
Online bin packing of squares and cubes

Leah Epstein∗ Loay Mualem†

Abstract

In the d-dimensional online bin packing problem, d-dimensional cubes of positive sizes
no larger than 1 are presented one by one to be assigned to positions in d-dimensional unit
cube bins. In this work, we provide improved upper bounds on the asymptotic competitive
ratio for square and cube bin packing problems, where our bounds do not exceed 2.0885 and
2.5735 for square and cube packing, respectively. To achieve these results, we adapt and
improve a previously designed harmonic-type algorithm, and apply a different method for
defining weight functions. We detect deficiencies in the state-of-the-art results by providing
counter-examples to the current best algorithms and the analysis, where the claimed bounds
were 2.1187 for square packing and 2.6161 for cube packing.

1 Introduction

Bin Packing (BP) has been the cornerstone of approximation algorithms and has been exten-
sively studied since the early 1970’s. This problem and its variants are important problems with
numerous classic applications, such as machine scheduling, cutting stock problems, and storage
allocation. Recent applications include also cloud storage.

Bin packing was first introduced and investigated by Ullman in 1971 [41] (see also [2, 4,
5, 11, 15, 21, 29, 30, 31, 32, 38, 42]). In the classic or standard one-dimensional bin packing
problem, we are given a list L = {i1, i2, . . . , in} of items, and item sizes S = {s1, s2, . . . , sn},
where sj ∈ (0, 1] is the size of ij for any 1 ≤ j ≤ n. The goal is to pack these items into
the minimum number of bins for this input. More precisely, for a subset of items B, we let
|B| =

∑
ij∈B sj , and the goal is to partition L into a set of subsets B = {b1, b2, b3, . . . , b`}, where

1 ≤ ` ≤ n, such that |bk| ≤ 1 holds for k = 1, . . . , `, where ` is minimized.
A bin packing algorithm can belong to one of two classes, online or offline. A bin packing

algorithm is called online if it is given the items from L one at a time, and it must assign
each item into a bin immediately upon arrival. A newly arriving item is packed according to
the packing and sizes of items that have already been presented before its arrival. There is no
information about subsequent items, and removing an already packed item from its position is
not allowed.

As opposed to online algorithms, offline algorithms for bin packing have complete knowledge
about the list of items. An offline algorithm simply maps L into a set of bins (in a valid way),
and the ordering of the items in L plays no role.

The offline problem is known to be NP-hard [25]; thus, research for this variant has concen-
trated on the study and development of fast algorithms that can produce near-optimal solutions
for the problem in polynomial time. That is, extensive research has gone into developing ap-
proximation algorithms for this problem. These algorithms have proven performance for any

∗Department of Mathematics, University of Haifa, Haifa, Israel. lea@math.haifa.ac.il
†Department of Computer science, University of Haifa, Haifa, Israel. loaymua@gmail.com.

1

ar
X

iv
:2

10
5.

08
76

3v
1

 [
cs

.D
S]

 1
8

M
ay

 2
02

1

possible input, and process the input items in polynomial time. See [21, 32, 37, 40] for such
work.

Online algorithms are analyzed via the (absolute or asymptotic) competitive ratio. This is
the worst-case cost ratio between outputs of an online algorithm and those of an optimal offline
algorithm (for the same inputs). There is vast research on online variants as well [2, 4, 5, 11,
15, 29, 30, 31, 38, 42].

We define the competitive ratio more precisely. Given an input list L, let ALG(L) be the
cost (number of bins used) obtained by applying algorithm ALG on the input L. Let OPT be
an optimal offline algorithm, that uses the minimum number of bins for packing the items, and
let OPT (L) denote the number of bins that OPT uses for a given input L. The algorithm is
absolutely r-competitive if for any input ALG(L) ≤ r ·OPT (L) and asymptotically r-competitive
if there exists a constant C such that for any input ALG(L) ≤ r ·OPT (L)+C. The asymptotic
competitive ratio for ALG is the infimum r such that ALG is asymptotically r-competitive.
Since the last measure is the common one for bin packing, we only discuss this measure in this
text, and sometimes omit the words asymptotic and asymptotically. For offline problems, the
approximation ratio is defined analogously.

In this work, we deal with online bin packing of cubes, and we improve the asymptotic
competitive ratio for the d-dimensional bin packing problem of cubes for d = 2 and d = 3. In
the d = 2, cubes are in fact squares, as can be seen in Figure 1. The figure contains an example
of an optimal solution for square packing (d = 2), where the input consists of one item with
side 0.5, two items with side 1

3 , ten items with side 1
6 , and four items with side 1

4 . The case
d = 1 is sometimes seen as the classic variant of bin packing.

We define the more general case of box packing as follows. The input consists of a list L
of items, where each item is a d -dimensional box, and in each dimension, the side length of
an item does not exceed 1. The output is a packing of all input items of L into d-dimensional
hyper-cube bins. The goal is to minimize the number of used bins. A packing is an assignment
of positions in bins to all items such that the following two requirements hold. No two items in
a bin overlap with each other (except for their boundaries), and the sides of item are parallel
to sides of bins. Note that we do not exclude the option of rotation, also called non-oriented
box packing, though we deal here with the asymptotic competitive ratio for squares and cubes,
where rotation is meaningless.

Figure 1: An example for square packing.

1.1 Previous results

Recall that bin packing is an NP-hard problem, and a large part of the research in this field of
study focused on finding (asymptotic) approximation bounds. The offline problem has asymp-
totic approximation schemes (where an approximation scheme is a family of asymptotic ap-
proximation algorithms with approximation ratio 1 + ε for any ε > 0) [21, 32]. The online

2

bin packing problem was first introduced by Ullman [41]. Johnson [30] showed that a greedy
algorithm called Next Fit (NF) (defined below) has an asymptotic (and an absolute) compet-
itive ratio of 2. It was also shown by Johnson et al. [31] that another greedy algorithm called
First Fit has an asymptotic competitive ratio of 17

10 [31]. As for lower bounds, Yao showed
that no online algorithm has an competitive ratio smaller than 1.5 [45]. Later, Brown [9] and
Liang [33] improved this lower bound to 1.53635, and Van Vliet [42] improved this lower bound
known to 1.54014. Balogh et al. [5] improved this lower bound to 1.54037. The tightest lower
bound known so far is 1.54278 By Balogh et al. [4]. As for lower bounds, Yao showed that no
online algorithm has an competitive ratio smaller than 1.5 [45]. Later, Brown [9] and Liang [33]
improved this lower bound to 1.53635, and Van Vliet [42] improved this lower bound known
to 1.54014. Balogh et al. [5] improved this lower bound to 1.54037. The tightest lower bound
known so far is 1.54278 by Balogh et al. [4].

Lee and Lee [34] presented the Harmonic algorithm (see below). This algorithm uses
bounded space (a constant number of bins can receive items at each time), and it achieves
an asymptotic competitive ratio of approximately 1.69103 for large values of its parameter.
They also developed the Refined Harmonic algorithm, which has an asymptotic competitive
ratio that does not exceed 1.63597. Shortly afterwards, Ramanan et al. [36] introduced Mod-
ified Harmonic and Modified Harmonic 2, and showed that these algorithms have asymptotic
competitive ratios not exceeding approximately 1.61562 and 1.61217, respectively. The upper
bound was improved further later [38, 29]. The best upper bound on the asymptotic competitive
ratio known so far is 1.57829 by Balogh et al. [2].

In this work, we study the d-dimensional bin packing of cubes for d = 2, 3, and improve the
existing bounds for this problem. In what follows, we discuss previous work for that variant.
The hyper-cube online packing problem was studied by Coppersmith and Raghavan [12] who
showed upper bounds of 2.6875 and 6.25 on the asymptotic competitive ratios for online square
packing and online cube packing, respectively. Seiden and van Stee [39] improved the upper
bound for square packing to 395/162 ≈ 2.438272, Miyazawa and Wakabayashi [35] improved
the upper bound for cube packing to 3.954, where the algorithm was based on that of [12].
Epstein and van Stee proved an upper bound of 2.24437 for square packing and an upper bound
of 2.9421 for online cube packing [18]. These algorithms are similar to the one-dimensional
modifications of harmonic algorithms. Han et al. [28] gave upper bounds of 2.1187 and 2.6161
for the asymptotic competitive ratios for square packing and cube packing, respectively. We
note that these last bounds are not valid for the algorithms as they were defined and their
analysis, as we show in this work, by providing counter-examples to the action of the algorithm
for d = 2, and by explaining why the analysis does not hold in general (see Section 6). There
is also an earlier version of that work [27] but there are flaws in that analysis as well. As for
lower bounds on the competitive ratio, there has been some work on that direction as well
[39, 18, 43, 8, 3], and the current best lower bound is approximately 1.75154 [3].

The offline variant of the square and cube bin packing also have asymptotic approximation
schemes [6]. In addition, there is work for more general variants of online rectangle and box
bin packing with or without rotation, see [7, 43, 12, 8, 13, 14, 19, 16, 22, 23, 24, 26, 43, 17], for
other variants of multi-dimensional packing (see the survey [10]), and for d-dimensional vectors
(see for example [1]). Naturally, the bounds for the more general case are larger.

1.2 Our contribution

For decades, bounds for asymptotic competitive ratios of bin packing problems have been ex-
tensively studied. In this work, we present improved results for d-dimensional bin packing
problem:

3

• We provide a new harmonic-type algorithm for d-dimensional bin packing problem. The
key components of our algorithm are classification of the items and extension of the
framework suggested by [34] with respect to the one-dimensional bin packing problem.
Our algorithm is specified by a general structure that is based on that of [28] and a new
set of parameters.

• We provide a new weighting technique for the d-dimensional bin packing problem. A
related method was used in the past for standard bin packing [2], that is, for the one-
dimensional case, but no such method was defined for variants in multiple dimensions.
Here we show that it allows one to improve the bounds for another bin packing problem.

• To emphasize the effectiveness of our new suggested algorithm, we established an improved
asymptotic competitive ratio for the cases d = 2, 3. We obtain tighter upper bounds for
the asymptotic competitive ratio for the online square and cube packing. Specifically, the
algorithms have asymptotic competitive ratios of at most 2.0885 and 2.5735, respectively.
This is to be compared to the currently known bounds of 2.1187 for square packing and
2.6161 for cube packing by [28] (which are unfortunately incorrect, but it might be possible
to prove slightly inferior bounds for these algorithms using our method of analysis).

• We present a counter example for the previous upper bound claimed by [28] for d = 2,
showing that it is higher than 2.12. We also explain why their analysis is incorrect and
cannot yield a bound below 2.24 for square packing (though we believe that an upper
bound of approximately 2.14 can be shown for their algorithm for d = 2 using our method
of analysis).

Our analysis is based on introducing weight functions and bounding the asymptotic com-
petitive ratio by showing that the total weight of bins of the algorithm is equal to the total
weight (up to an additive constant) while bounding the total weight of any bin of an opti-
mal offline solution from above [34, 38]. For obtaining the upper bounds on weights, we use
computer-assisted proofs.

The organization of this work is as follows. In Section 2 we present the harmonic algorithm
and the algorithm for packing small items. In Section 3 we present our algorithm for the online d-
dimensional bin packing problem of squares and cubes. In Section 4, we present our weighting
functions and present their analysis for our algorithm and for optimal solutions. Section 5
contains the specific parameters for our algorithms, which lead to the improved bounds. Finally,
in Section 6 we show the counter example for the algorithm of [28].

2 Preliminaries

In this section we provide the details of algorithms that will be used in our work. We will use
these definitions later, and additional definitions will be introduced as required.

2.1 Harmonic algorithms

We start with the definition of NF, which is an algorithm for one dimensional bin packing. NF
keeps one bin open at a time. If the next item fits in the current open bin, that is, packing
it into the bin keeps the validity of the packing, the new item is packed there. Otherwise, the
current open bin is closed, a new bin is opened, and the new item is packed there.

The main idea of harmonic algorithms is classifying each item by its size to a type, and
packing it according to its type (as opposed to its exact size) in the following way: Given a list
S = (`1, `2, . . . , `n), where `i ∈ (0, 1] for all i, the classification of items is done according to

4

partitioning the unit interval (0, 1] to M disjoint sub-intervals of the Ij = (1/(j + 1), 1/j] form
for j = 1, . . . ,M − 1, and the Mth sub-interval is (0, 1/M]. Each item `i is called an item of
type j if `i ∈ Ij , for some 1 ≤ j ≤ M . Similarly, each bin is classified. A bin is called a bin
of type i, if it is designated to pack items of type i exclusively. Note that, each bin of type
i for 1 ≤ i ≤ M can accommodate at most i items of type i. Every type of items is packed
independently of other types using NF. A bin is called “active” if it still receive items, where
otherwise it is considered to be “closed”, as in the definition of NF.

The harmonic algorithm has multiple advantages. It is efficient in terms of time and space
complexity, and the output is mostly independent of the exact arrival order of items. On the
other hand, a crucial disadvantage of this algorithm is that any item `i ∈ I1, that is, item with
size larger than 1/2, is packed into a bin alone, possibly wasting a large amount of space in this
bin. A similar situation is encountered for I2 as well. Due to this drawback, other algorithms
were suggested [34, 36, 38, 29, 2]. Some of these algorithms still classify items into types, but
they mix two types in one bin, and this allows them to save space.

The weighting function used for the analysis of the basic harmonic algorithm is simple, the
weight of every item of Ii for i < M is simply 1

i , and for small items, which are the items of type
M , the weight is just slightly larger than the size [34, 44]. Modifications of harmonic algorithms
require more complicated weight functions, and different functions for different kinds of outputs
(or inputs) [34, 36]. Seiden [38] generalized the concept of weighting functions to weighting
systems, but the necessity of this concept is still unclear.

The harmonic approach (without combining different items types into one bin) was used for
the multi-dimensional case too [14, 19, 20], where the bounds are obviously higher than those of
arbitrary online algorithms. For example, the tight bound on the asymptotic competitive ratio
for squares is in (2.36, 2.37) [20]. Generalization were also used for squares and cubes [18, 28].

The one-dimensional generalized harmonic algorithms are instances of a general class of
algorithms called Super Harmonic [38]. These algorithms are also interval classification algo-
rithms, the main differences between these type of algorithms and the Harmonic algorithm
are as follows. The intervals are predefined as before, but they are arbitrary and more gen-
eral. Let t1 = 1 > t2 > · · · > tn+1 > 0 be rational numbers, the interval Ij is defined to be
(tj+1, tj] for j = 1, . . . , n+ 1, where in the Harmonic algorithm, the interval Ij is defined to be
Ij = (1/(j + 1), 1/j]. Each item will be colored red or blue, and the packing is different for the
items of different colors for every class. The partition of items of one class into two sub-types
allows one to (partially) overcome the wasted space disadvantage in the harmonic algorithm.
The methods for doing this are discussed later. In the next section, we modify and extend
the Super Harmonic algorithm to online hyper-cube packing. This was already done [28], and
we present this approach for completeness. We also modify the weighting method in order to
obtain an improved asymptotic competitive ratio for square and cube packing. We do not use
the approach of [28], but an approach previously used for the one-dimensional case [2]. The
method is strongly related to that of Seiden [38], but it is presented and used in a much simpler
way. The (corrected) approach of [28] is a special case of our method that can lead to much
higher uppers bounds on the asymptotic competitive ratio for each algorithm.

2.2 Hyper-cube packing: packing small items

In what follows, we will borrow some of the notation used in the context of Super Harmonic
algorithms. For a hyper-cube h, we use s(h) to denote its side length, and we call it size or side.
We categorize our items into two types, large and small, where our algorithm handles each type
differently; see Algorithm 1. Let M be a fixed positive integer. An hyper-cube t is defined to
be a large item if s(t) ≥ 1/M , where otherwise it will categorized as small. Although each item

5

will be further categorized (assigned type) depending on its size, large and small items can not
share the same type (category).

In this framework, we use Algorithm AssignSmall from [19] to pack small items. Consider
an item t of size s(t) ≤ 1/M , let k be the largest non-negative integer such that 2k ·s(t) ≤ 1/M ,

and let i be the integer such that 2k · s(t) ∈
(

1
i+1 ,

1
i

]
where i ∈ {M, . . . , 2M − 1}. Then, item t

is classified as type i item. The key ideas of the AssignSmall algorithm are:

1. For every i ∈ {M, . . . , 2M − 1}, there is at most one “active” bin which contains an item
of type i, i.e., there will be at most M “active” bins.

2. Each bin may be partitioned into multiple sub-bins which are hyper-cubes of different size
of the form 1/(2j · i).

We now introduce algorithm AssignSmall for online hyper-cube packing by [19]. The algo-
rithm AssignSmall handles the item t of type i as follows:

1. If there is an empty sub-bin of size 1/(2k · i), then the item is simply assigned there and
placed anywhere within the sub-bin.

2. Else, if there is no empty sub-bin of any size 1/(2j · i) for j < k inside the current bin, the
bin is closed and a new bin is opened and partitioned into sub-bins of size 1/i. Then the
procedure in step 3 is followed, or step 1 in case k = 0.

3. Take an empty sub-bin of size 1/(2j · i) for a maximum j < k. Partition it into 2d identical
sub-bins (by cutting into two identical pieces, in each dimension). If the resulting sub-bins
are larger than 1/(2k · i), take on of them and partition it in the same way. This is done
until sub-bins of size 1/(2k ·i) are reached. The new item is assigned into one such sub-bin.

The following Lemma is taken directly from [19], and used also in [28].

Lemma 1. In the AssignSmall algorithm, In each closed bin of type i ≥M , the occupied volume

is at least (id−1)
(i+1)d

≥ (Md−1)
(M+1)d

.

3 Algorithm Extended Harmonic (EH)

In this section, we define our algorithm Extended Harmonic (EH) for hyper-cube packing. For
any M ≥ 110, Let N be fixed positive integer and let ti ∈ [0, 1] for every i ∈ {1, . . . , N + 1}
such that ti ≥ ti+1, t1 = 1, tN+1 = 1/M . We also define the interval Ii to be (ti+1, ti] for every
i ∈ {1, . . . , N}. An item t is categorized as type i if it falls in the interval Ii, i.e., s(t) ∈ (ti+1, ti].

The algorithm is split into two main components, where we categorize all items into small
and large, small items are packed by AssignSmall, and large items are packed by EH which we
defined in this section.

For every i ∈ {1, . . . , N}, each item of type i, is either colored red or blue. We then define
two sets of counters {ej}Nj=1 and {nj}Nj=1 such that each counter is initialized with zero, ei
denotes the number of red colored items of type i while ni denotes the number of items of type
i. In addition, for every i ∈ {1, . . . , N}, we define αi to be an approximate fraction of the red
items of type i with respect to ni, that is 0 ≤ αi ≤ 1 for all i. The invariant ei ≈ αi · ni will be
maintained throughout the whole process of the algorithm (in the sense that |ei−αi ·ni| = O(1)).

In addition to using ej , nj , and αj for j = 1, 2, . . . , N , there are auxiliary values calculated
based on item types. The maximum number items of type i that can be packed in one bin
will be based on a parameter βi for every i ∈ {1, . . . , N}. This parameter will be used for blue

6

items, since for them the maximum number will be packed (except for at most one bin for every
type). The amount of unused (free) space in bins filled with βdi items from interval Ii will be
based on a value denoted by δi (this definition of δi will be slightly modified later). This value
is defined according to the maximum size of any item of type i, which is ti. This algorithm
exploits this free space to pack red items of other types. Thus, δi = 1− βi · ti. Note that this is
the space in one dimension, while, for example, for d = 2 the space is an L-shaped area whose
width is δi, see Figure 2. We sometimes decide not to use the entire space of δi for red items.
For simplicity of the algorithm and its analysis, we define the set D = {∆0 = 0,∆1, . . . ,∆k} to
describe the set of spaces into which red items can be placed, such that ∆k < 1/2, ∆i ≤ ∆i+1,
and ∆1 > 0 for every i. The set may contain all values of the form δi or just some of them. Let
φ : {1, . . . , N} → {0, . . . , k} denote a mapping function from item types to their corresponding
index ∆j , and for any i ∈ {1, . . . , N} denote by ∆φ(i), the amount of space used to hold red items
in a bin which holds blue items of type i. We require that the function φ satisfies ∆φ(i) ≤ δi.
If φ(i) = 0 holds, then no red items are accepted in bins filled with βi items. For example, if
∆1 = 0.28, ∆2 = 0.3, ∆3 = 0.32 and δi = 0.31, we can choose φ(i) = 2. We could also choose
φ(i) = 1, but the largest j is chosen such that ∆j ≤ δi, such that the space is used in the best
way. To ensure that for every red item there may potentially exist a bin to pack it, we require
that αi = 0 for every i ∈ {1, . . . , N} such that ti > ∆k.

We follow some of the literature of this type of algorithms, and use γi to denote the maximum
number of red items of type i (for every i ∈ {1 . . . , N}) that can be packed in the bin, where
γi = 0 if ti > ∆k and γi = max{1, {∆1/ti}} otherwise. This value is the number of items that
can fit in one dimension. For example, if ti = 1

30 and ∆1 = 0.21, then γi = 6, but in the case
ti = 0.22, and if ∆k = 0.3, we will have γi = 1, which means that there will be just one red
item of type i next to blue items in each dimension.

To generalize the usage of γi to d-dimensional bin packing, we define θi which denotes the
maximum number of red items of type i (for every i ∈ {1, . . . , N}) that can be packed in a
single d-dimensional bin as follows:

θi = βdi − (βi − γi)d .

For example, if d = 2, βi = 5 and γi = 2, we get θi = 16. This means that a cube with βi
items of type i packed in each dimension is created, and a smaller cube with βi − γi items in
each dimension is removed to make space for other items. See Figure 2 for an illustration. The
definition θi = 0 for ti > ∆k means that there is no place at any bin for red items of type i
since the blue items are too large. As mentioned in the preceding paragraph, we require that
αi = 0 in these cases, i.e., all the items from interval Ii are colored blue and there are no red
items from interval Ii. It is possible that other values of αi will also be equal to zero.

For simplicity, we redefine the values δi to be exactly the ∆φ(i) values (by possibly reducing
some of these values). Thus, a red item of type j can be packed with blue items of type i if and
only if tj ≤ δi.

The main ingredients for our algorithm are as follows.

1. A pair of integers N and k, such that N denotes number of intervals, and k denotes the
number of different sizes of spaces for red items.

2. Rational numbers t1 = 1 > t2 > · · · > tN > tN+1 = 0, which denote the intervals
boundaries, i.e., the ith interval is (ti+1, ti].

3. Rational numbers α1, . . . , αN ,∈ [0, 1], where for every i ∈ {1, . . . , N}, αi denotes the
fraction of red items from the whole set of items in the ith interval.

7

4. Parameters 0 < ∆1 < ∆2 < · · · < ∆k < 1/2, which denote set of spaces into which red
items can be placed.

5. A function φ : {1, . . . , N} → {0. . . . , k}, which denotes a mapping function from item types
to their corresponding indexes of spaces for red items. It always holds that ∆φ(i) ≥ 1−βi·ti.
For simplicity we denote ∆φ(i) by δi.

An item x of size s(x) has a type τ(x) where

τ(x) = j ⇔ s(x) ∈ Ij .

Bin types. The next table contains a description of the four types of bins used in the algo-
rithm.

Bin types

Bin type Description

1. {(i)|φ(i) = 0} Such bins include at most βdi items, where all
of them are considered blue and have type i. In
the algorithm, they could also be defined as type
(i, ?), but since they cannot receive red items of
another type, the question mark would never be
replaced.

2. {(i, ?)|φ(i) 6= 0} Such bins include only blue items from interval
i, where there is space left in it that can fit only
red items of type j that satisfy tj ≤ δi.

3. {(?, j)|αj 6= 0} Such bins include only red items type of j, where
there is space left in it that can fit only blue
items of type i that satisfies δi ≥ tj .

4. {(i, j)|φ(i) 6= 0, αj 6= 0} Such bins have both red items of type j and blue
items of type i.

Note that not all bin types have the required number of items. Bins that have a smaller
number of items (less than βdi for blue items of type i, or less than θj for red items of type j)
is called indeterminate.

An overview of the code of Algorithm Extended Harmonic. In what follows, we give
an overview of this algorithm, which is our main algorithm. The algorithm is defined for any
dimension d ≥ 2, and we will use this algorithm for the cases d = 2, 3. We present the pseudo-
code for our algorithm, see Algorithm 1. The algorithm colors each incoming item as blue or
red. The coloring is based on the number of items of the same type that already arrived, such
that the percentage of red items will be correct. Specifically, for every type i, ni will be the
total number of items of this type at each time, and ei will be the number of items of type i
whose color is red. Recall that the algorithm maintains the property ei = αi · ni approximately
(since the numbers of items ei and ni are integers, while αi · ni is not necessarily an integer).
This is done by testing the ratio between ei and the new value of ni after an item of type i
arrives.

Types of bins are marked by pairs of indexes of types, where the first one is the type of blue
items for this bin, and the second one is the type of red items. A type that was not decided
yet appears as a question mark. Thus, a bin of type (?, j) is a bin that already has at least one
red item of type j and no blue items. For an item of type i whose color is red, the algorithm

8

(a) An illustration of a type (i) bin for
d = 2. In this case it holds that φ(i) = 0.
The area that could be reserved for red
items is 1 − (βi · ti)2. Since δi = 0, the
space for red items is not used at all.

(b) An illustration of a type (i, j) bin
for d = 2. The total area that could
be reserved for red items is 1− (βi · ti)2.
The actual area reserved for red items is
1− (1− δi)2, and the used space may be
even smaller.

Figure 2: Illustrations for bin types.

checks whether there exists an already existing bin that can be used to accommodate the new
item. This has to be a bin that requires at least one additional item of type i that is red. This
may be a bin of type (?, i) or (j, i) for some type j 6= i, where its pre-determined number of
items of type i was not packed yet. We see such a bin as open. If there is no such bin, it will
check whether there is a bin with blue items but no red items, where red items of type i can be
accepted, and if indeed this is possible, such a bin is selected. If there is no open bin to pack
the new item (as a red item), then the algorithm opens a new bin of type (?, i) and packs the
new item into it. Thus, the algorithm will pack the new item in the first open bin from the
following ordered list of bins:

1. A bin of type (?, i) or (j, i) with less than θi red items in the bin.

2. A bin of type (j, ?) such that δj ≥ γi · ti.

3. A bin of (?, i) (a new bin).

The crucial part of this ordering that the algorithm avoids making new decisions as much
as possible. The new item is packed into an open bin for red items of type i if this is possible.
If not, the algorithm still tries to use an existing bin, in order to avoid a situation where there
are bins of types (?, i) and (j, ?) which could be combined. Only if there is no other option, a
new bin is introduced. In this case one can deduce that the current status of the output is such
that all spaces that could receive red items of i are already exhausted. Note that this can still
change throughout the execution of the algorithm and we analyze only the final output.

For a new item of type i whose color is blue, the case where this type cannot receive red
items in its bins is easy. The item is either packed into a bin that does not have its full number
of items, or if there is no such bin (which can also be called open), a new bin is opened. Such
bins are denoted by type (i). If this type can receive red items into the packing of its blue
items, the algorithm checks whether there exists a bin that already received at least one blue

9

item of type i, but it did not receive its full number of blue items, where this can be a bin of
type (i, ?) or (i, j) for some j 6= i. If there is no such bin, once again the algorithm prefers an
existing bin with red items, and only if no such bin can accept blue items of type i, a new bin
of type (i, ?) is opened. Thus, the algorithm will pack the new item into the first open bin from
the following ordered list of bins:

1. A bin of type (i, ?) or (i, j) with less than βi blue items in the bin.

2. A bin of type (?, j) such that δj ≥ γj · tj .

3. A bin of type (i, ?) (a new bin).

Note that the algorithmic approach is almost identical to those of [38, 28]. The algorithm
runs one copy of AssignSmall and packed every new small items with this algorithm.

4 Weighting functions and results

In what follows, we describe the weighting technique and present the specific weight functions
which we use in our algorithm. As it was done in the past [34, 38, 2], we split the different
inputs into cases, based on a classification of the output. We will define one weight function
for every case, and the different weight functions are independent in the sense that every case
will be analyzed separately. Obviously, all weight functions are based on the parameters of the
algorithm, and those are common to all cases.

We assume here that L consists of large items (only). Small items are packed separately,
and the weight function used for them is not different from those used in the past. Specifically,

the weight of a small item is (M+1)d

(Md−1) times its area or volume. In this section we only find the

relation between the cost of the algorithm for large items and the total weight. Obviously, when
we consider optimal solutions, and we find the relation of weights to their costs, we will consider
small items as well, adding the weights of small items as well.

In the past [38, 28], two weight functions were designed for the cases in the analysis with bin
types that all of them have both red items and blue items. In the analysis, the two functions
were compared in the sense that the better one was finally used. The intuition for the two
functions was that either the cost of these bins is calculated as a part of the weights of the items
that are blue, or it is taken into account in the weights of the items that are red. Informally,
while these bins had both blue and red items, in this kind of analysis, the cost of the bins is
either paid for by blue items or by red items. The core of the technique which we use for our
weight functions is the partitioning the cost of bins of type (i, j) between red and blue items.
This can be done in the cases described above, when there are no bins of types (i, ?) and (?, j).
For applying the method used here for the design of weight functions, we use a parameter w
(0 ≤ w ≤ 1), where w is the share of the blue items in bins where the cost is split, and 1 − w
is the share of red items. The value w is not necessarily the same for all the cases, and it is
typically different (any value can be used for any case and will lead to a correct proof, be we
use values that allow us to prove upper bounds that are as tight as possible). The approach of
previous work with two weight functions can be seen as the special case where the choice of w
had to be out of {0, 1}, while we allow w to be a rational number in [0, 1] and usually it is not
an integer.

First, we define weighting functions for items such that the number of bins used by our
algorithm is bounded by the total weight of the input sequence. Every weight function will be
used for one case, where cases are defined later. For a weight function U , for any set X of items,
we let U(X) =

∑
p∈X U(p).

10

Algorithm 1: Extended Harmonic.

Input: List L = {`1, `2, . . . , `n} of d-dimensional hyper-cube items such with rational
sides in (0, 1].

Output: Set D = {d1, d2, . . . , dm} of d-dimensional cube bins, such that these bins
contain a valid packing of the items in L.

1 ∀z, ez ← 0, nz ← 0
2 for ` ∈ L do
3 i← τ(`), ni = ni + 1
4 if ` is a small item then
5 pack ` using AssignSmall.
6 else
7 if ei < bαi · nic then
8 Color ` red; ei = ei + 1
9 if There exists an open bin of type (?, i) or (j, i) with fewer than θi red items

in the bin then
10 Pack ` into that bin.
11 else if There exists an open bin of type (j, ?) and δj ≥ γi · ti then
12 Pack ` into that bin.
13 Change the type of the bin to (j, i).

14 else
15 Open a new bin of type (?, i) and pack ` there.

16 else
17 Color ` blue;
18 if φ(i) = 0 then
19 if there exists an open bin of type (i) with fewer than βdi items then
20 Pack ` into that bin.
21 else
22 Open new bin of type (i).
23 Pack ` into that bin.

24 else
25 if There exists an open bin type (i, ?) or (i, j) with fewer than βdi blue items

in the bin then
26 Pack ` into that bin.

27 else if There exists an open bin type (?, j) and δi ≥ γj · tj then
28 Pack ` into that bin.
29 Change the bin type to (i, j).

30 else
31 Open a new bin of type (i, ?) and pack ` there.

The following lemma is similar to Lemma 2.2 of [38].

Lemma 2. The number of all indeterminate bins is O(1), where the constant is independent of
the input size.

Proof. The number of such bins is a linear function of the number of types. This holds due to
steps 9, 11, 21, 27, 29 of the algorithm.

Given the last lemma, we assume that no such bins exist in the output. Let Bi and Ri be
the number of bins containing blue items and red items, respectively, for type i (bins with both

11

blue and red items are counted in two such values). Let λi be the number of items of type i
in L. The algorithm keeps the proportion of red items out of all items for a given type almost
exactly, up to a constant number of items for every type. The next lemma was proved for the
one-dimensional case [38], and it holds for multiple dimensions since it deals with numbers of
items, and not with sizes or possible ways to pack items. Since there are no red items for types
1, 2, . . . , 17, we let Ri = 0 for these types.

The next lemma is also similar to Lemma 2.2 of [38] (see also [28]).

Lemma 3. Bi = 1−αi

βd
i

· λi +O(1), and Ri = αi
θi
· λi +O(1).

Let Y denote number of bins of type (i, j) for all values of i and j, i.e., the number of bins
which have both red and blue items. The next property holds due to the double counting of
such bins.

Lemma 4. A(L) ≤
∑

iBi +
∑

iRi − Y.

Let q be the maximum index i ≤ 17 such that there is at least one bin at termination that
satisfies the following condition: the bin is of the type (i, ?) if i /∈ {2, 3, . . . , 8} and the bin is of
the type (i, ?) or (20 + i, ?) for 2 ≤ i ≤ 8. If there is no such i, we let q = 1. The motivation
is to find whether there are bins with only blue items that are ready to receive red items. If
there are such bins, we are interested in the largest value δg such that there is a bin of type
(g, ?). Let e be the maximum index j ≥ 18 such that there is at least one bin of the type (?, j)
at termination, and if there is no such j, we let e = 0. There will be no red items for type 18,
and therefore in the case where e > 0, where have e ≥ 19.

Lemma 5. If 2 ≤ q ≤ 9, it holds that e ≤ 37− q. If 10 ≤ q ≤ 16, it holds that e ≤ 35− q.

Proof. Assume that 2 ≤ q ≤ 9, and consider the value δq. The type 37 − q + 1 has a right
endpoint of δq, and smaller items has smaller right endpoints for their intervals. Thus, since
there is a bin of type (q, ?) (or (20 + q, ?) which is possible for q 6= 9), all red items that require
space of δq or smaller are packed with blue items (otherwise, they could have been combined
into a bin of type (q, ?) or (20 + q, ?)).

Assume that 10 ≤ q ≤ 16, and consider the value δq. The type 35−q+1 has a right endpoint
of δq. Thus, since there is a bin of type (q, ?), all red items the require space of δi or smaller
are packed with blue items.

The next lemma holds by definition.

Lemma 6. Assume that q ∈ {2, 3, . . . , 16}. For any i ∈ {q + 1, . . . , 17}, there are no bins of
type (i, ?), and for any j ≥ e+ 1 there are no bins of type (?, j).

Definition 1. Let 0 ≤ w ≤ 1 be a parameter used for the analysis, as explained above. Let
q ∈ {2, . . . , 16}, e ∈ {19, . . . , 151}. Define the weight of an item p of size x to be

Ve,q(p) =



1, if x ∈ Ii, for i = 1, . . . , q

w, if x ∈ Ii, for i = q + 1, . . . , 17

αi
θi

+ 1−αi

βd
i

, if x ∈ Ii, for i = 18, . . . , e

(1−w)·αi

θi
+ 1−αi

βd
i

, if x ∈ Ii, for i = e+ 1, . . . , 151 .

Lemma 7. Let q ∈ {2, . . . , 16}, e ∈ {19, . . . , 151}, and let Ve,q(p) be as in Definition 1 such that
e satisfies Lemma 5 as its maximum value (e = 37 − q if q ≤ 9, and e = 35 − q otherwise).
Then, A(L) ≤

∑
p∈Ii Ve,q(p) +O(1).

12

Proof. Consider the bin types for every i. For 1 ≤ i ≤ q, there may be bins of types (i, ?) and
(i, j) for some values of j. For q + 1 ≤ i ≤ 17, there may be only bins of types (i, j) for some
values of j. There are no bins of type (j, i) or (?, i), since there are no red items for these types.
For 18 ≤ i ≤ e, there may be bins of types (i, ?) and (i, j) for some values of j, and bins of
types (?, i) and (j, i) for some values of j. For i ≥ e + 1, there may be bins of types (i, ?) and
(i, j) for some values of j, and bins of types (j, i) for some values of j.

Since there are no red items of type 18, the only bin types of the form (?, j) that may exist
are for j such that 19 ≤ j ≤ e, and the only bin types of the form (i, ?) that may exist are
{1, 2, . . . , q}. While there also may be bins of the type (i, j) for i ≤ q or j ≤ e, we cannot know
for bins with blue items of a type i ≤ q if the bin also has red items, and we cannot know if a
bin with red items of a type j ≤ e if it also has blue items. However, our analysis holds for all
cases.

Let X1 =
∑17

i=q+1Bi and X2 =
∑151

i=e+1Ri. By the discussion above, all bins for these types
contain both blue and red items, and therefore we get,

Y ≥ X1 and Y ≥ X2. (1)

This holds with inequality since there may be other bins with items of both colors.
We observe that for every w ∈ [0, 1] it holds that

(1− w) · Y ≥ (1− w) ·X1. (2)

w · Y ≥ w ·X2. (3)

Hence, we get that

Y ≥ w ·X2 + (1− w) ·X1. (4)

Combining Lemma 4 with (4) we get that

A(L) ≤
N∑
i=1

Bi +

N∑
i=1

Ri − Y

=
151∑
i=1

Bi +
151∑
i=18

Ri − (
17∑

i=q+1

Bi · (1− w) +
151∑

i=e+1

Ri · w). (5)

By that we get

A(L) ≤
∑

i∈{1,...,q,18,...,151}

Bi +
151∑

i=e+1

Ri · (1− w) +
17∑

i=q+1

Bi · w +
e∑

i=19

Ri

=
∑

i∈{1,...,q,18...151}

1− αi
βdi

· λi +

151∑
i=e+1

(1− w) · αi
θi

· λi

+
∑

i∈q+1,...,17

(1− ai) · w
βdi

· λi +
∑

i∈19,...,e

αi
θi
· λi +O(1)

=
∑
p∈Ii

Ve,q(p) +O(1),

where the inequality holds by a simple rearrangement of (5), the first equality holds by
Lemma 3 and the definition of Bi and Ri, and the second equality holds by the definition of
Ve,q.

13

Next, we define weighting functions for large items such that

A(L) ≤ max
1≤i≤17

Wi(L) +O(1) .

We split our proof into 17 cases such that in each case we will use different weighting functions.
Among 15 of these cases, i.e., cases 2, 3, . . . , 16, we will define the weighting function using
Definition 1 with respect to e, q.

Handling case 1: This is the case where q = 1. In this case it holds that all bins with blue
items of sizes above 1

3 that can be combined with red items were indeed combined with them.
In what follows, we define the weight of an item p of size x in this case.

W1(p) =



1−αi

βd
i

, if x ∈ Ii, for i = 1, . . . , 18

0, if x ∈ Ii, for i = 2, . . . , 17

αi
θi
, if x ∈ Ii, for i = 22, . . . , 28

αi
θi

+ 1−αi

βd
i

, if x ∈ Ii, for i = 19, . . . , 21, 29, . . . , 151 .

The definition of this case implies that bin types (2, ?), . . . , (17, ?) and (22, ?), . . . , (28, ?) do
not exist. Hence, Y ≥

∑17
i=1Bi +

∑28
i=22Bi. We use the property αi = 0 for 1 ≤ i ≤ 18, and get

A(L) ≤
N∑
i=1

Bi +

N∑
i=1

Ri − Y =

151∑
i=1

Bi +

151∑
i=1

Ri −
17∑
i=2

Bi −
28∑
i=22

Bi

=
∑

i=1,18,19,20,21,29,...,151

(Bi +Ri) +
∑

i=2,...,17,22...,28

Ri =

=
∑

i=1,18,19,20,21,29,...,151

(
1− αi
βdi

· λi +
αi
θi
· λi) +

∑
i=2,...,17,22...,28

αi
θi
· λi +O(1)

=
∑
p∈Ii

W1(p) +O(1) .

Handling cases 2, 3, . . . , 16: In Table 1, we present each of the cases which rely on using
both e and q.

14

Case # the largest value of e q Weighting function

2 35 2 W2(L) = V35,2(L)

3 34 3 W3(L) = V34,3(L)

4 33 4 W4(L) = V33,4(L)

5 32 5 W5(L) = V32,5(L)

6 31 6 W6(L) = V31,6(L)

7 30 7 W7(L) = V30,7(L)

8 29 8 W8(L) = V29,8(L)

9 28 9 W9(L) = V28,9(L)

10 25 10 W10(L) = V25,10(L)

11 24 11 W11(L) = V24,11(L)

12 23 12 W12(L) = V23,12(L)

13 22 13 W13(L) = V22,13(L)

14 21 14 W14(L) = V21,14(L)

15 20 15 W15(L) = V20,15(L)

16 19 16 W16(L) = V19,16(L)

Table 1: Weighting functions for cases 2, . . . , 16.

Since for every row in the table above, te = 1− tq+1 holds, substituting the values e, q and
ve,q of each row of the table above, into Lemma 7, yields that A(L) ≤

∑
p∈Ii Ve,q(p) +O(1).

Note that in these weight functions we did not take into account the fact that the definition
of q considers also items of sizes in (13 ,

1
2] as blue items that can receive red items in their bins.

The relevant cases are easy in the sense that the asymptotic competitive ratios for them are
small even without reducing these weights (cases 2, . . . , 7), and reducing these weights will not
change the competitive ratio of the algorithm.

Handling case 17: In this case q = 17. Any red item could have been combined into a blue
bin of the form (17, ?), and thus, there are no (?, j) bins at all. In what follows, we define the
weight of an item p of type i ≤ 151 in this case.

W17(p) =
1− αi
βdi

.

Since the number of bins type (?, j) is zero for any j, all the red items are packed in bins
which include blue items. i.e., the only type of bins that may exist are (i, j), (i), (i, ?), which
means that there are blue items packed into every bin. Hence, we get that Y =

∑
iRi. Which

yields

A(L) ≤
∑
i

Bi +
∑
i

Ri − Y =
∑
i

Bi +
∑
i

Ri −
∑
i

Ri

=
∑

i∈1,...,151
Bi =

∑
p∈Ii

W17(p) +O(1),

where first inequality holds by 4, and the last equality holds by definition of W17, Bi and
Lemma 3. by the analysis above we get that

Lemma 8. A(L) ≤ max1≤i≤17Wi(L) +O(1).

15

4.1 Upper bounds on the asymptotic competitive ratio

In this section, we provide the αi parameters for square and cube packing, respectively. We
also provide upper bounds on the asymptotic competitive ratio for each case in Table 2.

For each j ∈ {1, 2, . . . , 17}, we use the following integer program for obtaining an upper
bound on the asymptotic competitive ratio,

maximize fj(X) =
151∑
i=1

wi · xi +
112d

111d − 1

(
1−

151∑
i=1

xi · tdi+1

)
subject to

151∑
i=1

xi · tdi+1 ≤ 1 (6)

151∑
i=1

b(ti+1 · (u+ 1))cd · xi ≤ ud ∀u ∈ {1, . . . , 220} (7)

xi ≥ 0 and xi ∈ Z ∀i ∈ {1, . . . , 151}

Here X is a feasible set of items which fit into a single bin (of an optimal solution), xi is the
number of items type i in X, and wi is the weight of an item of type i, defined in the previous
part of the section by the function Wi. The value 1 −

∑111
i=1 xi · tdi+1 is an upper bound on the

total volume (or area) of all the small items in X, and by Lemma 1, 112d

111d−1 ·
(

1−
∑111

i=1 xi · tdi+1

)
is an upper bound of the total weight of all the small items in X.

The second type of constraints is based on a simple property that for an integer u ≥ 1,
no bin can contain more than ud items of size above 1

u+1 (see for example Claim 2.1 of [16]).
For every item type, the constraint takes into account the number of independent items of size
above 1

u+1 it can be split into. An item of type i has a side above 1
t+1 , so every side can be split

into b ti+1

1/(u+1)c parts. For example, an item of side above 1
2 can be split into three items of sides

above 1
6 in every dimension.

In order to obtain a slightly better result, we added two constraints of a different form to
the integer program for the case d = 2, as follows.

The first constraint is:

16∑
i=1

21 · xi +

28∑
i=17

11 · xi +

38∑
i=29

xi ≤ 57 . (8)

The second constraint is:

16∑
i=1

80 · xi +
28∑
i=17

30 · xi +
37∑
i=29

10 · xi + x38 ≤ 190 . (9)

Lemma 9. Conditions (8) and (9) hold for every valid bin of an optimal solution (for d = 2).

Proof. We start with proving which type of contents of a bin each constraint excludes, given that
the solution already satisfies the constraints of the original integer program. From constraint
(7) for u = 1, 2, 3, 4 we get

17∑
i=1

xi ≤ 1 , (10)

16

8∑
i=1

4 · xi +

28∑
i=9

xi ≤ 4 , (11)

17∑
i=1

4 · xi +
37∑
i=18

xi ≤ 9 , (12)

and
16∑
i=1

9 · xi +
18∑
i=17

4 · xi +
38∑
i=19

xi ≤ 16 . (13)

Let G16 =
∑16

i=1 xi, G28 =
∑28

i=17 xi, G38 =
∑38

i=29 xi. Since all variables are non-negative
and integral, by (10), we have G16 ≤ 1, and therefore we have either G16 = 1 (one of the
corresponding variables is equal to 1) or G16 = 0 (all these variables are equal to zero). By (11),
we have G16+G28 ≤ 4. By (13), we have 9 ·G16+G28+G38 ≤ 16. For proving (8), we will show
that 21 · G16 + 11 · G28 + G38 ≤ 57 holds for all cases due to the already existing constraints,
except for one case that we prove separately. Indeed, if G16 = 0, by the last constraints (those
that are based on (11) and (13)), we have G28 +G38 ≤ 16 and G28 ≤ 4, and we get

21 ·G16 + 11 ·G28 +G38 = 11 ·G28 +G38 = 10 ·G28 + (G28 +G38) ≤ 10 · 4 + 16 = 56 .

If G16 = 1, we get G28 ≤ 3 by (11). If G28 ≤ 2, we get (using (13)),

21 ·G16 + 11 ·G28 +G38 = 12 ·G16 + 10 ·G28 + (9 ·G16 +G28 +G38) ≤ 12 + 20 + 16 = 48 .

If G16 = 1 and G28 = 3, the constraint 9 · G16 + G28 + G38 ≤ 16 is equivalent to G38 ≤ 4. If
G38 ≤ 3, we get

21 ·G16 + 11 ·G28 +G38 ≤ 21 + 33 + 3 = 57 .

Thus, to complete the proof of the constraint, it is required to prove that the remaining case
G16 = 1, G28 = 3, and G38 = 4 is impossible, since this is the only remaining case. This is done
after the discussion of the second constraint.

Square packing Cube packing

case 1 2.088447879968511 2.5731896581108735
case 2 1.9438375658626355 2.45464218336544
case 3 2.0109397168059324 2.475823071455533
case 4 1.9607242494316246 2.455719344199358
case 5 1.9942453743436321 2.5115525001235937
case 6 1.9875046382360564 2.5339175799806912
case 7 1.9554146240072456 2.5016302664189443
case 8 1.9441281429162531 2.493821911539605
case 9 2.0884478982863968 2.5734762658161277
case 10 2.0884277288254993 2.5593413871191126
case 11 2.088445077308426 2.5567398601707696
case 12 2.0876840226666538 2.557631911023032
case 13 2.0847781920964583 2.5498950440578287
case 14 2.07732977965866 2.5226265870712448
case 15 2.0656430335436333 2.527717407098689
case 16 2.0437751234561317 2.5385458044738085
case 17 2.088086287477056 2.5718658072279847

Table 2: Square and cube packing: upper bounds on the total weights for each case.

17

For the second constraint (9), let H38 = x38 and H37 = G38 −H38 =
∑37

i=29 xi. We will also
use the two new variables, whose sum is G38. From (12) we have 4 ·G16 +G28 +H37 ≤ 9, and
by (13) we have

9 ·G16 +G28 +H37 +H38 ≤ 16 .

We prove the constraint 80 ·G16 + 30 ·G28 + 10 ·H37 +H38 ≤ 190.
If G16 = 0, by also using G28 ≤ 4, we have

80 ·G16 + 30 ·G28 + 10 ·H37 +H38 = 20 ·G28 + 9 · (G28 +H37) + (G28 +H37 +H38)

≤ 80 + 81 + 16 = 177 .

If G16 = 1 and G28 ≤ 2, we have

80 ·G16 + 30 ·G28 + 10 ·H37 +H38

= 35·G16+20·G28+9·(4·G16+G28+H37)+(9·G16+G28+H37+H38) ≤ 35+40+81+16 = 172 .

In the remaining case, where G16 = 1 and G28 = 3 hold, we show later that G38 ≤ 3, and
H37 ≤ 2. Moreover, we will show that if indeed G16 = 1, G28 = 3, and H37 = 2 hold, then
H38 = 0. We would like to show that in the case H37 ≤ 1, the constraint still holds, and it
holds also if H37 = 2 and H38 = 0. In the first case, 80 · G16 + 30 · G28 + 10 · H37 + H38 =
80 + 90 + 9 ·H37 + (H37 +H38) ≤ 182. In the second case, substitution of the exact values yields
exactly 190.

We now show that in the case G16 = 1 and G28 = 3, it holds that G38 ≤ 3. Assume that a
bin contains an item of size in (0.6, 1], four items of sizes above 1

3 (one of which is the item of
size above 0.6), and eight items of sizes above 1

5 (out of which, four are larger than 1
3).

All items have sizes above 0.2. We start with claiming that the item of size above 0.6 is
packed in a corner of the bin. If this is not the case, it can be moved to a corner if there is no
item blocking it. Since its side is above 0.6, it cannot be the case that there is another item
both below and above it, so it can be shifted in one direction until it reaches a side of the bin
(the top or the bottom). Similarly, there cannot be both an item to its right and to its left, so
it can be moved to the left or to the right side of the bin. By rotating the bin, assume that it
is packed into the top left corner.

Draw two lines as follows: a horizontal line with distance 0.2 from the bottom of the bin,
and a vertical one, with distance 0.2 from the right side of the bin. These lines do not intersect
the item of size above 0.6, but we claim that they intersect the interior of all other items. Every
item that the two lines do not intersect must be contained in an L-shaped area whose height
and width are below 0.2, and the corner also allows the packing of an item whose side is smaller
than 0.2. Since there are no such items, all other items have an intersection with one of the
lines or both. In addition to the item of size above 0.6, the bin has three other items of sides
are above 1

3 . Thus, out of the two lines, there is a line that intersects two such items (it cannot
intersect all three, but it is possible that each one of the lines intersects two such items). Given
the item sizes, a line that intersects two such items can intersect only one additional (smaller)
item (this item has size in (15 ,

1
3]). The third item of size above 1

3 is intersected by the other
line, and that line can intersect three other items in total. However, if it intersects four items in
total, one of them is in fact intersected by both lines, since the total size of items not intersected
by the other line is below 0.8. Thus, in total, there are at most six intersected items, three of
them have sizes above 1

3 , and at most three of them have sides in (15 ,
1
3]. This proves that in

this case G38 ≤ 3.
Now, we show that if there are two items with sides in (14 ,

1
3], there cannot be a third item.

If there are at most five intersected items, we are done. When there are six items of sides in

18

(15 ,
1
2], four of them are intersected by one of the lines, such that only one of them has size in

(13 ,
1
2]. If there are two items with sides in (14 ,

1
3] and an item whose side is above 1

5 , the total
is above 1, which is impossible since the items can overlap only in the boundaries. This shows
that in the case G16 = 1 and G28 = 3, it holds that H37 ≤ 2, and if H37 = 2, it also holds that
H38 = 0.

The next theorem states our main result.

Theorem 10. The asymptotic performance ratio of Algorithm Extended Harmonic for square
packing is at most 2.0885, while for cube packing is at most 2.5735.

Proof. We set the parameters αi according to Table 5 for square and cube packing. For each
case we applied a simple integer program solver in order to find the worst case bound. We
obtain the results for square and cube packing, as described in Table 2. Hence, we get that
A(L) ≤ 2.5735 · OPT (L) + O(1) for cube packing, and A(L) ≤ 2.0885 · OPT (L) + O(1) for
square packing.

5 The parameters for our algorithms

In this section, we provide the interval partition and the parameters αi for square and cube
packing, respectively. We also include values used in the algorithms that are based on the
intervals.

Table 3: Intervals and auxiliary values used in our algorithm.

i (ti+1, ti] δi βi γi φ(i)

1 (0.7, 1] 0 1 0 0

2 (0.6875, 0.7] 0.3 1 0 1

3 (0.675, 0.6875] 0.3125 1 0 2

4 (0.67, 0.675] 0.325 1 0 3

5 (0.668, 0.67] 0.33 1 0 4

6 (0.667, 0.668] 0.332 1 0 5

7 (0.6667, 0.667] 0.333 1 0 6

8 (23 , 0.6667] 0.3333 1 0 7

9 (0.666, 23] 1
3 1 0 8

10 (0.665, 0.666] 0.334 1 0 9

11 (0.6625, 0.665] 0.335 1 0 10

12 (0.65625, 0.6625] 0.3375 1 0 11

13 (0.65, 0.65625] 0.34375 1 0 12

14 (7
11 , 0.65] 0.35 1 0 13

15 (0.625, 7
11] 4

11 1 0 14

16 (0.6, 0.625] 0.375 1 0 15

17 (0.5, 0.6] 0.4 1 0 16

18 (0.4, 0.5] 0 2 0 0

19 (0.375, 0.4] 0 2 1 0

20 (4
11 , 0.375] 0 2 1 0

21 (0.35, 4
11] 0 2 1 0

22 (0.34375, 0.35] 0.3 2 1 1

23 (0.3375, 0.34375] 0.3125 2 1 2

24 (0.335, 0.3375] 0.325 2 1 3

19

25 (0.334, 0.335] 0.33 2 1 4

26 (0.3335, 0.334] 0.332 2 1 5

27 (0.33335, 0.3335] 0.333 2 1 6

28 (13 , 0.33335] 0.3333 2 1 7

29 (0.3333, 13] 0 3 1 0

30 (0.333, 0.3333] 0 3 1 0

i (ti+1, ti] δi βi γi φ(i)

31 (0.332, 0.333] 0 3 1 0

32 (0.33, 0.332] 0 3 1 0

33 (0.325, 0.33] 0 3 1 0

34 (0.3125, 0.325] 0 3 1 0

35 (0.3, 0.3125] 0 3 1 0

36 (3
11 , 0.3] 0 3 1 0

37 (14 ,
3
11] 0 3 1 0

38 (15 ,
1
4] 0 4 1 0

39 (2
11 ,

1
5] 0 5 1 0

40 (16 ,
2
11] 0 5 1 0

41 (0.15, 16] 0 6 1 0

42 (17 , 0.15] 0 6 2 0

43 (18 ,
1
7] 0 7 2 0

44 (19 ,
1
8] 0 8 2 0

45 (1
10 ,

1
9] 0 9 2 0

46 (1
11 ,

1
10] 0 10 3 0

47 (1
12 ,

1
11] 0 11 3 0

48 (1
13 ,

1
12] 0 12 3 0

49 (0.075, 1
13] 0 13 3 0

50 (1
14 , 0.075] 0 13 4 0

51 (1
15 ,

1
14] 0 14 4 0

52 (1
16 ,

1
15] 0 15 4 0

53 (0.06, 1
16] 0 16 4 0

54 (1
17 , 0.06] 0 16 5 0

55, . . . , 61 (1
i−37 ,

1
i−38] 0 Table 4 Table 4 0

62 (1
24 ,

3
70] 0 23 7 0

63 (1
25 ,

1
24] 0 24 7 0

64 (1
26 ,

1
25] 0 25 7 0

65 (3
80 ,

1
26] 0 26 7 0

66 (1
27 ,

3
80] 0 26 8 0

67, . . . , 73 (1
i−39 ,

1
i−40] 0 Table 4 Table 4 0

74 (1
34 ,0.03] 0 33 10 0

75, . . . , 151 (1
i−40 ,

1
i−41] 0 Table 4 Table 4 0

Table 4: The values βi and γi for Table 3.

i βi γi i βi γi i βi γi
55 17 5 92 51 15 122 81 24

56 18 5 93 52 15 123 82 24

57 19 5 94 53 15 124 83 24

20

58 20 6 95 54 16 125 84 25

59 21 6 96 55 16 126 85 25

60 22 6 97 56 16 127 86 25

61 23 6 98 57 17 128 87 26

67 27 8 99 58 17 129 88 26

68 28 8 100 59 17 130 89 26

69 29 8 101 60 18 131 90 27

70 30 9 102 61 18 132 91 27

71 31 9 103 62 18 133 92 27

72 32 9 104 63 18 134 92 27

73 33 9 105 64 19 135 94 28

75 34 10 106 65 19 136 95 28

76 35 10 107 66 19 137 96 28

77 36 10 108 67 20 138 97 29

78 37 11 109 68 20 139 98 29

79 38 11 110 69 20 140 98 29

80 39 11 111 70 21 141 100 30

81 40 12 112 71 21 142 101 30

82 41 12 113 72 21 143 102 30

83 42 12 114 73 21 144 103 30

84 43 12 115 74 22 145 104 31

85 44 13 116 75 22 146 105 31

86 45 13 117 76 22 147 106 31

87 46 13 118 77 23 148 107 32

88 47 14 119 78 23 149 108 32

89 48 14 120 79 23 150 109 32

90 49 14 121 80 24 151 110 33

91 50 15

Table 5: Values of αi that are parameters of our algorithms for square and cube packing.

Square packing Cube packing

αi for 1 ≤ i ≤ 18 0 0

α19 0.11526431542309074 0.23560671174940934

α20 0.17175402209391144 0.24349456708719025

α21 0.14364948238440467 0.011054757786850555

α22 0.17775964679070577 0.09233137770530553

α23 0.16247599807416024 0.10296544873687286

α24 0.17013150154133094 0.09980866333707894

α25 0.17218382694021506 0.11275956304754697

α26 0.17186065470253054 0.10573246664180191

α27 0.1712411485735466 0.21831169314212995

α28 0.17115325420709004 0.16810602509149197

α29 0.011808683266528508 0.28469363087983357

α30 0.08864616236688028 0.46134537517964436

α31 0.0746578085809842 0.4754821887062161

α32 0.1392973955221088 0.4834778208599464

21

α33 0.20463684875950888 0.38230203454521344

α34 0.11988863237025116 0.20815458494242878

α35 0.1489855469399089 0.2094357013281899

α36 0.42658319200096906 0.6476643335428202

α37 0.3313855159770591 0.4846417112019235

α38 0.26591984078589526 0.3459551479018446

α39 0.23652286713889142 0.1967822914561262

α40 0.17320945474790095 0.22903844377204607

α41 0.2907287245318693 0.38585033090166515

α42 0.27690915366279856 0.2633509344925706

α43 0.35186597263941155 0.37148866892244403

α44 0.28487022531216166 0.3228819685751433

α45 0.3405383352070134 0.294966161863426

α46 0.13927977565087557 0.11613078486074929

α47 0.12478043051170912 0.21976007519116803

α48 0.17368906765817593 0.2367222519372697

α49 0.049341692986982266 0.06874946889000572

α50 0.21756972846743544 0.30801878565803864

α51 0.15176378068862706 0.10874307802527139

α52 0.27986004047748236 0.34382124885682674

α53 0.09140290314421057 0.19822255924214388

α54 0.16115290643799296 0.21657253679087018

α55 0.10509477906408826 0.21064008575188697

α56 0.07908677596102542 0.5286073975827003

α57 0.06049271754448721 0.23593465027098925

α58 0.027902842302122366 0.10627837309910759

α59 0.03757222734769261 0.08778737037136902

α60 0.044034294107809235 0.0628782883568702

α61 0.04169873464584284 0.07892306409577904

α62 0.045855398808323844 0.06811428634665145

α63 0.03268220721227799 0.08934119933293255

α64 0.020287554239005412 0.10985985543445637

α65 0.03662245261759983 0.16657268323184893

α66 0.05299014948250891 0.16370099694324725

α67 0.05837546569384355 0.14763245122124014

α68 0.06021197613253543 0.1671268810238925

α69 0.05286287383333055 0.18510082544610912

α70 0.041141831190207534 0.011723129997064097

α71 0.025858702537442546 0.02425242847273701

α72 0.03667621572334345 0.011268687510284647

α73 0.05790545597682889 0.01566133856254459

α74 0.0249935407107143 0.0023807218784999695

α75 0.05090633446809589 0

α76 0.04180489086300371 0.014065837749926702

α77 0.0598352802367374 0.07665846642009927

α78 0.04622400142944383 0.08912467432180055

α79 0.06598393751625004 0.06724339050226902

22

α80 0.015819026610491616 0.11390203480637812

α81 0.014052365574156844 0.1529879344816335

α82 0.019542717826361966 0.09257293559305935

α83 0.02093163772726897 0.13375170776745032

α84 0.03232182211334006 0.10899217160505548

α85 0.035404672067686827 0.08961421224461213

α86 0.04160032480693088 0.0870469166593813

α87 0.03084632143248167 0.11967303625257314

α88 0.03218274376106067 0.08625153412085623

α89 0.027386520210324672 0.11468071689788334

α90 0.0467579925718552 0.09031490851523155

α91 0.03515363399072097 0.06420968479797878

α92 0.009522308778970257 0.08246536630622064

α93 0.050007623111272215 0.06735253993260948

α94 0.027397549490475293 0.07986056987421691

α95 0.040108142281991443 0.08506428649843378

α96 0.04060265542768865 0.06921061897885533

α97 0.06176115933187615 0.07888370245488946

α98 0.05149748670123738 0.0730839676106615

α99 0.030976848369531906 0.07882644193751703

α100 0.04985378105030419 0.07855811096717208

α101 0.02428257540185641 0.0755618507268449

α102 0.039279772504672905 0.06683328717340548

α103 0.018431969726226516 0.07109645510485962

α104 0.01615117687134704 0.07686292296039537

α105 0.033836619264623 0.09207944256220246

α106 0.021684498478341585 0.06792762522935986

α107 0.018653119555053665 0.07184860065578008

α108 0.017510378838004492 0.09077658256097626

α109 0.005027225774378641 0.06892046751777886

α110 0.0050070660422215085 0.08404266181153941

α111 0.008641122238781884 0.05725657878308299

α112 0.0114109321956688 0.04505359172704221

α113 0.00017017085816917188 0.05865839976147119

α114 0.007227843412475732 0.06098740030051164

α115 0.02380064289496081 0.06750979580178162

α116 0.024626599428481333 0.07232664164227215

α117 0.0002926203031912711 0.07155889973262747

α118 0.00367483614722508 0.07655628977344214

α119 0.003637542351726364 0.08531209453810662

α120 0.0022174466541568516 0.07272780537431511

α121 0.003972815375790473 0.060692790181056167

α122 0.0063500940342546275 0.07565018146829666

α123 0.0008190666659831924 0.07435001036624961

α124 0.006404294461389681 0.07641678559172299

α125 0.0772226658137164 0.09172841413844901

α126 0.002848362891246903 0.09045869915075516

23

α127 0.0012952627416890072 0.05284222333171534

α128 0.017932379180303493 0.07194325920411004

α129 0.007137167661640409 0.08907570891638156

α130 0.03712900994359092 0.09267691307775361

α131 0.0029178803264349185 0.06180156823851851

α132 0.015565067465901694 0.057769376722262844

α133 0.0007797083742386857 0.06774002323306783

α134 0.045217214440781583 0.0751076759531758

α135 0.0013741843692585687 0.12059175834028163

α136 0.0003354018167419648 0.08660859544741523

α137 0.0012121494697902024 0.06185526343471609

α138 0.015325390110678683 0.06456079230878453

α139 0.0028034548030816953 0.0636821969541907

α140 0.0415339431984868 0.07602483985713077

α141 0.002954384831987067 0.08915221681102126

α142 0.028214095268082884 0.0984722500891399

α143 0.008801691293012892 0.09067271353727313

α144 0.011981667605959034 0.09414865557456398

α145 0 0.10168269428760995

α146 0.04442994587106425 0.0909148528042305

α147 0.0025122969557108132 0.09549983384551514

α148 0.005897723663266186 0.07970401566114022

α149 0.0008298536197157702 0.09550429166121593

α150 0.003146593473569992 0.11367223296069545

α151 0.007423928474611485 0.09621713402681015

Table 6: The values of w for cases 2, 3, . . . , 16, used in the analysis of our algorithms for square
and cube packing.

Case Square packing Cube packing

2 0.5218896004296165 0.3559465695997889

3 0.6367683021976823 0.3324106710303888

4 0.5508161595298383 0.3547433890555143

5 0.6081996168574735 0.29283548893321054

6 0.5966563767881228 0.2680609843073525

7 0.5417242692011557 0.30382397508342246

8 0.6988933681604961 0.42984690908567424

9 0.7677036830017706 0.7660334876156012

10 0.7691331237757477 0.7674343307466625

11 0.773230983786544 0.773273461291727

12 0.7836563381680435 0.7932633383349649

13 0.7929071522802713 0.8240834379579076

14 0.8113137810136913 0.8470244201613557

15 0.8219971336489986 0.88618415266251

16 0.872756492818088 0.9152418129618586

24

6 Counter examples

In this section, we discuss the algorithm suggested by Han, Ye, and Zhou [28] and its analysis,
and show some deficiencies of that work. We use the parameters of the journal version and in
particular, we define counter-examples for the bounds on the two-dimensional case claimed in
that work. Our examples show that the asymptotic competitive ratio of the algorithm is higher
than the claimed bound. This is shown not only for the analysis but for the actual output of
the algorithm, found by its action on inputs suggested here, which is calculated by applying
the algorithm for sufficiently large inputs and comparing the numbers of bins of the algorithm
and of an offline solution. We note that using our method of analysis, we can show an upper
bound of approximately 2.14 on the asymptotic competitive ratio for the algorithm of [28].
Our examples show that the asymptotic competitive ratio cannot be smaller than 2.122 while
the claimed bound of [28] is 2.1187.

We also show that the analysis of [28] cannot yield the claimed results, or any result that is
not much larger, and moreover, the improvement over the bounds of [18] for the two-dimensional
case is extremely small. Similar observations can be established for earlier versions of this work
[27] and for the three-dimensional case (in both versions of this work [28, 27]), by applying the
weight functions provided in those papers.

Thus, we show that the results of [28] do not hold. We now explain the shortcomings of the
proofs of this work. The analysis of [28, 27] is based on a special case of the methods of [38],
using a partition into four cases. For cases 2 and 3, there are two weight functions, where any
of these functions can be used for analysing optimal solutions. However, the proof of Lemma
6 of [28] is unclear and in fact the application of the method is incorrect. The correct way
to apply the method is to select exactly one of the two functions for each case, and to use
that function for testing all possible bins of an optimal solution. Obviously, one can choose the
better function of the two in the sense that the maximum (or supremum) for every possible bin
(of an optimal solution) is smaller. It is possible to find an upper bound (for the total weight of
every possible bin) rather than finding the exact maximum or supremum for each function. The
actual analysis of [28] for every case is split into five scenarios, such that one of the two functions
of the case is chosen for each of the scenarios. However, we stress that the same function should
have been chosen for all scenarios of one case. This is the reason that the analysis does not
hold, and we can show counter-examples for the claimed asymptotic competitive ratio. The
way to correct the analysis is to select one of the two functions for each case, and we show that
no matter which of the two is used for case 2 of [28], this kind of analysis cannot yield an upper
bound below 2.24069972 for square packing, while the upper bound of [18] was approximately
2.244361. We note that cases 1 and 4 of that work are correct, since a single weight function is
proposed for each of these cases.

In order to discuss the algorithm presented in [28], we present the parameters here, and we
refer to the algorithm with these parameters simply as the algorithm of [28]. Table 7 consists
of the interval partition, and the parameters used as αi values. The algorithmic approach
of the design of the algorithm is an adaptation of Super Harmonic algorithms into multiple
dimensions, as we use here, so it is an Extended Harmonic algorithm (see Algorithm 1). The
weight functions are mentioned later, when we show that the analysis cannot yield bounds close
to the claimed ones.

Next, we define our example for case 2, and explain how the algorithm of [28] handles the
example. We prove the following theorem using Lemmas 12 and 13.

Theorem 11. Let P1 and P2 be the inputs defined below. Let the cost of the algorithm of [28]
for Pi be denoted by νi. It holds that x1

OPT (P1)
> y and x2

OPT (P2)
> y, where y = 2.1187 is the

claimed upper bound on the asymptotic competitive ratio of that algorithm.

25

i (ti+1, ti] βi δi φi γi θi = β2i − (βi − γi)2 αi

1 (0.705, 1] 1 0 0 0 0 0
2 (0.6475, 0.705] 1 0.295 2 0 0 0
3 (0.60, 0.6475] 1 0.3525 3 0 0 0
4 (0.5, 0.60] 1 0.4 4 0 0 0
5 (0.4, 0.5] 2 0 0 0 0 0
6 (0.3525, 0.4] 2 0.2 1 1 3 0.1348
7 (1/3, 0.3525] 2 0.295 2 1 3 0.2
8 (0.295, 1/3] 3 0 0 0 0 0
9 (1/4, 0.295] 3 0 0 1 5 0.3096
10 (1/5, 1/4] 4 0 0 1 7 0.2248
11 (1/6, 1/5] 5 0 0 1 9 0.16
12 (1/7, 1/6] 6 0 0 1 11 0.13
13 (1/8, 1/7] 7 0 0 1 13 0.1
14 (1/9, 1/8] 8 0 0 1 15 0.1
15 (0.1, 1/9] 9 0 0 1 17 0.1
16 (1/11, 0.1] 10 0 0 2 36 0.05
17 (0, 1/11] ∗ ∗ ∗ ∗ ∗ ∗

Table 7: Intervals and other parameters used in the algorithm of [28].

Let ε > 0 be a sufficiently small positive constant (where in particular ε < 0.00001).

Input P1. Now, we will describe the first input P1 (which can be defined to be arbitrarily
large in the sense that the cost of an optimal solution can grow without bound), a feasible
solution for the input, and the output of the algorithm for P1.

Let M,N be large positive integers (in this section the algorithm is fixed, and the roles of
M and N in the algorithm are not used). In this input, we will require that N · (4α12

11 + 2α9
5) =

M · (1− 2α9
5 −

2α10
7 −

5α12
11) will hold. There are infinitely many positive integers M such that N

is an integer as well, since all parameters are integral. Moreover, we can assume that M and N
are both divisible by the required integers to make all numbers of bins discussed below integral
too. This assumption will also be used for P2 later.

The input is described by eight batches of items, arriving in the order defined below. The
items of batch j are called batch j items.

1. 5M + 4N items of size 1
7 + ε,

2. 2M items of size 1
5 + ε,

3. 2M + 2M items of size 1
4 + ε,

4. M items of size 1
2 + ε,

5. N items of size 0.6 + ε,

6. 3M + 3N items of size 0.3525 + ε,

7. 24M + 25N items of size 1
23 + ε.

8. Items of size ε, whose total area is calculated later, such that these items are not packed
into bins of the items of the previous batch.

26

A feasible Solution. It is possible to pack all of the items above in M +N bins. See Figure
3. Obviously, the number of bins cannot be smaller than M +N , as this is the number of items
whose sizes are larger than 1

2 , and no two such items can share a bin. In the solution, there
are M bins type A and N bins type B. Every type A bin has 24 items of batch 7, five items
of batch 1, two items of batch 2, two items of batch 3, three items of batch 6, and one item of
batch 4. Every type B bin has 25 items of batch 7, four items of batch 1, two items of batch 3,
three items of batch 6, and one item of batch 5.

Figure 3: The two types of bins defined in an optimal solution for Input P1, where type A is on
the left hand size, and type B is on the right hand side.

Based on the optimal solution, we find the area of items of size ε. The area of an item
of size ρ + ε for 0 < ρ ≤ 0.65 is below ρ2 + 2ε. Thus, neglecting terms that are linear (or
quadratic) in ε, and letting ε be chosen such that the bins of an optimal solution are filled
completely, the area in a bin of type A is 1 − 24 · (1

23)2 − 5 · (17)2 − 2 · (15)2 − 2 · (14)2 − 3 ·
0.35252 − 0.52 = 102944997/4147360000 ≈ 0.024821813635662, and the area in a bin of type B
is 1−25·(1

23)2−4·(17)2−2·(14)2−3·0.35252−0.62 = 55324197/4147360000 ≈ 0.013339617732726.
Note that the algorithm used for small items (of [19]) will not pack such items with items of
side 1

23 + ε into the same bins as long as the sizes are not in an interval of the form (1
10·2k ,

1
11·2k]

for an integer k ≥ 0, which can be avoided.

Lemma 12. The number of bins for the output of the algorithm of [28] for P1 is approximately
11.4632218 ·M , and the asymptotic competitive ratio for P1 is at least 2.12294632.

Proof. We consider the input and the algorithm, and describe the packing performed for every
batch. We use the parameters of the algorithm, based on the table. The line numbers below
refer to Extended Harmonic, which is identical to the algorithm of [28].

1. The first batch has 5M + 4N items of type 12. Since the set of bins is currently empty,
an application of EH results in new bins. Using lines 7 and 17 we find that there are
α12·(4N+5M)

11 bins with eleven red items packed into each such bin, where these bins may
receive blue items of some type later. Moreover, by lines 19, 22 and 25, the algorithm will
also open (1−α12)(4N+5M)

36 bins that have 36 blue items, such that each bin can not receive
any other item.

27

2. The second batch has 2M items of type 10. The action is similar to the first batch. The
items cannot be packed into previous bins since δ10 = δ12 = 0. The number of new bins
with seven red items is α10·(2M)

7 , and the number of bins with 16 blue items is (1−α10)·2M
16 .

3. The third batch has 2N + 2M items of type 9. The action is similar to the first two
batches, since δ9 = 0. The number of new bins with five red items is α9·(2M+2N)

5 , and the

number of bins with nine blue items is (1−α9)·(2M+2N)
9 .

4. The fourth batch has M items of type 4. At this time, the algorithm has bins with blue
items that cannot receive other items, but it has bins of type (?, j) for j ∈ 9, 10, 12, and

every such bin can receive an item of type 4. The number of such bins is α12·(4N+5M)
11 +

α10·(2M)
7 + α9·(2M+2N)

5 . We required that N · (4α12
11 + 2α9

5) = M · (1 − 2α9
5 −

2α10
7 − 5α12

11),

and therefore α12·(4N+5M)
11 + α10·(2M)

7 + α9·(2M+2N)
5 = M . Every item of type 4 is added to

a bin of red items, and as a result, no bin that can receive other items remains after all
items of the fourth batch are presented.

5. The fifth batch has N items of type 3. Since α4 = 0, and there are no open bins, the
algorithm will open N bins, such that each one of the bins has exactly one item of size 0.6
+ ε. These bins could potentially receive red items later, but it will not be able to receive
red items of type 6. There are no further items of types 7, 8, . . . , 16, and thus these bins
will not receive other items.

6. The sixth batch has 3N + 3M items of type 6. Since no previous bins can receive further
items, the packing is as for the three first batches, and there are new bins with three red
items, where the number of these bins is α6·(3M+3N)

3 , and the number of bins with four

blue items is (1−α6)·(3M+3N)
4 .

7. The seventh batch consists of 24M + 25N items of size 1
23 + ε. Since the size of the items

is less than 1
11 , the items will be pack using algorithm AssignSmall. Every bin can have

222 items, and hence, the algorithm will open new (24M + 25N) · 1
222

bins, such that each
bin contains 222 items of size 1

23 + ε.

8. The eighth batch consists of items of size ε. By our assumption, they are packed by
AssignSmall into new bins. The number of bins is approximately the total area of these
items, which is 102944997·M+55324197·N

4147360000 .

To find the cost of the algorithm, and by using the requirement N · (4α12
11 + 2α9

5) = M · (1−
2α9
5 −

2α10
7 −

5α12
11), we get that N = 724609

164696 ·M , where 724609
164696 ≈ 4.399675766. Thus, the optimal

cost as a function of M is 889305
164696 ·M .

Using the analysis of [28], it can be noted that after packing all the items in the input, the
only open bins for red items are (?, 6), which means there are no bins of type (?, j) for j > 6
and the input belongs to case 2 of that analysis.

Based on the output, we will get the following total cost:

(1− α12)(4N + 5M)

36
+

(1− α10) · (2M)

16
+

(1− α9) · (2M + 2N)

9
+
α6 · (3M + 3N)

3

+
(1− α6) · (3M + 3N)

4
+

24M + 25N

222
+

102944997 ·M + 55324197 ·N
4147360000

+M +N .

By using the values of α6, α9, α10, and α12, we find that the total cost is approximately
11.4632218067166 ·M and the resulting lower bound on the asymptotic competitive ratio of the
algorithm is 2.12294632176699.

28

Input P2. Now, we will describe the second input. Let M,N be large positive integers. In
this input, we will require that N · 2α9

5 = M · (1− 5α12
11 −

2α10
7 −

2α9
5) will hold.

The input is described by ten batches of items, arriving in the order defined below.

1. M items of size 1
2 + ε,

2. 5M items of size 1
7 + ε,

3. 2M items of size 1
5 + ε,

4. 2N + 2M items of size 1
4 + ε,

5. 3N + 3M items of size 1
3 + ε,

6. N items of size 0.6475 + ε,

7. 8M + 8N items of size 1
13 + ε,

8. 6N items of size 1
12 + ε,

9. 10M items of size 1
22 + ε.

10. Items of size ε, whose total area is calculated later, such that these items are not packed
into bins of the items of the previous batches.

Figure 4: The two types of bins defined in an optimal solution for Input P2. Type A is on the
left hand size, and type B is on the right hand side.

A feasible Solution. It is possible to pack all of the items above in M+N bins. See Figure 4.
Obviously, the number of bins cannot be smaller than M +N , since this is the number of items
whose size is larger that 1

2 . In the solution, there are M bins type A and N bins type B. Each
bin of type A has has ten items of batch 10, eight items of batch 7, three items of batch 5, two
items of batch 4, two items of batch 3, five items of batch 2, and one item of batch 1. Every
bin of type B has six items of batch 8, eight items of batch 7, one item of batch 6, three items
of batch 5 and two items of batch 4.

Based on the optimal solution, we find the area of items of size ε. Similarly to previous
example, we let ε tend to zero, and fill all the bins of the optimal solution completely. The area
in a bin of type A is 1 − 10 · (1

22)2 − 8 · (1
13)2 − 5 · (17)2 − 2 · (15)2 − 2 · (14)2 − 3 · (13)2 − 0.52 =

25026427/601200600 ≈ 0.041627415208834,

29

and the area in a bin of type B is 1 − 8 · (1
13)2 − 6 · (1

12)2 − 2 · (14)2 − 3 · (13)2 − 0.64752 =
903311/27040000 ≈ 0.033406471893491. Note that the algorithm used for small items (of [19])
will not pack such items with items of sides 1

22 + ε, 1
13 + ε, 1

12ε into the same bins as long as the
sizes are not in an interval of the forms (1

(i+1)·2k ,
1
i·2k], for an integer k ≥ 0, and i = 21, 12, 11,

which can be avoided.

Lemma 13. The number of bins for the output of the algorithm of [28] for P2 is approximately
15.01872658 ·M , and the asymptotic competitive ratio for P1 is at least 2.120087899.

Proof. We consider the input and the algorithm, and describe the packing performed for every
batch. We use the parameters of the algorithm, based on the table.

1. The first batch has M items of type 4. Since the set of bins is currently empty, an
application of EH results in M new bins, with one blue item of type 4 in each such bin,
where these bins could potentially receive red items later.

2. The second, third and fourth batches include 5M items of size 1
7 +ε, 2M items of size 1

5 +ε
and 2N+2M items of size 1

4 +ε. An application of EH results in coloring α12 ·5M,α10 ·2M ,
and α9 · (2M + 2N) items (respectively) as red. The number of bins needed to pack

all these red items is α12·(5M)
11 + α10·(2M)

7 + α9·(2N+2M)
5 . We required that N · 2α9

5 =

M · (1− 5α12
11 −

2α10
7 −

2α9
5) will hold, and therefore α12·5M

11 + α10·2M
7 + α9·(2N+2M)

5 = M . At
this time, the algorithm has M open bins of type (4, ?). All the red items will be packed
into these open bins. Moreover, by lines 19, 22 and 25, the algorithm will also open
(1−α12)(5M)

36 , (1−α10)(2M)
16 , (1−α9)(2N+2M)

9 bins that have 36, 16, 9 blue items respectively,
such that each bin can not receive any other item.

3. The fifth batch has 3N + 3M items of type 7. Since no previous bins can receive further
items, using lines 7 and 17 of Algorithm 1 we find that this results in opening α7·(3N+3M)

3
bins with three red items packed into each such bin where these bins could potentially
receive blue items later, but the further blue items belong to a type that is too large.
Moreover, by lines 19 and 28, the algorithm will also open (1−α7)(3N+3M)

4 bins that have
four blue items, such that each bin can not receive any other item.

4. The sixth batch has N items of size 0.6475 + ε. Since α2 = 0, and the only open red bins
are type (?, 7) which can not receive blue items of type 2, the Algorithm will open N bins
such that each bin has one blue item of type 2. These bins could potentially receive red
items later, but there no more red items in the input.

5. The seventh, eighth and ninth batches include 8N + 8M items of size 1
13 + ε, 6N items

of size 1
12 + ε and 10N items of size 1

22 + ε respectively. Since the size of these items is
less than 1

11 , the items will be packed using algorithm AssignSmall. Each one of the sizes
belongs to a different type of small items, and it is packed independently of other sizes.
Hence, the algorithm will open 8N+8M

122
+ 6N

112
+ 10M

212
new bins.

6. The tenth batch consists of items of size ε. By our assumption, they are packed by
AssignSmall into new bins. The number of bins is approximately the total area of these
items, which is 25026427

601200600 ·M + 903311
27040000 ·N .

To find the cost of the algorithm, and by using the requirement N · 2α9
5 = M · (1 − 5α12

11 −
2α10
7 −

2α9
5), we get that N = 724609

119196 ·M , where 724609
119196 ≈ 6.079138561696701. Thus, the optimal

cost as a function of M is 843805
119196 ·M .

30

Using the analysis of [28], it can be noted that after packing all the items in the input, the
only open bins for red items are (?, 7), which means there are no bins of type (?, j) for j > 7
and the input belongs to case 3 of that analysis.

Based on the output, we will get the following total cost:

M +N +
(1− α12)(5M)

36
+

(1− α10) · (2M)

16
+

(1− α9) · (2M + 2N)

9
+
α7 · (3M + 3N)

3

+
(1− α7) · (3M + 3N)

4
+

8N + 8M

122
+

6N

112
+

10M

212
+

25026427

601200600
·M +

903311

27040000
·N .

By using the values of α6, α9, α10, and α12, we find that the total cost is approximately
15.018726578408019 ·M and the resulting lower bound on the asymptotic competitive ratio of
the algorithm is 2.120087899087498.

Next, we discuss the two weight functions of [28] for case 2 and square packing. All input
items except for small items will be of types 3, 4, 6, 9, 10, 12, so we only define the weights of such
items according to the two weight functions. For small items, the weight of an item is defined
to be 1.2 times its area (for both weight functions). The first weight function is called W2,1, and
its is defined that the weights of items of these types are: 1, 0, 1−α6

4 + α6
3 ,

1−α9
9 + α9

5 ,
1−α10
16 +

α10
7 , 1−α12

36 + α12
11 , respectively. The second weight function is called W2,2, and its is defined that

the weights of items of these types are: 1, 1, 1−α6
4 + α6

3 ,
1−α9

9 , 1−α10
16 , 1−α12

36 , respectively.
We will discuss one bin (which may be a bin of an optimal solution) whose weight is high

for W2,1 and another bin whose weight is high for W2,2. Thus, one cannot choose one of the
functions are use it to prove an upper bound below 2.2 for case 2 (and thus for the entire
algorithm).

The first bin is identical to the type B bin in the optimal solution for P2. The total area
of small items is approximately (letting ε tend to zero) 1 − 0.62 − 3 · 0.35252 − 2 · (1/4)2 −
4 · (1/7)2 ≈= 475093/7840000 ≈ 0.060598596938776. Thus, the weight according to W2,1 is
1+3·(1−α6

4 + α6
3)+2·(1−α9

9 + α9
5)+4·(1−α12

36 + α12
11)+1.2·(475093/7840000) ≈ 2.277619932488147.

The second bin is similar to the type A bin in the optimal solution for P1, but instead of the
items of type 12 there are just small items. The total area of small items is approximately
1− 0.52 − 3 · 0.35252 − 2 · (1/4)2 − 2 · (1/5)2 = 0.17223125. Thus, the weight according to W2,2

is 1 + 3 · (1−α6
4 + α6

3) + 2 · (1−α9
9) + 2 · (1−α10

16) + 1.2 · 0.17223125 ≈ 2.240699722.
For cube packing, correcting the analysis of [28] would still give improved bounds, though

these bounds would be closer to 2.7 than to 2.6.
The last example is not original, and it does not deal with the algorithm of [28] but with all

Extended Harmonic algorithms and similar algorithms. It was known for a while that algorithms
that use types and do not combine items based on their exact sizes cannot have an asymptotic
competitive ratio below 1.5833333 for one dimension. A similar construction for squares and
cubes can be found in [8]. These constructions consist of a large number of inputs, and the
calculations of [8] are not always justified mathematically (inequalities are used as equalities
without any explanation). However, the results in fact hold, and we provide a short proof for
that.

Proposition 14. Every Extended Harmonic algorithm, for any dimension d ≥ 1, has an asymp-
totic competitive ratio of at least 3− 1

2d
− 1

4d
− 2d+1

3d
+ 2

3d
. In particular, for d = 1, 2, 3, the lower

bounds on the asymptotic competitive ratios of such algorithms are approximately 1.5833333,
2.0208333, and 2.34085648.

31

Proof. We will introduce two inputs, and these inputs will consist of four types of items. There
are small items, and items of size 1

2 + δ for a very small δ > 0. Consider the type that contains
the values 1

3 and 2
3 . Consider the type for 1

3 . If it is the right endpoint of the interval for the
type, we move to the next type (whose left endpoint is 1

3). For example, if the interval is (14 ,
1
3],

we use the next one (and its form is (13 , tj]), but if the interval contains 1
3 as an internal point

(for example, (0.33, 0.34]), we use that interval. Since intervals are half open and half closed,
and have positive lengths, the interval of 2

3 does not have it as a left endpoint.
Let ε be a sufficiently small value that in particular satisfies the property that 1

3 + ε and
2
3 − ε are interval points of the considered intervals (for example, if the first one is (13 , 0.336]
and the second one is (0.666, 23], we can use ε = 0.001). Let β be the proportion of red items
for the type of 1

3 + ε. Let N be a large positive integer.
The first input also has (2d − 1) ·N items of size 1

3 + ε, and it has N items of size 1
2 + ε. It

has small items with total volume of N · (1− 2d−1
3d
− 1

2d
). An optimal solution has N bins, each

with 2d−1 items of size 1
3 +ε, one item of size 1

2 +ε and small items, and there is one additional
bin with small items (for a sufficiently small value of ε), where this bin can be neglected for
large values of N . The algorithm has N bins with items of size 1

2 + ε, and since the small
items are packed separately and the number of bins is at least their volume, the number of

bins for these items is at least N · (1 − 2d−1
3d
− 1

2d
). There are β·(2d−1)·N

2d−1 = β · N bins with

red items of size 1
3 + ε, and (1−β)·(2d−1)·N

2d
= N · (1 − β) · (1 − 1

2d
) bins with blue items. Since

all or some of the red items can be possibly packed with items of size 1
2 + ε, we do not take

the bins with red items into account (though their existence could possibly increase the cost of
the algorithm). No other items can be combined. Thus, the cost of the algorithm is at least

N · (1 + (1 − 2d−1
3d
− 1

2d
) + (1−β)(2d−1)

2d
) = N · (3 − 1

2d−1 + 1
3d
− 2d

3d
− β · (1 − 1

2d
)), and we get

3 + 1
3d
− 1

2d−1 − 2d

3d
− β · (1− 1

2d
) ≤ R.

The second input has (2d− 1) ·N items of size 1
3 + ε and N items of size 2

3 − ε. It has small

items with total volume of N · (1 − 2d−1
3d
− 2d

3d
) = N · (1 − 2d+1−1

3d
). Note that this amount is

non-negative for all integers d ≥ 1, and it is equal to zero for d = 1. An optimal solution for this
input has N bins with one item of the larger size, and 2d−1 items of the smaller size. In addition
it has small items in every bin (and there might be one bin of small items only). However, since
the interval of 2

3 − ε has 2
3 in its interval, the algorithm cannot combine items of the two sizes

into a bin (since the right endpoints of the two types are too large). The algorithm creates (up

to a constant number of bins, due to rounding) β·(2d−1)·N
2d−1 = β ·N bins with 2d − 1 red items of

size 1
3 +ε, and (1−β)·(2d−1)·N

2d
= N ·(1−β) ·(1− 1

2d
) bins with sets of 2d blue items. It also creates

N bins with items of size 2
3 − ε, and N · (1− 2d+1−1

3d
) bins of small items. The total number of

bins is N · (β+ 1−β− 1
2d

+ β
2d

+ 1 + (1− 2d+1−1
3d

)) = N · (3− 2d+1

3d
+ 1

3d
− 1

2d
+ β

2d
), and by letting

R be the asymptotic competitive ratio, we get 3− 2d+1

3d
+ 1

3d
− 1

2d
+ β

2d
≤ R. By multiplying this

inequality by 2d − 1 we get 3 · 2d − 22d+1

3d
+ 2d

3d
− 4 + 2d+1

3d
− 1

3d
+ 1

2d
+ β · (1− 1

2d
) ≤ (2d − 1) ·R.

Taking the sum of the two inequalities we have (3 + 1
3d
− 1

2d−1 − 2d

3d
− β · (1 − 1

2d
)) + (3 ·

2d − 22d+1

3d
+ 2d

3d
− 4 + 2d+1

3d
− 1

3d
+ 1

2d
+ β · (1 − 1

2d
)) ≤ 2d · R. By rearranging, we get 2d · R ≥

3 · 2d − 22d+1

3d
+ 2d+1

3d
− 1− 1

2d
, and therefore R ≥ 3− 2d+1

3d
+ 2

3d
− 1

2d
− 1

4d
.

A An example for Algorithm EH

In what follows, we show how EH behaves for a given example. We now provide the intervals
parameters αi and ∆i which are required by Algorithm 1; see Table 8.

32

i (ti+1, ti] ∆i φi γi αi
1 (0.7, 1] 0 0 0 1
2 (23 ,0.7] 0.3 1 0 1
3 (12 ,

2
3] 1

3 2 0 1
4 (13 ,

1
2] 0 0 0 1

5 (0.3, 13]] 0 0 1 0.4
6 (0.1,0.3] 0 0 1 0.4
7 (0,0.1] * * * *

Table 8: Input parameters for Algorithm 1.

Note that in any face of the bin, item of type 3 has at least 1
3 space left so any red item

with size at most 1
3 can be packed in a (3, ?) bin. Similarly, any red item with size at most 0.3

can be packed in a (2, ?) bin.

j = φ(i) ∆j Red items accepted

1 0.3 6
2 1

3 5, 6

First, we will describe the input. The input is described by 5 batches of items, arriving in
the order defined below.

Input I.

1. one item of size 0.9,

2. 2 items of size 2
3 ,

3. 2 items of size 0.3,

4. 14 items of size 1
3 ,

5. 12 items of size 0.3,

In what follows, upon receiving multiple items, we will illustrate how they are packed using
Algorithm 1. First, items 0.9, 23 ,

2
3 , 0.3, 0.3 which fall in intervals I1, I3, I6, I6 respectively, arrive.

Since ei ≥ bαisic for i = 1, 3, 6 in each step and φ(1), φ(6) = 0, all the items will be colored
blue and four new bins of types (1), (3, ?), (3, ?), (6) will be opened to pack these items. We call
them (a), (b), (c), (d) respectively; See Figure 5.

33

Figure 5

Note that δ1 = 0 and β1 = 1, i.e., there is no space left in bins type (1) for red items and
only one item from interval 1 can be packed in a bin of type (1). Hence, bin (a) is considered
“closed”; see Figure 6 for “active” bins.

Figure 6

The next fourteen items in the input sequence are of type 5. Since α5 = 0.4, five of the
fourteen items will be colored red and the remaining nine items will be colored blue. The red
items will be packed in the “active” bin (b) since ∆φ(5) < γ3t3, and all the nine blue items will
be packed in a new bin which called (e); see Figure 7.

34

Figure 7

Note that bins (b), (e) are now considered “closed” since they have no space left. The next
twelve items in the input sequence are of type 6, and observe that there have been already two
items of type 6 in the input. Since α6 = 0.4, five of the twelve items will be colored red while
the remaining seven items will be colored blue. The red items will be packed in bin (b) since
∆φ(5) < γ3t3, while the remaining blue items (of the twelve items) will be packed in the “active”
bin of type (6); see Figure 7.

Figure 8: The packing for the last 12 items.

The output of Algorithm 1 on the aforementioned example, is illustrated below.

35

Figure 9: The final result of the algorithm.

References

[1] Y. Azar, I. R. Cohen, S. Kamara, and F. B. Shepherd. Tight bounds for online vector bin
packing. In Proc. of the 45th ACM Symposium on Theory of Computing (STOC’13), pages
961–970, 2013.

[2] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. A new and improved algorithm
for online bin packing. In Proc. of the 26th European Symposium on Algorithms (ESA’18),
pages 5:1–5:14, 2018.

[3] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. Lower bounds for several online
variants of bin packing. Theory of Computing Systems. 63(8):1757–1780, 2019.

[4] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. A new lower bound for classic
online bin packing. CoRR, abs/1807.05554, 2018. Also in Proc. WAOA’19.

[5] J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin packing
algorithms. Theory of Computing Systems, 440–441:1–13, 2012.

[6] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimensions:
Inapproximability results and approximation schemes. Mathematics of Operations Research,
31(1):31–49, 2006.

[7] D. Blitz. Lower bounds on the asymptotic worst-case ratios of on-line bin packing algorithms.
Master’s thesis, University of Rotterdam, Rotterdam, The Netherlands, 1996.

[8] D. Blitz, S. Heydrich, R. van Stee, A. van Vliet, and G. J. Woeginger. Improved lower
bounds for online hypercube and rectangle packing. CoRR, abs/1607.01229v2, 2016.

[9] D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Coordinated
Science Laboratory Report no. R-864 (UILU-ENG 78-2257), 1979.

[10] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Multidimensional bin packing and
other related problems: A survey. Computer Science Review, 24:63–79, 2017.

36

[11] E. G. Coffman Jr., M. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
a survey. In Hochbaum, D. (ed.) Approximation Algorithms for NP-hard problems, 46-93.
PWS Publishing Co., Boston, 1996.

[12] D. Coppersmith and P. Raghavan. Multidimensional online bin packing: Algorithms and
worst case analysis. Operations Research Letters, 8:17–20, 1989.

[13] J. Csirik, J. B. G. Frenk, and M. Labbe. Two-dimensional rectangle packing: on-line
methods and results. Discrete Applied Mathematics, 45(3):197–204, 1993.

[14] J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin packing. Oper-
ations Research Letters, 13(3):149–158, 1993.

[15] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and G. J.
Woeginger, editors, Online Algorithms : The State of the Art, 147–177, 1998.

[16] L. Epstein. Two-dimensional online bin packing with rotation. Theoretical Computer
Science, 411(31–33):2899–2911, 2010.

[17] L. Epstein. A lower bound for online rectangle packing. Journal of Combinatorial Opti-
mization, 38(3):846–866, 2019.

[18] L. Epstein and R. van Stee. Online square and cube packing. Acta Informatica, 41(9):595–
606, 2005.

[19] L. Epstein and R. van Stee. Optimal online algorithms for multidimensional packing prob-
lems. SIAM Journal on Computing, 35(2):431–448, 2005.

[20] L. Epstein and R. van Stee. Bounds for online bounded space hypercube packing. Discrete
Optimization, 4(2):185–197, 2007.

[21] W. Fernandez de la Vega and G. S. Lueker. within 1 + ε in linear time. Combinatorica,
1(4):349–355, 1981.

[22] S. Fujita and T. Hada. Two-dimensional on-line bin packing problem with rotatable items.
Theoretical Computer Science, 289(2):939–952, 2002.

[23] G. Galambos. A 1.6 lower-bound for the two-dimensional on-line rectangle bin-packing.
Acta Cybernetica, 10(1-2):21–24, 1991.

[24] G. Galambos and A. van Vliet. Lower bounds for 1-, 2- and 3-dimensional on-line bin
packing algorithms. Computing, 52(3):281–297, 1994.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the theory of
of NP-Completeness. Freeman and Company, San Francisco, 1979.

[26] X. Han, F. Y. Chin, H.-F. Ting, G. Zhang, and Y. Zhang. A new upper bound 2.5545 on
2d online bin packing. ACM Transactions on Algorithms, 7(4), 2011. Article 50.

[27] X. Han, D. Ye, and Y. Zhou. Improved online hypercube packing. CoRR, abs/cs/0607045,
2016. Also in Proc. WAOA’06.

[28] X. Han, D. Ye, and Y. Zhou. A note on online hypercube packing. Central European
Journal of Operations Research, 18(2):221–239, 2010.

37

[29] S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin pack-
ing. In Proc. of 43rd International Colloquium on Automata, Languages, and Programming
(ICALP’16), pages 41:1–41:14, 2016.

[30] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8(3):272–314, 1974.

[31] D. S. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms. SIAM Journal of Computing,
3(4):299–325, 1974.

[32] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312–320, 1982.

[33] F. M. Liang. A lower bound for on-line bin packing. Information Processing Letters,
10(2):76–79, 1980.

[34] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562–572, 1985.

[35] F. K. Miyazawa and Y. Wakabayashi. Cube packing. Theoretical Computer Science, 297(1-
3):355–366, 2003.

[36] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.
Journal of Algorithms, 10(3):305–326, 1989.

[37] T. Rothvoss. Better bin packing approximations via discrepancy theory. SIAM Journal on
Computing, 45(3):930–946, 2016.

[38] S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640-671, 2002.

[39] S. S. Seiden and R. van Stee. New bounds for multidimensional packing. Algorithmica,
36(3):261–293, 2003.

[40] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research
Logistics, 41(4):579–585, 1994.

[41] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

[42] A. van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43(5):227–284, 1992.

[43] A. van Vliet. Lower and upper bounds for online bin packing and scheduling heuristics.
PhD thesis, Erasmus University, Rotterdam, The Netherlands, 1995.

[44] G. J. Woeginger. Improved space for bounded-space online bin packing. SIAM Journal on
Discrete Mathematics, 6:575–581, 1993.

[45] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27(2):207–227, 1980.

38

	1 Introduction
	1.1 Previous results
	1.2 Our contribution

	2 Preliminaries
	2.1 Harmonic algorithms
	2.2 Hyper-cube packing: packing small items

	3 Algorithm Extended Harmonic (EH)
	4 Weighting functions and results
	4.1 Upper bounds on the asymptotic competitive ratio

	5 The parameters for our algorithms
	6 Counter examples
	A An example for Algorithm EH

