By Lemma 1 we can assume that G is irreducible. We construct an embedding-preserving planar
straight-line drawing Γ of G as follows. Let G2 be the 2-frame graph of G, and let Γ2 be the planar straight-
line drawing of G2, obtained by applying Lemma 6 and by subdividing the edges that stemmed from the
contraction operation (if any). We define an angle β > 0 and for each virtual edge e = (w, z) of G2 we define
a nice rhombus for e, such that the interior angles at w and z are both equal to β. Angle β is chosen such
that no two nice rhombi intersect each other (except at common corners). We then apply Theorem 3 to
draw each (w, z)-flag inside the corresponding nice rhombus for (w, z). Since no two nice rhombi intersect
each other (except at common corners), the resulting drawing Γ of G is planar. Concerning the number of
slopes, we have that Γ2 uses O(∆2) slopes by Lemma 6. We now argue that, overall, the (w, z)-flags use
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Fig. 15. A 1-connected cycle-tree with highlighted two distinct c-flags C1 (in gray) and C2 (in green) and a c′-flag (in
light blue). The cut-vertex c′ is dominated by the cut-vertex c. The reference edge of C1 is e1 and the reference edge
of C2 is e2. C1 is a c-flag of Type 1 because e1 is an edge of a (c, z)-flag (highlighted with a dashed orange curve). C2

is a c-flag of Type 2.

O(∆2) additional slopes. The drawing of each (w, z)-flag such that wz has slope s in Γ2 uses the O(∆) slopes
in the set L(β, s,∆) of Theorem 3. Since each virtual edge of G2 connects a tree-vertex and a cycle-vertex,
by Remark 3 it never uses one of the red slopes. Hence the total number of slopes used by all virtual edges is
O(∆), which implies that, overall, the (w, z)-flags use O(∆2) slopes. ⊓⊔

3.3 1-Connected Cycle-Trees

In order to extend our construction to the 1-connected case, we adopt a similar (but simpler) strategy as for
the 2-connected case.

Throughout this section G is a 1-connected cycle-tree. By Lemma 1, we may assume G be irreducible. Let
c be a cut-vertex of G. By removing c from G, we obtain k ≥ 2 connected subgraphs H0, H1, . . . ,Hk−1. The
subgraph Ci of G induced by V (Hi)∪ {c} is a component of G with respect to c (0 ≤ i ≤ k− 1). One of such
components, say C0, contains all the cycle-vertices of G. Consider any pair of edges e1 and e2 incident to c
that are consecutive in the counter-clockwise order around c in C0; the union of all components different
from C0 that have an edge incident to c appearing between e1 and e2 in the counter-clockwise order of the
edges around c in G is a c-flag of G; e1 is the reference edge of the c-flag and e2 is the second reference edge
of the c-flag. See Fig. 15 for an example. We say that a cut-vertex c′ is dominated by c if c′ belongs to the
c-flag of G. A cut-vertex is dominant when it is not dominated by any other cut-vertex.

Let G1 be the graph obtained from G as follows: (i) remove, for each dominant cut-vertex c, all vertices
of the c-flags of G except c; (ii) contract all contractible vertices, if any. We call G1 the 1-frame graph of G.
We have the following.

Lemma 9. Let G be an irreducible 1-connected cycle-tree. The 1-frame of G is a 2-connected cycle-tree.

Proof. Let G1 be the 1-frame of G. Graph G1 is 2-connected since, by removing the c-flags, all the cut-vertices
of G are not cut-vertices of G1; moreover no new cut-vertex has been introduced. Graph G is also a cycle-tree
since G is a cycle-tree and we only removed tree-vertices from G that are not dominant cut-vertices. ⊓⊔

The following lemma consider the special case when G is a partial 2-tree and it will be used in the proof
of Theorem 6.

Lemma 10. Let G be an irreducible 1-connected cycle-tree. If G is a partial 2-tree, its 1-frame has O(∆)
edges.
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Proof. The 1-frame graph G1 of G is a 2-connected cycle-tree. Thus, removing the vertices of the outer
boundary of G1 one is left with a single tree T . Since G is a partial 2-tree, G1 is a (2-connected) series-parallel
graph and therefore there exists exactly two vertices u and v of the outer boundary of G1 that are adjacent
to vertices of T . Since the outer boundary of G1 is chordless, any other vertex of the outer boundary different
from u and v has degree two. Since G1 is irreducible there is only one such vertex. It follows that the outer
boundary of G1 is a 3-cycle. Also, all tree-vertices of G1 that have degree at most two in the tree are adjacent
to u or to v; since both u and v have degree at most ∆ there are O(∆) such vertices and hence the tree has
O(∆) vertices. ⊓⊔

Lemma 11. Every 1-connected cycle-tree G with maximum degree ∆ has psn(G) ∈ O(∆2).

Proof. By Lemma 1 we can assume that G is irreducible. Furthermore, since removing the vertices of the
outer boundary of G must yield a tree, at most one cut-vertex of G is a cycle-vertex. Also, if such a vertex
exists, then G is a partial 2-tree and can be drawn with O(∆) slopes by Theorem 3. Hence we shall assume
that every cut-vertex is a tree-vertex.

We construct a planar straight-line drawing Γ of G as follows. Let G1 be the 1-frame graph of G, and let
Γ1 be the planar straight-line drawing of G1, obtained by applying Lemma 8 and by subdividing the edges
that stemmed from the contraction operation (if any).

In the following, we assume that G ̸= G1, as otherwise G is 2-connected, and simply setting Γ = Γ1 proves
the statement. We now show how to insert the c-flags into Γ1 so to construct Γ . We distinguish between
the c-flag whose reference edge belongs to some (w, z)-flag, which we call c-flags of Type 1, and those whose
reference edge belongs to the 2-frame G2, which we call c-flags of Type 2 (see Fig. 15). Let Tc be any c-flag
of Type 1 and let Gw,z be the (w, z)-flag that contains the reference edge of Tc. Observe that Tc ∪Gw,z is a
partial 2-tree. Let R be the nice rhombus for (w, z) defined in the proof of Lemma 8. We delete from Γ1 the
drawing of Gw,z and apply Theorem 3 to draw Tc ∪Gw,z inside R. Let Γ ′

1 be the drawing obtained once all
the Type 1 c-flags have been processed.

We now add to Γ ′
1 the Type 2 c-flags. For every c-flag we suitably identify an edge ec as follows. Let Tc be

a Type 2 c-flag, let e1 be the reference edge of Tc, and let e2 be the second reference edge of Γ ′
1. If the slope

of e1 is non-red, then ec = e2; if the slope of e1 is red and the slope of e2 is non-red then ec = e2; otherwise,
ec is any edge of Tc incident to c. Notice that, in the latter case, ec is not an edge of Γ ′

1 and e1 and e2 are
drawn with two red slopes. Let W be the wedge swept by rotating e1 counterclockwise until it overlaps e2. By
Remark 2 there exists a non-red slope s in the set S such that the ray r originating at c having slope s lies
inside W . We draw edge ec in Γ ′

1 along ray r such that it does not intersect any other edges. We define an
angle β > 0 and for each edge ec = (c, w) of every Type 2 c-flag Tc we define a nice rhombus for ec, such that
the interior angles at c and w are both equal to β. Angle β is chosen such that no two nice rhombi intersect
each other. Since Tc ∪ ec is a tree (and hence a partial 2-tree), we can apply Theorem 3 to draw the Type 2
c-flag inside the nice rhombus for ec.

Since no two nice rhombi intersect each other (except at common corners), the resulting drawing Γ of
G is planar. Concerning the number of slopes, we have that Γ1 uses O(∆2) slopes by Lemma 8. We now
argue that, overall, the c-flags use O(∆2) additional slopes. All the nice rhombi used to draw the Type 1 and
Type 2 c-flags are defined for edges that have a non-red slope s ∈ S, that is for edges with O(∆) different
slopes in total. For each such nice rhombus, the drawing of the c-flag inside the rhombus uses the O(∆) slopes
in the set L(β, s,∆) of Theorem 3. Hence, the drawings of all c-flags use O(∆2) slopes overall. ⊓⊔

Lemmas 1 and 11 imply the following.

Theorem 5. Every cycle-tree G with maximum degree ∆ has psn(G) ∈ O(∆2).

4 Nested Pseudotrees

To prove Theorem 1, we first consider nested-pseudotrees whose outer boundary is a chordless cycle. We call
such graphs cycle-pseudotrees (see Fig. 16 for an example).
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Fig. 16. A cycle-pseudotree. The edges of the pseudotree are bold and the cycle of the pseudotree is red.

4.1 Cycle-Pseudotrees

Let H be a degree-∆ cycle-pseudotree graph with pseudotree P . Every edge of the unique cycle of P is
called a disposable edge of H. Let G be the graph obtained by removing a disposable edge e = (u, v) from H.
Clearly, G is a cycle-tree, and u and v are tree-vertices of G. Let C be a c-flag of a cut-vertex c of G and
let x be a tree-vertex of C different from c; we say that x belongs to a c-flag of G. Analogously, let W be the
(w, z)-flag of a 2-cut {w, z} of G and let x be a tree-vertex of W different from w (recall that z is a cycle
vertex); we say that x belongs to the (w, z)-flag of G.

Theorem 6. Every cycle-pseudotree H with maximum degree ∆ has psn(H) ∈ O(∆2).

Proof. Let P be the pseudotree of H and et e = (u, v) be any disposable edge of H, let G = H \ {e}, let G1

be the 1-frame of G, and let G2 be the 2-frame of G. We distinguish cases based on the endpoints of e.

Case A. There exists a dominant cut-vertex c of G such that u belongs to a c-flag C. Observe that since H
is a plane graph, v cannot belong to some c′-flag C ′ distinct from C and with c′ = c. Hence, we distinguish
the following subcases:

A.1 v belongs to the c-flag C,
A.2 v belongs to a c′-flag C ′ of some dominant cut-vertex c′ ̸= c,
A.3 v belongs to the (w, z)-flag of a dominant 2-cut {w, z} of G1,
A.4 v belongs to G2.

If Case A does not apply, then we may assume that neither u nor v belongs to a c-flag of any cut-vertex c
of G. That is, both u and v belong to G1.

Case B. There exists a dominant 2-cut {w, z} of G1 such that u belongs to the (w, z)-flag. Let W denote
this (w, z)-flag. We distinguish three subcases:

B.1 v belongs to the (w, z)-flag W ,
B.2 v belongs to the (w′, z′)-flag W ′ of some dominant 2-cut {w′, z′} ≠ {w, z} of G1,
B.3 v belongs to G2.

Case C. If Case A and Case B do not apply, then both u and v belong to G2.
We now show how to obtain a planar straight-line drawing Γ of H using O(∆2) slopes in each of the above

cases. We obtain Γ recursively. Each of the cases yields either a smaller instance to which a different case
applies or it is a base case (i.e., A.1, B.1, and C) in which we use Theorem 5 to obtain a planar straight-line
drawing using O(∆2) slopes. Crucially in all cases the depth of the recursion is constant and each recursive
call increases the number of slopes by O(∆).

In Case A.1, both u and v belong to the c-flag C of some cut-vertex c of G. Refer to Fig. 17. We have
that C together with the edge (u, v) forms a pseudotree, and thus a partial 2-tree. Hence, C can be drawn
exploiting Theorem 3, and thus Γ can be obtained by applying the algorithm in the proof of Lemma 11
without any modification (after contracting all contractible vertices, if any).
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Fig. 17. Illustration for Case A.1 of Theorem 6. The cycle of P is red. The c-flag is highlighted with a grey background.

In Case A.2, A.3, and A.4, u belongs to C and v does not. Observe that, c and v are not cycle-vertices.
Refer to Fig. 18. Let H ′ be the graph obtained by removing from G the vertices belonging to C and by
inserting the edge (c, v), if it is not in G already. Note that, H ′ is a cycle-pseudotree. In fact, c and v are
vertices of the cycle of P . We obtain a drawing Γ ′ of H ′ as follows. If H ′ is a cycle-tree we draw it by applying
Theorem 5; otherwise H ′ is a cycle-pseudotree containing less vertices than H, and thus the drawing Γ ′ of
H ′ can be obtained recursively using (c, v) as the disposable edge. We now modify Γ ′ to obtain Γ . Let He be
the union of the c-flag C, the vertex v, and the edges (c, v) and (u, v). Clearly, He is a pseudotree, and thus a
partial 2-tree. Let R be a nice rhombus for (c, v) in Γ ′. We draw He inside R by applying Theorem 3 using
O(∆) additional slopes. Finally, we remove the edge (c, v), if it is not in H. This provides Γ .

We show that the recursion moves to Case B or to Case C in at most two steps. If Case A.2 applies, then
v still belongs to the c′-flag C ′ in H ′ \ (c, v) and c does not belong to any x-flag of a cut-vertex x of H ′ \ (c, v).
Therefore, if c belongs to the (w, z)-flag of some 2-cut {w, z} of H ′ \ (c, v), and thus of G1, then we recurse
to Case A.3, otherwise c belongs to G2, and we recurse to Case A.4. If Case A.3 applies, then we recurse
to one of Case B.1, B.2, and B.3. If Case A.4 applies, then we recurse to one of Case B.3 and Case C.

In Case B, both u and v are vertices of G1. We will construct a drawing Γ1 of the graph G1 ∪ (u, v).
Then, Γ is obtained from Γ1 by drawing all the c-flags of G using O(∆) new slopes, as described in the proof
of Lemma 11.

In Case B.1, both u and v belong to the (w, z)-flag W . Refer to Fig. 19. We have that the W together
with the edge (u, v) forms a planar graph K containing O(∆) vertices, by Property 1. Let H ′ be the graph
obtained by removing the vertices belonging to W from G, and by inserting the edge (w, z), if it is not in G
already. Note that, H ′ is a cycle-tree, because the cycle of P belongs to K. First, we construct a drawing Γ ′

of H ′ by applying Theorem 5. Then, Γ1 can be obtained from Γ ′ by drawing K inside a nice rhombus for the
edge (w, z) in Γ ′ by using the classical Tutte’s algorithm [31], and by removing the edge (w, z), if it is not in
G. This can be done with O(∆) additional slopes because K has size O(∆).

In Case B.2 and B.3, u belongs to the (w, z)-flag W of G1 and v does not. Refer to Fig. 20. Let H ′

be the graph obtained by removing from G the vertices belonging to W and to the (v, z)-flag (if it exists),
and by inserting the edges (w, v), (z, v), and (w, z), if they do not already belong to G. Note that, H ′ is a
cycle-pseudotree. In fact, w and v are vertices of the cycle of P . We obtain a drawing Γ ′ of H ′ as follows. If
H ′ is a cycle-tree we draw it applying Theorem 5; otherwise H ′ is a cycle-pseudotree containing less vertices
than H, and thus the drawing Γ ′ of H ′ can be obtained recursively using (w, v) as the disposable edge. We
now modify Γ ′ to obtain Γ1 as follows. Let He be the union of W , the vertex v, and the edges (w, v), (z, v),
(w, z), and (u, v). Notice that, by Property 1, He has size O(∆). Then, Γ1 is obtained from Γ ′ as follows:
He is drawn inside the triangle (w, v), (z, v), and (w, z) by Tutte’s algorithm [31]; if the (v, z)-flag exits it is
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Fig. 18. Illustration for Cases A.2, A.3, and A.4 of Theorem 6. The cycle of P is red. The c-flag is highlighted with a
grey background.

drawn by Theorem 3 inside a nice rhombus for (v, z); finally edges (w, v), (z, v), and (w, z) are removed, if
they are not in G.

We show that the recursion moves to Case C in at most two steps. If Case B.2 applies, then v still
belongs to the (w′, z′)-flag W ′ in H ′ \ (w, v) and w belongs to the 2-frame of H ′ \ (w, v). Therefore, we recurse
to Case B.3. If Case B.3 applies, then both w and v belong to the 2-frame of H ′ \ (w, v), and we recurse to
Case C.

In Case C, both u and v are in G2. In order to construct Γ we proceed as follows. We first construct a
drawing Γ2 of the graph G2 ∪ (u, v). Then, we obtain a drawing Γ1 of G1 ∪ (u, v) by adding to Γ2 all the
(w, z)-flags of G as described in the proof of Lemma 11, which uses O(∆2) new slopes. Finally, we obtain Γ
from Γ1 by adding all the c-flags of G as described in the proof of Lemma 11, which uses O(∆) new slopes.
From this discussion it suffices to show how to compute Γ2.

Refer to Fig. 21. Let g be the unique face of G2 that is incident to u and v (this face is unique because
otherwise u and v would be a 2-cut, but this is not possible by Lemma 7). Let d be any cycle-vertex of g. Let
G′

2 be the graph obtained by adding the edges (u, d) and (v, d) to G2. Observe that, G′
2 is a cycle-tree and,

like G2, it is 3-connected. Let Q be the path between u and v in the tree of G′
2. Let x be the neighbor of u

in Q. Consider the face f of G′
2 having the edge (u, x) on its boundary that does not contain v. Let w be

the first cycle-vertex that is encountered when traversing the boundary of f starting from x and avoiding
u. Let ρ be the tree-vertex preceding w in such a traversal (notice that ρ may coincide with x). Let G∗ be
the path-tree illustrated in Fig. 21. G∗ is constructed from G′

2 by removing w from the cycle-tree and by
choosing ρ as the root vertex of G∗ (see also the construction before the proof Lemma 6). Let Γ ∗ be the
planar straight-line drawing of G∗ inside an equilateral triangle, obtained by applying Lemma 5. Let Γ ′

2 be a
planar straight-line drawing of G′

2 such that psn(Γ ′
2) ≤ psn(Γ ∗) +∆, obtained by applying Lemma 6 starting

from Γ ∗. By our selection of ρ, we have that in any SPQ-tree of G∗ the vertex x is the root of a P-node µ
having two consecutive children ν and ν′ sharing the cycle-vertex d. Moreover, we have that the edge (u, d)
belongs to the right path R of the pertinent graph Gν of ν, and that the edge (v, d) belongs to the left path
L of the pertinent graph Gν′ of ν′, unless they have been contracted because they had degree 2 after the
removal of (u, v). In the latter case, if u (resp. v) has been contracted we first reinsert it in the drawing by
subdividing the edge incident to d that belongs to R (resp. to L). Since, in Γ ∗, the path R is ↖-monotone
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Fig. 19. Illustration for Case B.1 of Theorem 6. The cycle of P is red. The (w, z)-flag is highlighted with a grey
background.

and the path L is ↗-monotone, except possibly for the last edges of such paths incident to the root x of µ, it
is possible to draw the edge (u, v) in Γ ∗, and thus in Γ ′

2, without introducing any crossings, possibly using an
additional slope. This concludes the construction of the drawing Γ2 of G2 ∪ (u, v). Drawings Γ1 and Γ can, in
fact, be obtained starting from Γ2 as previously described. ⊓⊔

4.2 Proof of Theorem 1

Let G be a nested pseudotree of degree ∆. If G is a cycle-pseudotree, we are done by Theorem 6. Thus, assume
otherwise. By definition, removing the vertices on the outer face of G yields a pseudotree P . Let C be the
chordless cycle of G that contains P in its interior. Denote the vertices of C by u0, u1, . . . , u|C|−1, u|C| = u0 in
the order in which they appear in a clockwise visit of C. If we remove C from G, then G is decomposed into
components G0, G1, . . . , Gh, such that one of them, say G0, coincides with P , while every other component
is an outerplanar graph. For i = 1, . . . , h, each Gi is connected to C by edges that are incident to either a
common vertex uk or to a common pair uk, uk+1 of adjacent vertices of C, for some 0 ≤ k ≤ |C| − 1. In both
cases, we refer to (uk, uk+1) as the base edge of Gi. Note that, each Gi has a unique base edge, but different
Gi’s may share the same base edge. For k = 0, . . . , |C| − 1, let G+

k denote the subgraph of G induced by the
union of {uk, uk+1} and of the vertex sets of the graphs Gi whose base edge is (uk, uk+1). Note that each G+

k

is an outerplane graph that contains the edge (uk, uk+1) in its outer face. Let G∗ be the cycle-pseudotree
defined as the subgraph of G induced by the union of C and P . We compute a planar straight-line drawing
Γ ∗ of G∗ using O(∆2) slopes by using Theorem 6. We can define a set of |C| similar nice triangles, one for
each base edge and use Theorem 3 to draw G+

k inside the corresponding triangle. The slope of all base edges,
except two, is black. Hence every G+

k can be drawn by using the same set of O(∆) slopes, except for two
which require a rotation of the slopes. It follows that the planar slope number of G is O(∆2).
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Fig. 20. Illustrations for Cases B.2 and B.3 of Theorem 6. The cycle of P is red. The (w, z)-flag is highlighted with a
grey background.

5 Halin Graphs

We observe that Halin graphs are 3-connected cycle-trees with δ∗=3 because each path-vertex has two incident
edges that are incident to the outer face and it is a leaf when these two edges are removed. By Equation 1,
we obtain |S|=12∆+10. Thus, Lemma 6 implies that Halin graphs have planar slope number Θ(∆).

We now prove a finer upper bound for Halin graphs, namely, we show that Halin graphs have planar slope
number at most ∆ for ∆ ≥ 4 and at most 4 if ∆ = 3. To this aim, we define a set of k = max{4, ∆} slopes
Sk as follows: Sk contains the slope 0, the slope π

3 , the slope π
2 , and the slope 2π

3 . If ∆ > 4, we need ∆− 4
additional slopes. While our construction works for any set of ∆− 4 additional slopes whose value is between
π
3 and slope 2π

3 , to simplify the description we arbitrarily choose these ∆− 4 additional slopes between π
2

and 2π
3 (see Fig. 22(a)). Let Q0, Q1, . . . , Qk−1 denote the slopes of Sk in increasing value. Notice that, by our

choice of the slopes, Q0 is the slope 0 and Q2 is the slope π
2 . We will exploit the following technical lemma.

Lemma 12. Let T be an n-vertex rooted ordered tree such that each vertex of T has at least 2 and at most d
children, d ≥ 2. Let ρ be the root of T and, if n > 1, let ℓ, and r the leftmost leaf, and the rightmost leaf of
T , respectively. Let ▲(abc) be an equilateral triangle such that the segment bc is horizontal, a lies above bc,
and a, b, and c appear in this counter-clockwise order. Tree T admits a straight-line order-preserving planar
drawing Γ such that: (i) Γ uses the slopes in the set Sk, where k = max{4, d + 1}; (ii) Γ is contained in
▲(abc); (iii) if n > 1, then ρ, ℓ, and r are mapped to the points a, b, and c in Γ , respectively; (iv) if n = 1,
then ρ is represented by a point at the intersection of bc with a straight line passing through a and having any
slope Qi ∈ Sk \ {S0}; (v) all the leaves of T lie on bc in Γ .

Proof. The proof is by induction on the number of vertices n of T . If n = 1, then we can choose one of the
slope Qi with i > 0 and place the unique vertex of T at the intersection point between bc and a straight line
through a with slope Qi. Properties (i), (ii), (iv), and (v) hold by construction, while (iii) does not apply.
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Fig. 21. Illustrations for Case C of Theorem 6. (a) Construction of G′
2 from G2 ∪ e; in the left part, the shaded region

is face g. The cycle of P is red. (b) The path-tree G∗ rooted at ρ

If n > 1, let T1, T2, . . . , Tg, the (at most d) sub-trees of T rooted at the children of ρ in their left-to-right

order. Let δ(b, c) be the length of bc and let x be a value smaller than δ(b,c)
2d . For every i = 1, 2, . . . , d we define

an equilateral triangle ▲(aibici) with sides of length x and such that: (i) the point ai is a point of the straight
line li having slope Qi and passing through the point a; (ii) the segment bici is contained in the segment bc.
By the choice of x, every triangle ▲(aibici) is contained in the triangle ▲(abc) and ▲(aibici)∩▲(ajbjcj) = ∅,
for 1 ≤ i ̸= j ≤ d. See Fig. 22(b) for an illustration.

To construct the drawing Γ of T we recursively compute a drawing Γi of each sub-tree Ti inside the
triangle ▲(aibici), for i = 1, 2, . . . , g − 1, and a drawing Γg of Tg inside the triangle ▲(adbdcd). We then
place the root ρ of T at point a and connect it to the points a1, a2, . . . , ag−1 and ad. Let Tj be the sub-tree
drawn inside ▲(aibici) (i is equal to j if j ≤ g − 1, while i is equal to d if j = g). By induction, the point ai
represents the root ρj of Tj if Tj has more than one vertex. This means that, in this case, the edge (ρ, ρj) is
drawn as a segment using the slope Qi in Sk. If Tj has only one vertex, then, by property (iv), the single
vertex ρj of Tj can be represented by a point q at the intersection of the segment bici with the straight line
passing through ai and having slope Qi. Thus, also in this case the edge (ρ, ρj) is represented by a segment
with slope Qi. It follows that all edges incident to ρ are drawn with slopes in the set Sk. Since by induction
the edges of each Γi use slopes in the set Sk property (i) holds for Γ . Property (ii) holds because each Γi is
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Fig. 22. (a) A set of slope Sk for k = 7; (b) Definition of the equilateral triangles for the recursive construction of a
tree drawing that uses the slope set Sk of (a).

contained inside its assigned triangle and each such triangle is contained inside ▲(abc). About property (iii)
observe that, the leftmost leaf ℓ of T coincides with the leftmost leaf of T1 if T1 has more than one vertex,
otherwise it coincides with the single vertex of T1. In the former case such a vertex is represented by the
point b1, which coincides with b; in the latter case, the unique vertex of T1 is represented by a point q that is
the intersection of b1c1 with a straight line passing through a1 with slope Q1; since the left side of ▲(a1b1c1)
has slope Q1 and by construction a1 belongs to segment ab, point q coincides with b, and the leftmost leaf of
T is represented by b also in this case. Analogously, r either coincides with the rightmost leaf of Tg or with
the single vertex of Tg. With a symmetric argument as the one used for ℓ, we can show that in both cases r
is represented by the point cd, which coincides with c. Property (iv) does not apply in this case. Property (v)
holds by induction and by the fact that each segment bici is contained in the segment bc. ⊓⊔
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Fig. 23. (a) Decomposition of a Halin graph that has at least two internal vertices; (b) Construction of a drawing of a
Halin graph by combining two sub-drawings Γ1 and Γ2.
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Proof of Theorem 2 . Let G be a Halin graph different from K4. We distinguish two cases depending on
the number of internal vertices of G. If G has only one internal vertex, i.e., it is a wheel with n− 1 external
vertices, we compute a drawing Γn as follows. If n = 5, the drawing Γn is obtained by placing the four
external vertices at the four corners of a square and the single internal vertex at the center of the square.
The number of slopes of Γ5 is clearly 4. If n > 5, then Γn is obtained from Γn−1 by adding a vertex in any
point of the outer quadrangle of Γn−1 and connecting it to the center of the wheel. Since Γ5 uses 4 slopes
and each Γn uses one slope more than Γn−1, the number of slopes of Γn is n− 1, which is equal to ∆.

Assume now that G has at least two internal vertices and therefore at least one edge e = (ρ1, ρ2) such
that both ρ1 and ρ2 are internal. The edge e is incident to two faces each one having a single edge incident
to the outer face of G. Let e′ = (ℓ1, r2) and e′′ = (ℓ2, r1) be these two edges. See Fig. 23 for a schematic
illustration. Up to a renaming, we can assume that walking counter-clockwise along the outer boundary of G
we encounter r1, ℓ2, r2, and ℓ1 in this order. Let G1 and G2 be the two path-trees obtained by removing e, e′,
and e′′ from G, such that Gi contains ρi, ℓi, and ri, for i = 1, 2. Let Ti be the tree rooted at ρi obtained
by removing the edges of Gi connecting its path-vertices, for i = 1, 2. Tree Ti is ordered according to the
embedding of Gi and therefore its leftmost leaf is ℓi and its rightmost leaf is ri.

We now explain how to construct a planar straight-line drawing Γ of G that uses ∆ slopes. Let ▲(a1b1c1)
and ▲(a2b2c2) be two equilateral triangles of the same size. By Lemma 12, Ti, for i = 1, 2, admits a straight-
line order preserving drawing Γi contained in ▲(aibici) with the additional properties listed in the statement
of Lemma 12. We rotate Γ2 by π radians and translate it in such a way that the roots of Γ1 and Γ2 are
vertically aligned (see Fig. 23(a)). Notice that, since the two triangles ▲(a1b1c1) and ▲(a2b2c2) have the
same size, ℓ1 and r2 are vertically aligned and r1 and ℓ2 are also vertically aligned. It follows that the edges
e = (ρ1, ρ2), e

′ = (ℓ1, r2), and e′′ = (ℓ2, r1) can be added to the drawing as vertical segments. To complete
the drawing of G, it only remains to add the edges of the outer boundary different from e′ and e′′. Since
these edges only connect leaves of T1 or leaves of T2, and the leaves in each of such trees are horizontally
aligned by Lemma 12, all these edges can be drawn as horizontal segments.

Since the two drawings use the same set of slopes Sk with k = max{4, ∆} and the rotation of Γ2 by π
radians preserves the slopes, the statement follows. ⊓⊔

6 Conclusions and Open Problems

In this paper we proved a quadratic upper bound on the planar slope number of nested pseudotrees. This is
the first result proving the existence of graphs with treewidth 4 whose plane slope number is polynomial
in ∆. In the special case of Halin graphs (which have treewidth 3) we have an asymptotically tight Θ(∆)
bound, which improves over the previously known O(∆5) bound. Our proofs are constructive and exploit the
SPQ-tree, a data structure that we prove can be computed in linear time. The number of operations that we
perform is also linear, however we use irrational slopes which may give rise to drawings whose area is not
polynomial in the input size.

It remains open whether the same upper bounds on the slope number can be achieved if the vertices are
required to lie on an integer grid of polynomial size.

Also it would be interesting to establish whether the upper bound of Theorem 1 is tight and whether
it also applies to nested pseudoforests. Finally, is there a subexponential upper bound on the planar slope
number of 2-outerplanar graphs? This question is interesting even for 2-connected graphs.
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