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Computing the Union Join and Subset Graph of Acyclic

Hypergraphs in Subquadratic Time

Arne Leitert

Abstract. We investigate the two problems of computing the union join graph as well as computing
the subset graph for acyclic hypergraphs and their subclasses. In the union join graph G of an acyclic
hypergraph H , each vertex of G represents a hyperedge of H and two vertices of G are adjacent
if there exits a join tree T for H such that the corresponding hyperedges are adjacent in T . The
subset graph of a hypergraph H is a directed graph where each vertex represents a hyperedge of H
and there is a directed edge from a vertex u to a vertex v if the hyperedge corresponding to u is a
subset of the hyperedge corresponding to v.

For a given hypergraph H = (V, E), let n = |V |, m = |E|, and N =
∑

E∈E
|E|. We show that, if the

Strong Exponential Time Hypothesis is true, both problems cannot be solved in O
(

N2−ε
)

time for
α-acyclic hypergraphs and any constant ε > 0, even if the created graph is sparse. Additionally, we
present algorithms that solve both problems in O

(

N2/ logN + |G|
)

time for α-acyclic hypergraphs,

in O
(

N log(n + m) + |G|
)

time for β-acyclic hypergaphs, and in O
(

N + |G|
)

time for γ-acyclic
hypergraphs as well as for interval hypergraphs, where |G| is the size of the computed graph.

1 Introduction

A hypergraph H = (V, E) is a generalisation of a graph in which each edge E ∈ E , called hyperedge,
can contain an arbitrary positive number of vertices from V . One may also see a hypergraph H
as a family E of subsets of some set V . Indeed, we say that the family F of sets forms the
hypergraph H = (V, E) if V =

⋃

S∈F S and E = F . We use n = |V |, m = |E|, and N =
∑

E∈E |E|
to respectively denote the cardinality of the vertex set, the cardinality of the hyperedge set, and
the total size of all hyperedges of H.

1.1 Acyclic Hypergraphs

A tree T is called a join tree for H if the hyperedges of H are the nodes of T and, for each
vertex v ∈ V , the hyperedges containing v induce a subtree of T . That is, if v ∈ Ei ∩Ej , then v
is contained in each hyperedge (i. e., node of T ) on the path from Ei to Ej in T . A hypergraph
is acyclic if it admits a join tree. There is a linear-time algorithm which determines if a given
hypergraph is acyclic and, in that case, constructs a corresponding join tree for it [27].

Acyclic hypergraphs have various applications. They are, for example, a desired structure
when designing relational databases [3]. There is also a close relation between acyclic hypergraphs
and chordal as well as dually chordal graphs. Namely, a graph is chordal if and only if its maximal
cliques form an acyclic hypergraph [18], and a graph is dually chordal if and only if its closed
neighbourhoods form an acyclic hypergraph [8].

Tree-decompositions are another application. The idea is to decompose a graph G = (V,E)
into multiple induced subgraphs, usually called bags, where each vertex can be in multiple bags.
The set of bags B forms a tree T in such a way that the following requirements are fulfilled:
Each vertex is in at least one bag, each edge is in at least one bag, and T is a join tree for
the hypergraph (V,B). Usually tree-decompositions are considered with additional restrictions.
The most known is called tree-width; it limits the maximum cardinality of each bag. For a
graph class with bounded tree-width, many NP-complete problems can be solved in polynomial
or even linear time. Alternatively, one may limit the distances between vertices inside a bag.
Such a tree-decomposition can be used, for example, for constructing tree-spanners [13,14] and
efficient routing schemes [12].

http://arxiv.org/abs/2104.06636v1
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An inclusion-maximal subset of vertices of a graph G is called an atom if it induces a
connected subgraph of G without a clique separator. It is known that the atoms of a graph form
an acyclic hypergraph [23]. The corresponding join tree is then called atom tree.

The most general acyclic hypergraphs are called α-acyclic (i. e. ., each acyclic hypergraph is
α-acyclic). They are closely related to chordal graphs and to dually chordal graphs. Subclasses
of α-acyclic hypergraphs are β-acyclic hypergraphs which are closely related to strongly chordal
graphs and γ-acyclic hypergraphs which are closely related to ptolemaic graphs (graphs that
are chordal and distance-hereditary). We also consider interval hypergraphs. These are acyclic
hypergrpahs for which one of their join trees forms a path. As the name suggests, they are closely
related to interval graphs. We give formal definitions and more information about each subclass
later in their respective sections.

A class of hypergraphs closely related to acyclic hypergraphs are so-called hypertrees. These
hypergraphs are defined in the same way as acyclic hypergraphs, except that the roles of vertices
and hyperedges are exchanged. That is, a hypergraph is a hypertee if its vertices admit a tree T
such that each hyperedge induces a subtree of T . The hypergraph resulting from exchanging the
roles of vertices and hyperedges is called the dual hypergraph. (See Section 2 for a more formal
definition.) Subsequently, a hypergraph is a hypertree if and only if it is the dual of an acyclic
hypergraph.

Figure 1 shows the hierarchy of acyclic hypergraphs. See Brandstädt and Dragan [7] for
a summary of known properties of acyclic hypergraphs as well as their relations to various graph
classes.

α-acyclic hypertree

α-acyclic ∩ hypertree

β-acyclic

γ-acyclic interval

Fig. 1. Hierarchy of acyclic hypergraphs. An edge from class X to class Y states that X is a proper subset of Y .

1.2 Union Join Graph

Note that the join tree of an acyclic hypergraph is not always unique. For example, each tree
with n nodes is a valid join tree for the hypergraph formed by

{

{0, 1}, {0, 2}, . . . , {0, n}
}

. The
union join graph G of a given acyclic hypergraph H is the union of all its join trees. That is, each
vertex of G represents a hyperedge of H and two vertices of G are adjacent if there exits a join
tree T for H such that the corresponding hyperedges are adjacent in T . The union join graph of
a hypergraph H may also be called clique graph if H represents the maximal cliques of a chordal
graph [17,20], or atom graph if H represents the atoms of some graph [21]. In [5], Berry and
Simonet present algorithms which compute the union join graph of an acyclic hypergraph in
O(Nm) time.

1.3 Subset Graph

The subset graph of a hypergraph H is a directed graph G where each vertex represents a
hyperedge of H and there is a directed edge from a vertex u to a vertex v if the hyperedge
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corresponding to u is a subset of the hyperedge corresponding to v. Pritchard presents an
algorithm in [26] that computes the subset graph for a given hypergraph in O

(

N2/ logN
)

time.
They also show that any subset graph has at most O

(

N2/ log2 N
)

many edges. There are various
publications that present algorithms for special cases and different computational models; see
for example [15,25] and the work cited therein.

The Strong Exponential Time Hypothesis, SETH for short, states that there is no algorithm
that solves the Boolean satisfiability problem (without limitation on clause size) for some con-
stant ε > 0 in O

(

(2 − ε)n
)

time where n is the number of variables in the given instance.
A function f(n) is called truly subquadratic if f(n) ∈ O

(

n2−ε
)

for some constant ε > 0. Bo-

rassi et al. [6] show that, if SETH holds, then there is no algorithm to compute the subset
graph of an arbitrary hypergraph in truly subquadratic time, even if the output is sparse. Note
that the results in [6] and [26] are not conflicting, since N2−ε ∈ o

(

N2/ logN
)

.

1.4 Our Contribution

In this paper, we investigate the two problems of computing the union join graph as well as
computing the subset graph for acyclic hypergraphs and their subclasses. We show in Section 3
that there is a close relation between both problems by presenting reductions in both direc-
tions. It then follows that the result by Borassi et al. still holds when restricted to α-acyclic
hypergraphs and also applies to computing a union join graph. We then develop efficient algo-
rithms to solve both problems for acyclic hypergraphs and their subclasses. In particular, we
show that, if |G| denotes the size of the computed graph G, then both problems can be solved
in O

(

N2/ logN + |G|
)

time for α-acyclic hypergraphs (Section 3), in O
(

N log(n + m) + |G|
)

time for β-acyclic hypergaphs (Section 4), and in O
(

N + |G|
)

time for γ-acyclic hypergraphs
(Section 5) as well as for interval hypergraphs (Section 6).

2 Preliminaries

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijective function f : V →
V ′ such that uv ∈ E if and only if f(u)f(v) ∈ E′. For simplicity, we write G = G′ if they are
isomorphic.

Let H = (V, E) be a hypergraph. The incidence graph I(H) =
(

UV ∪ UE , EI

)

of H is a
bipartite graph were UV represents the vertices of H, UE represents the hyperedges of H, and
there is an edge between two vertices uv ∈ UV and uE ∈ UE if the corresponding vertex v (of H)
is in the corresponding hyperedge E. That is, UV = {uv | v ∈ V }, UE = {uE | E ∈ E }, and
EI = {uvuE | v ∈ E }. Note that

∣

∣EI

∣

∣ = N . If not stated or constructed otherwise, the incidence
graphs of all hypergraphs occurring in this paper are connected, finite, undirected, and without
multiple edges. Additionally, whenever a hypergraph is given, it is given as its incidence graph;
hence, the input size is in Θ(N). We say two hyperedges of H are distinct if they are represented
by two different vertices in I(H), even if both hyperedges contain the same vertices.

Let
(

UV ∪ UE , EI

)

be the incidence graph of some hypergraph H = (V, E). One can then
exchange the roles of UV and UE to interpret UE as vertices and UV as hyperedges. We call the
resulting hypergraph the dual hypergraph of H and denote it as H∗. Observe that, by definition,
(H∗)∗ = H.

The 2-section graph 2Sec(H) of H is the graph with the vertex set V where two vertices u
and v are adjacent if there is a hyperedge E ∈ E with u, v ∈ E. The line graph L(H) of H is
the intersection graph of its hyperedges. That is, L(H) = (E , EL) with EL = {EiEj | Ei, Ej ∈
E ;Ei ∩Ej 6= ∅ }. It directly follows from these definitions that 2Sec(H) = L(H∗).

A sequence 〈v1, v2, . . . , vk〉 of vertices of H forms a path in H if, for each i with 1 ≤ i < k, H
contains a hyperedge E with vi, vi+1 ∈ E. Let X, Y , and Z be sets of vertices of H. X separates
Y form Z if X 6= ∅ and each sequence of vertices that forms a path from Y to Z in H contains
a vertex from X.
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Let T be the join tree of some acyclic hypergraph H and let Ei and Ej be two hyperedges
of H which are adjacent in T . We then call the set S = Ei ∩ Ej a separator of H with respect
to T . If T is rooted and Ei is the parent of Ej, we call S↑(Ej) := Ei ∩Ej the up-separator of Ej.
Note that each separator corresponds to an edge of T and vice versa. We call the hypergraph
formed by the set of all separators of H the separator hypergraph S(H) for H with respect to T .
It follows from properties (ii) and (iii) of Lemma 5 (see Section 3) that S(H) is always the same
for a given H, independent of the used join tree.

3 α-Acyclic Hypergraphs

In this section, we investigate the problems of computing a union join graph and computing a
subset graph for the most general case of acyclic hypergraphs. We first show that computing
these graphs cannot be done in truly subqadratic time if the SETH is true. For that, we use
a problem called Sperner Family problem. It asks whether a family of sets contains two sets S
and S′ such that S ⊆ S′. If the SETH is true, then there is no algorithm that solves it truly
subquadratic time [6]. Afterwards, we give an algorithm that allows to quickly compute the
union join graph if a fast algorithm for the subset graph problem is given. Lastly, we give some
additional notes on the Sperner Family problem and its generalisation.

3.1 Hardness Results

Let F = {S1, S2, . . . , Sm} be a family of sets. We create an acyclic hypergraph H from F as
follows. Create a new vertex u (i. e., u is not contained in any set Si) and, for each set Si,
create a hyperedge Ei = Si ∪ {u}. Additionally, create a hyperedge S which is the union of all
hyperedges Ei. Formally, we have that H = (V, E) with V = S and E =

{

Ei

∣

∣ Si ∈ F
}

∪ {S}.
One can create a join tree T for H by starting with S and then making each hyperedge Ei

adjacent to it. Thus, H is acyclic. Note that one can create H and T from F in linear time.
For the remainder of this subsection, assume that we are given a family F , a hypergraph H,

and a corresponding join tree T for H as defined above. Our results in this subsection are based
on the following observation.

Lemma 1. F contains two distinct sets Si and Sj with Si ⊆ Sj if and only if there is a join
tree for H that contains the edge EiEj.

Proof. First, assume that F contains two distinct sets Si and Sj with Si ⊆ Sj. In that case, we
can create a new join tree T ′ as follows. Remove the edge EiS from T and make Ei adjacent
to Ej instead. Since Si ⊆ Sj, each element x ∈ Ei ∩ S is also contained in Ej. Thus, T ′ is a join
tree for H and contains the edge EiEj .

Next, assume that there is a join tree T ′ for H with the edge EiEj. Without loss of generality,
let Ej be closer to S in T ′ than Ei. Recall that Ei ⊆ S. Therefore, by properties of join trees, each
vertex in Ei is also in Ej . It then directly follows from the construction of H that Si ⊆ Sj. �

We use the Sperner Family problem to show that there is no truly subquadratic-time algo-
rithm to compute the union join graph of a given acyclic hypergraph. To do so, we first show
the following.

Lemma 2. If the SETH is true, then there is no algorithm which decides in O
(

N2−ε
)

time
whether or not a given acyclic hypergraph has a unique join tree.

Proof. Recall that we can create a join tree T for H by making each hyperedge Ei adjacent to
the hyperedge S. To prove Lemma 2, we show that F contains two distinct sets Si and Sj with
Si ⊆ Sj if and only if T is not a unique join tree for H.

First, assume that F contains two such sets Si and Sj. In that case, Lemma 1 implies that
there is a join tree T ′ for H with the edge EiEj. Since EiEj is not an edge in T , T is not unique.
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Next, assume that T is not unique. Then, there is a join tree T ′ and a hyperedge Ei such that
Ei is not adjacent to S in T ′. Hence, Ei is adjacent to some hyperedge Ej that is closer to S
in T ′ than Ei. Since Ei ⊆ S, properties of join trees imply that Ei ⊆ Ej. Subsequently, due to
Lemma 1, Si ⊆ Sj.

It follows that a truly subquadratic-time algorithm which determines if an acyclic hypergraph
has a unique join tree would imply an equally fast algorithm to solve the Sperner Family problem
for any family of sets. �

Note that, by definition of a union join graph, H has a unique join tree if and only if the
union join graph of H is a tree. Therefore, we get the following.

Theorem 3. If the SETH is true, then there is no algorithm which constructs the union join
graph of a given acyclic hypergraph in O

(

N2−ε
)

time, even if that graph is sparse.

We now show that computing the subset graph of an acyclic hypergraph is as hard as
computing the subset graph for a general family of sets.

Theorem 4. If the SETH is true, then there is no algorithm which constructs the subset graph
of a given acyclic hypergraph in truly subquadratic time.

Proof. Let G be the subset graph for H and GF be the subset graph for F . Since, by con-
struction of H, Ei ⊆ Ej if and only if Si ⊆ Sj, G contains the edge (Ei, Ej) if and only if GF

contains the edge (Si, Sj). We can therefore construct GF from G by simply removing the vertex
representing S from G (and its incident edges).

Recall that we can construct H from F in linear time. Therefore, a truly subquadratic-time
algorithm to construct the subset graph of a given acyclic hypergraph would imply an equally
fast algorithm to construct a subset graph of a given family of sets. �

Note on Hypertrees. Observe that, in the hypergraphH as constructed above, each hyperedge
contains the vertex u. We can therefore create a tree T by making each other vertex a leaf
adjacent to u. Each hyperedge of H now induces a subtree of T , i. e., H is a hypertree.

It follows that Lemma 2 and Theorem 3 still hold if the given hypergraph is both acyclic
and a hypertree. Therefore, there is no truly subquadratic-time algorithm which, in general,
computes the union join graph of such a hypergraph or determines if has a unique join tree.

3.2 Union Join Graph via Subset Graph

In the previous subsection, we show how to compute the subset graph using the union join graph
of an acyclic hypergraph. We now present an algorithm that computes the union join graph of
a given acyclic hypergraph with the help of a subset graph. The runtime of our algorithm then
depends on the runtime required to compute that subset graph.

For the remainder of this subsection, assume that we are given an acyclic hypergraph H =
(V, E) and let G be the union join graph of H (with for us unknown edges). Lemma 5 below
gives various characterisations for G.

Lemma 5. For any distinct Ei, Ej ∈ E, the following are equivalent.

(i) EiEj is an edge of G.
(ii) H has a join tree with the edge EiEj .

(iii) Each join tree T of H has an edge E′
iE

′
j on the path from Ei to Ej in T such that Ei∩Ej =

E′
i ∩E′

j .
(iv) Each join tree T of H has a separator S on the path Pij from Ei to Ej in T with S ⊆ Si

and S ⊆ Sj where Si and Si are the separators in Pij which are respectively closest to Ei

and Ej .
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(v) Ei ∩ Ej separates Ei \ Ej from Ej \Ei.

Most of the properties in Lemma 5 repeat, generalise, or paraphrase existing results (see [5,17,20]).
Property (iv) is, to the best of our knowledge, a new observation. For completeness, however,
we prove all of them.

Proof. By definition of G, properties (i) and (ii) are equivalent. It follows from properties of join
trees that (ii) implies (v).

We next show that (v) implies (iii). Assume that Ei and Ej are not adjacent in a join tree T .
Then there is a path 〈Ei = X1,X2, . . . ,Xk = Ej〉 of hyperedges from Ei to Ej in T . For each p
with 1 ≤ p < k, let Sp = Xp ∩ Xp+1 be the separator corresponding to the edge XpXp+1

of T . By properties of join trees, Ei ∩ Ej ⊆ Sp for each Sp. Now assume that each Sp contains
a vertex vp /∈ Ei ∩ Ej . Then, 〈v1, v2, . . . , vk−1〉 would form a path in H from v1 ∈ Ei \ Ej

to vk−1 ∈ Ej \Ei. That contradicts with property (v). Therefore, there is at least one separator Sp

with Sp ⊆ Ei ∩ Ej , i. e., there is an edge XpXp+1 in T with Ei ∩ Ej = Xp ∩Xp+1.
To show that (iii) implies (ii), consider a join tree T where Ei and Ej are not adjacent.

We can create a join tree T ′ by removing the edge E′
iE

′
j and adding the edge EiEj instead.

Since Ei and Ej are on different sides of E′
iE

′
j in T , T ′ is also a tree. Additionally, because

Ei ∩ Ej = E′
i ∩E′

j , T ′ is a valid join tree for H.
It remains to show that (iv) is equivalent to (iii). We first assume property (iii). Let S =

Ei ∩ Ej be a separator on the path from Ei to Ej in some join tree T . Since, by properties of
join trees, each vertex in S = Ei ∩ Ej is also in Si and Sj, it follows that S ⊆ Si and S ⊆ Sj.
Now assume property (iv). Because S ⊆ Si ⊆ Ei and S ⊆ Sj ⊆ Ej, it is also the case that
S ⊆ Ei ∩ Ej . Since S is on the path from Ei to Ej in T , each vertex that is in both Ei and Ej

also has to be in S, i. e., S ⊇ Ei ∩ Ej. Therefore, S = Ei ∩ Ej. �

Based on Lemma 5, we can construct G as follows. Compute a join tree T for H, the
separator hypergraph S(H) (with respect to T ), and its subset graph GS . Next, use GS to find
all triples Si, Sj , S of separators which satisfy property (iv) of Lemma 5. Since their corresponding
hyperedges are then adjacent in some join tree of H, make the corresponding vertices adjacent
in G.

Before analysing our approach further, we address some needed preprocessing. Assume that
H contains two hyperedges Ei and Ej which are not adjacent in T , but are adjacent in some other
join tree. There might then be multiple separators S on the path from Ei to Ej in T which satisfy
property (iv) of Lemma 5. Our algorithm would, therefore, add the edge EiEj to G multiple
times, once for each such S. While it is easy to remove redundant edges from G afterwards, we
still want to ensure that the time needed to create and remove these edges does not become too
much. To achieve that, Algorithm 1 modifies T such that each hyperedge becomes adjacent to
its highest possible ancestor in T . As by-product, Algorithm 1 also computes the up-separator
of each hyperedge (and, thus, the separator hypergraph S(H)).

Algorithm 1: Modifies the join tree of a given acyclic hypergraph such that each
hyperedge becomes adjacent to its highest possible ancestor.

Input: An acyclic hypergraph H = (V, E) and a join tree T for H .
Output: A modified join tree T ′ for H and the separator hypergraph S(H).

1 Root T in an arbitrary hyperedge R and then run a pre-order on T . Let σ = 〈R = E1, E2, . . . , Em〉 be
the resulting order.

2 For each vertex v, set λ(v) := min{ i | v ∈ Ei }.
3 for i := 2 to m do

4 Set S↑(Ei) :=
{

v ∈ Ei

∣

∣ λ(v) < i
}

.

5 Let j = max
{

λ(v)
∣

∣ v ∈ S↑(Ei)
}

and make Ej the parent of Ei.

6 Let S(H) be the hypergraph formed by the family
{

S↑(Ei)
∣

∣ Ei ∈ E , Ei 6= R
}

.
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Lemma 6. Algorithm 1 runs in linear time.

Proof. Line 1 runs in O(m) time, since the nodes of T are the hyperedges of H. Recall that H is
given as an incidence graph I(H). Hence, the following are equivalent (with respect to runtime):
(i) for each vertex, iterating over all hyperedges containing it; (ii) for each hyperedge, iterating
over all vertices it contains; and (iii) iterating over all edges of I(H). Therefore, line 2, line 4,
and line 5 (and subsequently Algorithm 1) run in O(N) total time. �

Lemma 7. The tree T ′ created by Algorithm 1 is a valid join tree for H.

Proof. Let Ti be the tree after processing Ei, i. e., T = T1 and Tm = T ′. Thus, T1 is a valid join
tree for H. Assume, by induction, that Ti−1 (with i ≥ 2) is a valid join tree for H too. Recall
that, by definition of join trees, the set of hyperedges containing a vertex v form a subtree Tv

of T . The roots of all such Tv where v ∈ S↑(Ei) are ancestors of Ei in T and, thus, form
a path. By definition of j (line 5), Ej is the lowest of such roots in T . It therefore follows
that S↑(Ei) ⊆ Ej . Subsequently, for each v ∈ S↑(Ei), the hyperedges containing v still form a
subtree of Ti after changing the parent of Ei if they did so in Ti−1. Note that each subtree Tu

of a vertex u /∈ S↑(Ei) remains unchanged, since it does not contain the edge EiEk. Therefore,
for each vertex, the hyperedges containing it form a subtree of Ti and, thus, Ti is a join tree
for H. �

Lemma 8. Let Ei and Ej be two hyperedges of H, T ′ be the tree computed by Algorithm 1,
and Pij be the path from Ei to Ej in T ′. Additionally, let Si and Sj be the separators on Pij

which are closest to Ei and Ej, respectively. There are at most two separators S on Pij such
that S ⊆ Si and S ⊆ Sj.

Proof. Let Ek be the lowest common ancestor of Ei and Ej in T ′. Although T ′ has a potentially
different structure than T , it is still the case that the parent of a hyperedge in T ′ was an ancestor
of it in T . Thus, k ≤ i, j. Note that Pij goes through Ek and let Pik and Pkj be the respective
subpaths of Pij . If Pij contains more than two separators S as defined in Lemma 8, at least
two of them are either part of Pik or Pkj. Without loss of generality, let them be on Pkj and
let S be the lowest such separator. Additionally, let X be the hyperedge directly below S, i. e.,
S↑(X) = S. It follows that X is not adjacent to Ek in T ′.

Since S ⊆ Si, each vertex in S is in all hyperedges on the path from X to Ei in T ′, in-
cluding Ek. Therefore, S ⊆ Ek and max

{

λ(v)
∣

∣ v ∈ S
}

≤ k. That is a contradiction, since
Algorithm 1 would have made X adjacent to Ek or one of its ancestors. �

Algorithm 2 now implements the approach described above. It also uses Algorithm 1 as
preprocessing. Therefore, due to Lemma 8, the algorithm adds each edge EiEj at most two
times into G.

Theorem 9. Algorithm 2 computes the union join graph G of a given acyclic hypergraph H
in O

(

TA(H) + N + |G|
)

time where TA(H) is the runtime of a given algorithm A with the
separator hypergraph of H as input.

Proof (Correctness). Let Ei and Ej be two hyperedges of H. Additionally, let Si and Sj be the
separators on the path from Ei to Ej in T (computed in line 1) which are closest to Ei and Ej,
respectively. We show the correctness of Algorithm 2 by showing that EiEj is an edge of G if
and only if there is a join tree for H with the edge EiEj.

First, assume that there is a join tree for H with the edge EiEj . Lemma 5 then implies that
there is a separator S ∈ S such that S ⊆ Si, S ⊆ Sj, and Ei and Ej are on different sides of S
in T . Therefore, when processing S, the algorithm finds Si and Sj (line 5) and consequently
adds Ei and Ej into E (line 6). Since both hyperedges are on different sides of S, Algorithm 2
then also adds the edge EiEj to G (line 8).
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Algorithm 2: Computes the union join graph of an acyclic hypergraph.

Input: An acyclic hypergraph H = (V, E) and an algorithm A that computes the subset graph for a
given family of sets.

Output: The union join graph G of H .
1 Find a join tree for H (see [27]) and call Algorithm 1. Let T be the resulting join tree and S the

resulting family of separators (i. e., the hyperedges of S(H)).
2 Use algorithm A to compute the subset graph GS of S .
3 Create a new graph G = (E , EG) with EG = ∅.
4 foreach S ∈ S do

5 Use GS to determine all separators S′ with S ⊆ S′ (including S itself).
6 For each such S′, let EE′ be the edge of T which S′ represents and let E be the hyperedge farther

away from S in T . Add E to a set E of hyperedges. If S and S′ represent the same edge of T , also
add E′.

7 Partition E into two sets E1 and E2 based on which side of S they are in T .
8 For each pair E1, E2 with E1 ∈ E1 and E2 ∈ E2, add E1E2 into EG.

We now assume that EiEj is an edge of G. Note that Algorithm 2 only adds edges to G in
line 8. Thus, there is a separator S ∈ S for which the algorithm adds EiEj to G. For that S,
one of Ei and Ej is in E1 and the other is in E2 (line 8) and, hence, Ei and Ej are on different
sides of S in T (line 7). This implies that S ⊆ Si and S ⊆ Sj (line 5 and line 6). Therefore, by
Lemma 5, there is a join tree for H with the edge EiEj. �

Proof (Complexity). Creating a join tree for a given acyclic hypergraph H can be implemented
in O(N) time [27]. Modifying that join tree (thereby computing T ) and computing S(H) using
Algorithm 1 can also be done in O(N) time (Lemma 6). Thus, line 1 runs in total O(N) time.
Computing the subset graph GS in line 2 requires O

(

TA(H)
)

time. Since the hyperedges of H
form the vertices of G and since G is created without edges, line 3 runs in O(m) time.

We show next that a single iteration of the loop starting in line 4 runs in O
(

|E1| · |E2|
)

time.
That is, the runtime for a single iteration is (asymptotically) equivalent to the number of edges
of G created. Note that each iteration creates at least one such edge, namely the edge in T that
S represents. Additionally, Lemma 5 and Lemma 8 imply that each edge EiEj is added at most
twice to G. Therefore, line 4 to line 8 run in O

(

|G|
)

total time.

For a separator S ∈ S, let S denote the set of separators S′ with S ⊆ S′. Since the subset
graph GS is given, one can compute S (line 5) in O

(

|S|
)

time by determining all incoming edges
of S in GS . For each S′ ∈ S, the algorithm adds, in line 6, exactly one hyperedge into E plus
one additional hyperedge for S. Thus, |E| = |S| + 1.

One can determine the hyperedges E and E′ that form a separator S′, which one is farther
from S, and on which side of S they are in T as follows. When creating S′, add a reference
to both hyperedges and include which is the parent and which is the child in T . Now assume
that each S′ is also a node of T adjacent to E and E′. Root T in an arbitrary hyperedge,
run a pre-order and post-order on T , and let pre(x) and post(x) be the indices of a node x in
that respective order. For two distinct nodes x and y of T (representing either separators or
hyperedges), x is then a descendant of y if and only if pre(x) > pre(y) and post(x) < post(y).
There are four cases when determining which of E and E′ to add into E: if S and S′ represent the
same edge of T , add both hyperedges; if S′ is a descendant of S, add the child-hyperedge; if S′

is an ancestor of S, add the parent-hyperedge; and if S′ is neither an ancestor nor a descendant
of S, add the child-hyperedge. Clearly, one side of S contains all its descendants and the other
side all remaining hyperedges and separators. That allows us, after a O(m)-time preprocessing,
to determine in constant time on which side of S a give a hyperedge is. Therefore, line 6 and
line 7 run in O

(

|E|
)

time.

Line 8 clearly runs in O
(

|E1| · |E2|
)

time. Recall that |S| + 1 = |E| = |E1| + |E2|. Therefore,
a single iteration of the loop starting in line 4 also runs in O

(

|E1| · |E2|
)

time. �
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Recall that there is an algorithm which computes the subset graph for any given hypergraph
in O

(

N2/ logN
)

time [26]. Thus, we have the following.

Theorem 10. There is an algorithm that computes the union join graph G of an acyclic hyper-
graph in O

(

N2/ logN + |G|
)

time.

The upper bound of at most Θ
(

N2/ log2 N
)

many edges for any subset graph [26] does not
apply to union join graphs. Consider a hypergraph H = (V, E) with V = {u, v1, . . . , vn} and
E = {Ei | 1 ≤ i ≤ n } where Ei = {u, vi}. Note that N = 2n and that each tree with E as nodes
is a valid join tree for H. Hence, the union join graph of H is a complete graph with Θ

(

N2
)

edges.

3.3 Notes on the Sperner Family Problem and its Generalisation

An interesting question that remains is the complexity of solving the Sperner Family problem
for acyclic hypergraphs and hypertrees. We first answer this question for hypertrees.

Theorem 11. If the SETH is true, then there is no algorithm which solves the Sperner Family
problem for a given hypertree in O

(

N2−ε
)

time.

Proof. We prove the theorem by making a simple linear-time reduction. Consider a family F =
{S1, S2, . . . , Sm} of sets. Create a new vertex u and add it to each set Si ∈ F . Let S′

i be the
resulting set. The family F ′ = {S′

1, S
′
2, . . . , S

′
m} then forms a hypertree. Clearly, adding u to

each set does not change any subset relations. Therefore, F contains two distinct sets Si and Sj

with Si ⊆ Sj if and only if F ′ contains two distingt sets S′
i and S′

j with S′
i ⊆ S′

j . �

For acyclic hypergraphs we have the following result.

Theorem 12. There is a linear-time algorithm to solve the Sperner Family problem for acyclic
hypergraphs.

Proof. Let H be an acyclic hypergraph with a join tree T . We first show that the following are
equivalent: (i) H has two distinct hyperedges Ei and Ej with Ei ⊆ Ej , and (ii) T has an edge
EE′ with E ⊆ E′. Clearly, (ii) implies (i). To show that (i) implies (ii), let Ei and Ej be two
distinct hyperedges of H with Ei ⊆ Ej . It follows from the definition of join trees that Ei ⊆ Ek

for each hyperedge Ek on the path from Ei to Ej in T . Therefore, T contains an edge EiEk with
Ei ⊆ Ek and, thus, (i) is equivalent to (ii).

Let EE′ be an edge of T with E ⊆ E′, and let S = E ∩ E′ be the separator corresponding
to that edge. Note that |S| = |E| in such a case. Hence, it follows that (i) is true if and only if
H admits a separator S = E ∩ E′ such that |S| = |E| or |S| = |E′|.

We can now solve the Sperner Family problem for a given acyclic hypergraph H in linear time
as follows. Construct the separator hypergraph for H (see Algorithm 1). For each separator S =
E ∩ E′, determine if |S| = |E| or |S| = |E′|. In that case, return True. Otherwise, if no such
separator is found, return False. �

Theorem 4 and Theorem 12 together give an interesting observation: Let C he a class of
hypergraphs. Existence of an algorithm that solves the Sperner Family Problem for C in truly
subquadratic time does not imply that there is such an algorithm to compute a subset graph
for hypergraphs in C, even if the resulting graph is sparse.

One can generalise the Sperner Family Problem as follows: How many pairs of distinct sets
Si, Sj with Si ⊆ Sj does a given a family F contain? Let p be that number. The Sperner Family
problem is then equal to the question whether or not p ≥ 1. Thus, Theorem 12 gives linear-time
algorithm to determine if p ≥ 1 for acyclic hypergraphs. The reduction for Lemma 2, however,
implies that there is no truly subquadratic-time algorithm that determines if p ≥ m. What
remains an open question is the required runtime to determine if p ≥ k for any fixed k with
1 < k < m.



10 Arne Leitert

4 β-Acyclic Hypergraphs

A hypergraph H = (V, E) is β-acyclic if each subset of E forms an acyclic hypergraph. They are
also known as totally balanced hypergraphs [11]. See [16] for more definitions. In this section, we
present an algorithm to compute the subset graph G of β-acyclic hypergraphs in O

(

N log(n +
m)+ |G|

)

time. Afterwards, we show that one can use that algorithm together with Algorithm 2
to compute the union join graph in the same amount of time.

4.1 Constructing the Subset Graph

A matrix is binary if its entries are either 0 or 1. The binary matrix
[

1 1
1 0

]

is called Γ. A matrix
is Γ-free if it contains no Γ as submatrix. Note that the rows and columns which form a Γ
submatrix do not need to be adjacent in the original matrix. One can use a binary n × m
matrix M to represent a given hypergraph H = (V, E) as follows. Let each row i represent a
vertex vi ∈ V and each column j represent a hyperedge Ej ∈ E . An entry Mi,j is then 1 if and
only if vi ∈ Ej. That matrix is called the incidence matrix of H.

A matrix is doubly lexically ordered if rows and columns are permuted in such a way that
rows vectors and columns are both in non-decreasing lexicographic order (rows from left to right
and columns from top to bottom). Within a row, priorities of entries are decreasing from right
to left, and, within a column, priorities of entries are decreasing from bottom to top. One can
compute such an ordering in O

(

N log(n + m)
)

time [24]. Note that the algorithm in [24] does
not compute the actual matrix; it only computes the corresponding ordering of vertices and
hyperedges, thereby avoiding a quadratic runtime.

Lemma 13. [4,11] A hypergraph is β-acyclic if and only if its doubly lexically ordered incidence
matrix is Γ-free.

For the remainder of this subsection, assume that we are given a β-acyclic hypergraph H =
(V, E). Let M be a doubly lexically ordered (hence, Γ-free) incidence matrix for H. We assume
that we know the ordering of vertices and hyperedges in M , even though we are not given M
itself. For two hyperedges Ei and Ej of H, we say Ei � Ej if the column of Ei is lexicographically
smaller than or equal to the column of Ej with respect to M . Accordingly, we write Ei ≺ Ej to
exclude equality.

Lemma 14. Let Ei and Ej be two hyperedges of H and let v be the vertex in Ei which is
earliest in the doubly lexical ordering (i. e., highest in M). Then, Ei ⊆ Ej if and only if Ei � Ej

and v ∈ Ej.

Proof. We first show that Ei � Ej and v ∈ Ej implies Ei ⊆ Ej. Clearly, Ei ⊆ Ej if Ei = Ej.
Assume now that Ei * Ej , i. e., Ei contains a vertex u /∈ Ej . By definition of v, u is lower in M
than v. Ei � Ej and v ∈ Ej then imply that Ei, Ej , u, and v form a Γ in M . That contradicts
with M being Γ-free (see Lemma 13). Therefore, Ei ≻ Ej or v /∈ Ej.

Clearly, v /∈ Ej implies Ei * Ej . Now assume that Ei ≻ Ej . Since Ei 6= Ej, there is a lowest
vertex u in M which is in one of these hyperedges but not in both. Recall that M is ordered
lexicographically. Therefore, Ei ≻ Ej implies that u ∈ Ei (1 in M) and u /∈ Ej (0 in M), i. e.,
Ei * Ej . �

Lemma 14 allows to compute the subset graph G of a β-acyclic hypergraph as follows. First,
find doubly lexicographical ordering of vertices and hyperedges. For each hyperedge E, deter-
mine all hyperedges E′ with E � E′ which contain v as defined in Lemma 14. Then, add the
edge (E,E′) to G for each such pair E and E′. Algorithm 3 implements that approach.

Theorem 15. Algorithm 3 computes the subset graph G of a given β-acyclic hypergraph in O
(

N log(n+
m) + |G|

)

time.
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Algorithm 3: Computes the subset graph of a given β-acyclic hypergraph.

Input: A β-acyclic hypergraph H = (V, E).
Output: The subset graph G of H .

1 Find doubly lexicographical ordering σ of vertices and hyperedges (see [24]) and order the adjacency list
of I(H) according to σ.

2 Create a new directed graph G = (E , EG) with EG = ∅.
3 foreach E ∈ E do

4 Let v be the vertex in E which is first in σ.
5 foreach hyperedge E′ containing v with E � E′ do (� with respect to σ)
6 Add (E,E′) to EG.

Proof (Correctness). We show the correctness of Algorithm 3 by showing that G contains an
edge (Ei, Ej) if and only if Ei ⊆ Ej . First assume that G contains an edge (Ei, Ej). Note that
Algorithm 3 only adds (Ei, Ej) to G (line 6) if Ei � Ej and v ∈ Ej (line 5). Therefore, due to
Lemma 14, G containing an edge (Ei, Ej) implies Ei ⊆ Ej .

Next, assume that H contains two hyperedges Ei and Ej with Ei ⊆ Ej . It then follows from
Lemma 14 that Ei � Ej and v ∈ Ej. Since the algorithm checks all pairs of hyperedges satisfying
this condition (line 3 and line 5), it eventually finds Ei and Ej and adds (Ei, Ej) as edge to G
(line 6). �

Proof (Complexity). One can compute a doubly lexicographical ordering σ (line 1) in O
(

N log(n+
m)

)

time [24]. Creating the graph G (line 2) can easily be done in O(m) time.
There are various ways to then order the adjacency list of I(H) (line 1) in O(N) time. One

option is to reconstruct I(H) as follows. Iterate over all vertices v of H as ordered in σ. For
each hyperedge E containing v, add v to the new list of E. Afterwards, the list of vertices in E
is ordered with respect to σ. The same approach (with hyperedges and vertices swapped) allows
to sort, for each vertex v, the list of hyperedges containing it.

We now show that the loop starting in line 3 runs is in O
(

|G|
)

total time. Note that the
hyperedges E form the vertices of G. Hence, there is exactly one iteration of the loop starting in
line 3 for each vertex of G. Since the adjacency list of I(H) is ordered according to σ (line 1),
we can determine v (line 4) in constant time for each hyperedge E. For the same reason, we can
determine the set Ev = {E′ ∈ E | v ∈ E′, E � E′ } in O

(

|Ev|
)

time by iterating backwards over
the hyperedges containing v. Since we add exactly one edge (E,E′) to G for each E′ in such Ev,
line 5 and line 6 run in O

(

|G|
)

total time. �

4.2 Constructing the Union Join Graph

We now address how to compute the union join graph for β-acyclic hypergraphs. For that, we
do not present a new algorithm. Instead, we show that one can use Algorithm 2 together with
Algorithm 3. This is possible due to Lemma 16 below.

Lemma 16. If a hypergraph is β-acyclic, then its separator hypergraph is β-acyclic, too.

Before proving Lemma 16, we need a few auxiliary definitions. Assume we are given a
graph G = (V,E). A clique is a set of vertices of G such that all these vertices are pairwise
adjacent. Such a clique K is maximal if no vertex in G is adjacent to all vertices in K. For a
cycle 〈v1, v2, . . . , vk, v1〉, a chord is an edge between two non-consecutive vertices. A graph is
called chordal if each cycle with four or more vertices has a chord. A hypergraph H is conformal
if, for each maximal clique K of 2Sec(H), H contains a hyperedge E with K ⊆ E.

Proof (Lemma 16). Let H = (V, E) be a β-acyclic hypergraph with a join tree T and let S be
the hyperedges of S(H). To prove that S(H) is β-acyclic, we show that each S ′ ⊆ S forms an
acyclic hypergraph. It is known that a hypergraph H is acyclic if and only if H is conformal
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and 2Sec(H) is chordal [3]. It is therefore sufficient for us to show that each S ′ is conformal and
its 2-section graph is chordal.

We start by showing that G2 = 2Sec
(

S ′
)

is chordal. Let us assume that G2 is not chordal.
It then contains a chordless cycle C = {v1, v2, . . . , vk} with k ≥ 4. Since each edge vivi+1

of G2 implies that its vertices are in a common hyperedge, there is a sequence of separators
σ = 〈S1, S2, . . . Sk〉 that form C in G2. In particular, we have that vi ∈ Si ∩ Si+1 (with index
arithmetic modulo k). Recall that each separator Si corresponds to an edge of T . Let Tσ be the
smallest subtree of T that contains all separators of σ. Note that vi /∈ Sj for all j /∈ {i, i + 1};
otherwise C would have a chord. Therefore, by properties of join trees, there is no i and j
such that Sj separates Si and Si+1 in T . Hence, each Si in σ corresponds to a leaf Ei of Tσ.
By properties of join trees, Ei ∩ Ej = Si ∩ Sj. Hence, 2Sec

(

{E1, E2, . . . , Ek}
)

is not chordal
implying that {E1, E2, . . . , Ek} does not form an acyclic hypergraph. This contradicts with H
being β-acyclic. Therefore, 2Sec

(

S ′
)

is chordal.
We now show that each S ′ forms a conformal hypergraph. Gilmore’s Theorem [4] states that

a hypergraph H is conformal if and only if, for all its hyperedges E1, E2, and E3, H contains a
hyperedge E such that (E1 ∩E2) ∪ (E2 ∩E3) ∪ (E1 ∩E3) ⊆ E. S ′ is therefore clearly conformal
if |S ′| ≤ 2. Now let |S ′| ≥ 3 and let S1, S2, and S3 be three hyperedges in S ′. We distinguish
between two cases. Case 1: S1, S2, and S3 are on a path in T . Without loss of generality, let
S2 be between S1 and S3. Then, by properties of join trees, S1 ∩ S3 ⊆ S2. Case 2: There
is a hyperedge E in H such that S1, S2, and S3 are in different subtrees when removing E
from T . For all i ∈ {1, 2, 3}, let Si represent the edge EiE

′
i of T and let E′

i be closer to E in T
than Ei. Since H is β-acyclic, the set {E1, E2, E3} also forms an acyclic and, hence, conformal
hypergraph. Without loss of generality, let E3 be the hyperedge that satisfies Gilmore’s Theorem
for {E1, E2, E3}, i. e., let E1 ∩E2 ⊆ E3. Note that, by properties of join trees, Ei ∩Ej = Si ∩Sj

for all i, j ∈ {1, 2, 3}, and v ∈ S3 if v ∈ (E1 ∪E2) ∩E3. Therefore, S1 ∩S2 ⊆ S3. Overall, it then
follows each S ′ forms a conformal hypergraph. �

Due to Lemma 16, we can conclude this section as follows.

Theorem 17. There is an algorithm that computes the union join graph G of a given β-acyclic
hypergraph in O

(

N log(n+m) + |G|
)

time.

Proof. Let H be the given hypergraph. Because the separator hypergraph S(H) is β-acyclic
(Lemma 16), we can use Algorithm 3 to compute its subset graph G′ in O

(

N log(n+m) + |G′|
)

time. Thus, when using H and Algorithm 3 as input, Algorithm 2 computes the union join
graph G of H in O

(

N log(n+m)+ |G′|+ |G|
)

time. Consider again line 4 to line 8 of Algorithm 2.
Note that for each edge (S, S′) of G′, there is at least one edge added to G. It follows that
|G′| ≤ |G| and, therefore, one can compute G in O

(

N log(n+m) + |G|
)

total time. �

5 γ-Acyclic Hypergraphs

In [16], Fagin gives various definitions of γ-acyclic hypergraphs and presents a polynomial-time
recognition algorithm for them. The definition for γ-acyclic hypergraphs we give below uses a
strong relation between these hypergraphs and distance-hereditary graphs. Before that, we give
a few auxiliary definitions and an interesting property of distance-hereditary graphs.

Let G = (V,E) be a connected, undirected, and simple graph without loops or multiple edges.
The open and closed neighbourhood of a vertex v ∈ V are respectively defined as N(v) = {u |
uv ∈ E } and N [v] = N(v) ∪ {v}. A vertex v is pendant if

∣

∣N(v)
∣

∣ = 1. Two vertices u and v are
false twins if N(u) = N(v), and are true twins if N [u] = N [v]. A graph G is distance-hereditary
if every induced subgraph is distance preserving, i. e., the distance between two vertices u and v
remains the same in every connected induced subgraph of G that contains u and v.

An ordering σ = 〈v1, v2, . . . , vn〉 for a graph G is called a pruning sequence if each vi with
i > 1 satisfies one of the following conditions in the subraph of G induced by {v1, v2, . . . , vi}:
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(i) vi is pendant, (ii) vi is a true twin of some vertex vj , or (iii) vi is a false twin of some vertex vj.
A graph G is distance-hereditary if and only if G admits a pruning sequence [2].

The recognition algorithm in [16] decides whether or not a given hypergraph is γ-acyclic
by determining if the corresponding incidence graph admits a pruning sequence. Additionally,
Ausiello et al. [1] show that the incidence graphs of γ-acyclic hypergraphs are so-called (6,
2)-chordal bipartite graph which are known to be equivalent to bipartite distance-hereditary
graphs [10]. Therefore, we can define γ-acyclic hypergraphs as follows.

Corollary 18. [1,10] [16] A hypergraph is γ-acyclic if and only if its incidence graph is distance-
hereditary.

5.1 Constructing the Union Join Graph

Lemma 19. An acyclic hypergraph is γ-acyclic if and only if its line graph is isomorphic to its
union join graph.

Proof. Let H be an acyclic hypergraph with two distinct hyperedges Ei and Ej , and let G be
the union join graph of H. Consider the following statements: (i) EiEj is an edge of L(H),
(ii) Ei ∩Ej 6= ∅, (iii) Ei ∩Ej separates Ei \Ej from Ej \Ei, and (iv) EiEj is an edge of G. Due
to definitions and due to Lemma 5, it follows that (i) is equivalent to (ii), that (iii) implies (ii),
and that (iii) is equivalent to (iv).

To prove Lemma 19, we first assume that H is γ-acyclic. It is know [16] that a hypergraph
is γ-acyclic if and only if (ii) implies (iii) for all distinct hyperedges Ei and Ej. Therefore, if H
is γ-acyclic, the statements (i), (ii), (iii), and (iv) are equivalent and, subsequently, L(H) = G.

Now assume that L(H) = G, i. e., that (i) and (iv) are equivalent for all distinct hyperedges
Ei and Ej. It then follows that (ii) and (iii) are equivalent and, as a result, that (ii) implies (iii).
The same observation from [16] then implies that H is γ-acyclic if L(H) = G. �

Theorem 20. There is an algorithm that computes the union join graph G of a given γ-acyclic
hypergraph in O

(

N + |G|
)

time.

Proof. Due to Lemma 19, we can compute the union join graph G of a γ-acyclic hypergraph H by
computing its line graph. Note that, by definition, L(H) = 2Sec(H∗). It follows from Corollary 18
that the dual hypergraph H∗ is γ-acyclic too. Therefore, we can compute G = 2Sec(H∗) as
follows.

Let T be a join tree of H∗ rooted in an arbitrary node. Process each hyperedge of H∗

according to a pre-order on T . When processing a hyperedge E of H∗, pick a vertex v ∈ E that
has not been flagged, make v adjacent (in G) to all flagged vertices in E, and then flag v. Repeat
that until all vertices in E are flagged and afterwards continue with the next hyperedge.

By flagging vertices, we ensure that an edge uv is added to G at most once even if both
vertices are together in multiple hyperedges of H∗. Therefore, since we can construct T in O(N)
time [27], we can construct G from H in O

(

N + |G|
)

time. �

5.2 Constructing the Subset Graph

Bachman Diagrams. Consider a hypergraph H = (V, E), let E ′ be a subset of E , and let X

be the intersection of all hyperedges in E ′. We then define X as the set of all such X which are
non-empty, i. e.,

X =
⋃

E ′⊆E

{

X
∣

∣

∣ X =
⋂

E∈E ′ E,X 6= ∅
}

.

The Bachman diagram B(H) of H is a directed graph with the node set X such that there is
an edge from X to Y if X ⊃ Y and there is no Z with X ⊃ Z ⊃ Y. Note that, if H contains two
distinct hyperedges Ei and Ej with the same vertices, they are represented by the same node
in B(H).
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Lemma 21. [16] A hypergraph is γ-acyclic if and only if its Bachman diagram forms a tree.

In a Bachman diagram B(H) as defined above, a vertex v of H is often contained in multiple
nodes. A technique from [28] allows us to construct a more compact representation of B(H). Let
N(X) be the set of nodes Y such that (X,Y) is an edge of B(H). We then define the label of X
as ℓ(X) := X \

⋃

Y∈N(X) Y. As a result, a vertex v of H is only in the label of the “smallest”
node Y containing it. Consider now a Bachman diagram B(H) with the node set X where we
replace each node X ∈ X with X = ℓ(X). We call the resulting graph B a simplified Bachman
diagram of H. Figure 2 gives an example.

a, b, c

a, d c, e, f

b, c

a c

(a)

d e, f

b

a c

(b)

Fig. 2. The Bachman diagram (a) and its simplified version (b) for a γ-acyclic hypergraph H with the hyper-
edges {a, b, c}, {a, d}, {b, c}, and {c, e, f}. Nodes which represent hyperedges of H are drawn as rectangles; other
nodes are drawn as circles.

Let B be a simplified Bachman diagram for a hypergraph H = (V, E). We use the following
functions and notations when working with B and H. The function φ maps E onto the nodes
of B such that φ(E) returns the node which represents E. Accordingly, we define Φ(X) :=

{

E ∈
E

∣

∣ φ(E) = X } for all nodes X of B. Similar to φ, we define ψ as a function that maps V onto
the nodes of B such that ψ(v) returns the node which contains v. For two nodes X and Y , we
write X  Y to state that there is a path form X to Y in B. Note that we assume that X  X.
Lastly, we define V(X) = { v ∈ Y | X  Y }. Note that V is effectively the inverse of the label
function ℓ we used above.

Subset Graph via Simplified Bachman Diagrams. We can make the following observation:
For two hyperedges Ei and Ej of H, Ei ⊆ Ej if and only if φ(Ej)  φ(Ei) in the (simplified)
Bachman diagram of H. In the remainder of this subsection, we present algorithms which first
constructs a simplified Bachman diagram for a given γ-acyclic hypergraph H and then uses the
previous observation to compute the subset graph G of H in O

(

N + |G|
)

time.

To the best of our knowledge, there exist only two published algorithms which compute
(simplified) Bachman diagrams. Kumar et al. [22] present an O

(

nm2
)

-time algorithm to compute
a Bachman diagram for a γ-acyclic database schema. Uehara and Uno [28] present a linear-time
algorithm that computes a simplified Bachman diagram for the maximal cliques of a ptolemaic
graph; these cliques form a γ-acyclic hypergraph [11]. Using that algorithm would require us to
first compute the 2-section graph of H. That may result in overall quadratic runtime for some
hypergraphs. We therefore use neither of these algorithms. Instead, we present a new algorithm
which computes a simplified Bachman diagram for a given γ-acyclic hypergraph in O(N) time.

Recall that the incidence graph of a γ-acyclic hypergraph H is distance-hereditary. It there-
fore admits a pruning sequence σ = 〈x1, x2, . . . , xn+m〉. Note that each xi in σ can represent
either a vertex or a hyperedge of H. The idea for our algorithm is to iterate over σ and to step
by step construct B. For that, let Ii denote the subgraph of I(H) induced by {x1, x2, . . . , xi}.
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We start the construction with x1 and x2. Note that one of them has to represent a vertex v
and the other a hyperedge E of H. Therefore, we initialise B with a single node X = {v} and
set φ(E) := X and ψ(v) := X.

Next, we iterate over σ, starting with x3. Since incidence graphs are bipartite, it is never
the case that xi is the true twin of some xj (with the exception of i = 2). Hence, we have
four possible cases for each xi: (i) xi represents a vertex of H and is a false twin in Ii, (ii) xi

represents a hyperedge and is a false twin, (iii) xi represents a vertex and is pendant, or (iv) xi

represents a hyperedge and is pendant.

If xi is a twin (cases (i) and (ii)), the idea is to make the new vertex or hyperedge behave as
its twin. For a vertex v, that means to add v into the same node of B. In case of a hyperedge E,
it is represented by the same node of B as its twin.

If xi is pendant, adding it may affect the structure of B. For example, let xi represent a
vertex v added to a hyperedge E (case (iii)). If, with respect to Ii−1, E is not subset of another
hyperedge (including not being a twin), then we can simply add v into φ(E). However, if E is
subset of some hyperedge, it is no longer after adding v. We subsequently need to update the
structure of B. To do so, we add a new node Y , make it the representative of E, and add an
edge from Y to the node of B which previously represented E. We handle case (iv) in a similar
way.

Algorithm 4 implements the approach above and describes in detail how to handle each of
the four cases for xi.

Algorithm 4: Computes the Bachman diagram for a given γ-acyclic hypergraph.

Input: A γ-acyclic hypergraph H = (V, E).
Output: A simplified Bachman diagram B for H .

1 Compute a pruning sequence σ = 〈x1, x2, . . . , xn+m〉 for I(H) (see [9]).
2 Create a new empty graph B.
3 Let x1 and x2 represent the vertex v and hyperedge E of H . Create a new set X = {v}, add it as node

to B, and set φ(E) := X and ψ(v) := X.
4 for i := 3 to n+m do

5 if xi represents a vertex v ∈ V and is a false twin in Ii then

6 Let u be the vertex represented by a twin of xi in Ii and let X = ψ(u).
7 Add v into X, i. e., set ψ(v) := X and X := X ∪ {v}.

8 if xi represents a hyperedge E ∈ E and is a false twin in Ii then

9 Let E′ be the hyperedge represented by a twin of xi in Ii.
10 Set φ(E) := φ(E′).

11 if xi represents a vertex v ∈ V and is pendant in Ii then

12 Let E be the hyperedge represented by the neighbour of xi in Ii and let X = φ(E).

13 if
∣

∣Φ(X)
∣

∣ = 1 and X has no incoming edges in B then

14 Add v into X, i. e., set ψ(v) := X and X := X ∪ {v}.
15 else

16 Create a new set Y = {v}, add it as node to B, set ψ(v) := Y and φ(E) := Y , and add the
edges (Y,X) to B.

17 if xi represents a hyperedge E ∈ E and is pendant in Ii then

18 Let v be the vertex represented by the neighbour of xi in Ii and let X = ψ(v).
19 if |X| = 1 and X has no outgoing edges in B then

20 Set φ(E) := X.
21 else

22 Create a new set Y = {v}, add it as node to B, set X := X \ {v}, set ψ(v) := Y and
φ(E) := Y , and add the edge (X,Y ) to B.
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Lemma 22. Algorithm 4 computes a simplified Bachman diagram for a given γ-acyclic hyper-
graph in linear time.

Proof (Correctness). We start by showing that B forms a tree. Algorithm 4 starts constructing B
with a single node (line 3). Whenever the algorithm adds a new node to B (line 16 and line 22),
it is incident to exactly one edge. Additionally, no other edge is ever added to or removed from B.
Therefore, B forms a tree.

To show that B is a simplified Bachman diagram for H, we show that it satisfies the following
two properties:

(1) For each vertex v of H, B contains exactly one node X with v ∈ X; additionally, ψ(v) = X.
(2) There is a bijection f mapping X onto the nodes of B such that (a) f(X) = X if and only

if X = V(X), and (b) X = E for some hyperedge E implies f(X) = φ(E).

Property (2) ensures that the nodes of B represent the nodes of a Bachman diagram for H.
Property (1) then enforces that the nodes of B are connected properly. Without it, one could
satisfy (2) by constructing a graph B = (X , ∅). Additionally, since B forms a tree, it does not
contain transitive edges.

Observe that whenever a new vertex v is added (lines 3, 7, 14, and 16), Algorithm 4 adds
it into a node X and sets ψ(v) accordingly. In the case that an existing vertex v is added into
a new node Y (line 22), the algorithms removes it from its previous node X and updates ψ(v)
accordingly. Therefore, the graph B constructed by Algorithm 4 satisfies property (1).

In the remainder of this proof, we show that B satisfies property (2) via an induction over i.
For that purpose, let Hi denote the hypergraph formed by Ii and let Bi be graph constructed
after processing xi. We also use subscript i to indicate that we refer to a version of a set, node,
hyperedge, or function with respect to Bi or Hi; for larger expressions ε, we may write [ε]i.

Since H2 has only one hyperedge and one vertex, B2 (constructed in line 3) is clearly a
simplified Bachman diagram for H2 and satisfies property (2). In the following, we therefore
assume that i ≥ 3 and that Bi−1 satisfies property (2). We distinguish between four possible
cases for xi.

Case (i): xi represents a vertex v ∈ V and is a false twin in Ii. Let u be the vertex represented
by a twin of xi. Since u and v are twins, it follows that v ∈ Ei if and only if u ∈ Ei−1 for
each hyperedge E of Hi Subsequently, the only change to X is that v is added to the sets X

which contain u. That is, for each X ∈ Xi, Xi = Xi−1 if u /∈ Xi−1 and Xi = Xi−1 ∪ {u} if
u ∈ Xi−1. Observe that the algorithm neither adds any nodes nor any edges to the graph. It
only adds v into ψ(u)i−1. Hence, for each node X of Bi, V(X)i = V(X)i−1 if u /∈ V(X)i−1 and
V(X)i = V(X)i−1 ∪ {v} if u ∈ V(X)i−1. Therefore, Bi satisfies property (2).

Case (ii): xi represents a hyperedge E ∈ E and is a false twin in Ii. Recall that we defined
Bachman diagrams and the family X in such a way that X does not contain two equal sets, even
if H contains multiple equal hyperedges. Hence, adding a hyperedge E which is equivalent to an
existing hyperedge E′ does neither change X nor any of the sets contained in it. It follows that
setting φ(E)i = φ(E′)i−1 is the only change needed for Bi to satisfy property (2) (otherwise Bi

would violate (2.b)). Algorithm 4 does exactly that in line 10.

Case (iii): xi represents a vertex v ∈ V and is pendant in Ii. Let E be the hyperedge represented
by the neighbour of xi in Ii (i. e., Ei = Ei−1), and let X = φi−1(E). Assume that, for each
hyperedge E′ of Hi−1 which is distinct from E, Ei−1 * E′

i−1. In that case,
∣

∣Φ(X)
∣

∣

i−1
= 1 and X

has incoming edge in Bi−1. (As result, Algorithm 4 calls line 14.) Since v is only added into E,
Xi is almost identical to Xi−1 except that the set X which represents E now contains v. Because
X has incoming edge in Bi−1, adding v into it (line 14) does not affect other nodes. In particular,
V(Y )i = V(Y )i−1 for all nodes Y of Bi which are distinct from X, and V(X)i = V(X)i−1 ∪ {v}.
Therefore, Bi satisfies property (2).
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Assume now that Hi−1 contains a hyperedge E′ distinct from E with Ei−1 ⊆ E′
i−1. In that

case,
[

φ(E′)  X
]

i−1
and, thus,

∣

∣Φ(X)
∣

∣

i−1
> 1 (if φ(E′)i−1 = X) or X has incoming edge

in Bi−1. (As result, Algorithm 4 calls line 16.) Since v is only added into E but not E′, Ei * E′
i.

However, for all E ′ ⊆ Ei with E ∈ E ′ and |E ′| > 1,
[

⋂

E∈E ′ E
]

i
=

[

⋂

E∈E ′ E
]

i−1
. Therefore,

Xi = Xi−1 ∪ {Y} with Yi = Ei. For each X ∈ Xi−1, let fi(X) = fi−1(X). Additionally, let
fi(Y) = Y where Y = {v} is the node added to B in line 16. Thus, fi is a bijection mapping
Xi onto the nodes of Bi. Since the added edge (Y,X) points towards X, V(Z)i = V(Z)i−1 for
all nodes Z of Bi−1 and V(Y )i = Y. Hence, Bi satisfies property (2.a). Additionally, since the
algorithm also sets φ(E)i = Y , Bi also satisfies property (2.b).

Case (iv): xi represents a hyperedge E ∈ E and is pendant in Ii. Let v be the vertex represented
by the neighbour of xi in Ii (i. e., Ei = {v}), and let X = ψ(v)i−1. Assume that Xi−1 contains
a set X with Xi−1 = {v}. In that case, adding E does neither change X nor any of the sets
contained in it. Additionally, |Xi| = 1 and X has no outgoing edges in Bi−1. It follows that
setting φ(E)i = X is the only change needed for Bi to satisfy property (2) (similar to case (ii)).
Algorithm 4 does exactly that in line 20.

Assume now that, for each set X ∈ Xi−1, Xi−1 6= {v}. In that case, Xi = Xi−1 ∪ {Y} with
Yi = Ei = {v}. Additionally, |Xi| > 1 or X has an outgoing edge in Bi−1. Let fi(X) = fi−1(X)
for each X ∈ Xi−1, and let fi(Y) = Y where Y = {v} is the node added to B in line 22. Thus,
fi is a bijection mapping Xi onto the nodes of Bi. Note that Algorithm 4 (in line 22) moves v
from node X into the new node Y . However, since the added edge (X,Y ) points towards Y ,
V(Z)i = V(Z)i−1 for all nodes Z of Bi−1 and V(Y )i = Y. Therefore, due to the algorithm setting
φ(E)i = Y , Bi satisfies property (2). �

Proof (Complexity). One can compute a pruning sequence for a given distance-hereditary graph
in linear time [9] and, thus, for I(H) (line 1) in O(N) time. Creating B and adding the first node
(lines 2 and 3) can then be done in constant time. For each node X of B, we create two lists.
One stores the vertices in X and one the hyperedges in Φ(X). For the functions φ and ψ, we
store the node X they map on and a reference to where the hyperedge or vertex is stored in the
corresponding list of X. That way, we can perform each of the following operations in constant
time: adding new nodes and edges into B (lines 16 and 22), assigning a hyperedge to a node
and setting φ (lines 10, 20, and 22), changing the assignment of a hyperedge to a different node
and updating φ (line 16), adding a vertex into a node and setting ψ (lines 7, 14, and 16), and
moving a vertex from one node into another and updating ψ (line 22). Therefore, each iteration
of the loop starting in line 4 run in constant time and, subsequently, Algorithm 4 run in overall
linear time. �

Lemma 23. Each node X of B with Φ(X) = ∅ has an in-degree of at least 2.

Proof. We first assume that X has in-degree 0. Then, there is no hyperedge E with φ(E) X
and, subsequently, no such E with V(X) ⊆ E. That contradicts with the definition of Bachman
diagrams.

Now assume that X has at least one incoming edge (Y,X). Let EX =
{

E
∣

∣ φ(E) X
}

and
EY =

{

E
∣

∣ φ(E)  Y
}

. Since
⋂

E∈EX
E = V(X) ⊂ V(Y ) =

⋂

E∈EY
, there is a hyperedge E ∈

EX \ EY with φ(E)  X and φ(E) 6 Y . Hence, since φ(E) 6= X, there is a path from φ(E)
to X in B that does not contain Y and, therefore, X has an in-degree of at least 2. �

Theorem 24. Algorithm 5 computes the subset graph G of a given γ-acyclic hypergraph in O
(

N+
|G|

)

time.

Proof (Correctness). Let E and E′ be two distinct hyperedges of H. By definition of (simplified)
Bachman diagrams, B (computed in line 1) contains two nodes X = φ(E) and Y = φ(E′) such
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Algorithm 5: Computes a subset graph for a given γ-acyclic hypergraph.

Input: A γ-acyclic hypergraph H = (V, E).
Output: A subset graph G for H .

1 Compute a simplified Bachman diagram B for H with the corresponding functions φ and Φ (see
Algorithm 4).

2 Create a new directed graph G = (E , ∅).
3 foreach E ∈ E do

4 Let X = φ(E). Compute EX =
⋃

Y X
Φ(Y ).

5 For each E′ ∈ EX distinct from E, add the edge (E,E′) to G.

that Y  X if and only if E ⊆ E′. Additionally, Algorithm 5 adds the edge (E,E′) to G (line 5)
if and only if Y  X. Therefore, for any distinct hyperedges E and E′ of H, (E,E′) is an edge
of G if and only if E ⊆ E′. �

Proof (Complexity). Computing the simplified Bachman diagram B (line 1) can be done in O(N)
time (Lemma 22). Creating the graph G (line 2) can be done in O(m) time. Additionally, once
the sets EX are known for all X, we can add the edges of G (line 5) in O

(

|G|
)

total time. It
remains to show that we can compute the sets EX in the desired runtime. To do that, we show
that we can compute EX for a given X in O

(

|EX |
)

time.

Recall that B is a directed graph which forms a tree (Lemma 21). Hence, the the nodes of B
from which there is a path to X form a tree TX rooted in X where each edge points from a child
to its parent. One can compute TX in O

(

|TX |
)

time by, for example, reversing the edges of B
and then performing a BFS or DFS starting at X.

Assume that we partition the nodes of TX into two sets YX and ZX where YX =
{

Y
∣

∣

Φ(Y ) 6= ∅ } and ZX contains all remaining nodes. It follows from Lemma 23 that each node Y
of TX with at most one child (including leaves) is in YX , and each node in ZX has at least two
children. Now assume that we, step by step, remove each node Y from TX which has exactly
one child Y ′, and make Y ′ the child of Y ’s parent. Let T ′

X be the resulting tree. Each node
of T ′

X then has at least two children. Thus, at least half of the nodes of T ′
X are leaves. Since each

leaf is in YX and T ′
X contains all nodes in ZX , it follows that |ZX | ≤ |YX | and, subsequently,

|TX | ∈ Θ
(

|YX |
)

.

Recall that Φ(Y ) 6= ∅ for all Y ∈ YX and that each hyperedge of H is associated with at
most one such Y . It follows that |YX | ≤ |EX |. Therefore, we can compute EX for a given X in
O

(

|EX |
)

time, and line 4 runs in O
(

|G|
)

total time. �

6 Interval Hypergraphs

An acyclic hypergraph H = (V, E) is an interval hypergraph if it admits a join tree that forms a
path. That is, there is an order σ = 〈E1, E2, . . . , Em〉 for the hyperedges of H such that, for each
vertex v ∈ V , v ∈ Ei ∩Ej implies that v ∈ Ek for all k with i ≤ k ≤ j. Interval hypergraphs are
closely related to interval graphs which are a subset of chordal graphs. In particular, a graph is
an interval graph if and only if its maximal cliques form an interval hypergraph, and an acyclic
hypergraph is an interval hypergraph if and only if its 2-section graph is an interval graph.

Algorithm 9 in [19] allows to recognise interval hypergraphs in linear time. It also produces
an order σ as defined above. Note that the first step of that algorithm is to compute a clique
tree T and a vertex ordering φ for a given graph. We replace that step by first computing a join
tree T of the given hypergraph and then perform Algorithm 10 from [19] to compute φ.

There are multiple ways to compute the subset graph and union join graph once σ is known
for a given hypergraph H. One may order the vertices of H based on the right-most hyperedge
containing them (with respect to σ). Note that we can compute such an ordering in linear time
from σ. Both orders together then form a doubly lexically order and allow to construct a Γ-free
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matrix for H. Note that Algorithm 3 and the algorithm described in Theorem 17 only have a
logarithmic overhead in runtime because they compute a doubly lexically order. If such an order
is given, both algorithm run in O

(

N + |G|
)

time.

For an alternative approach, we first determine for each vertex v the index of the left-most
hyperedge containing it (with respect to σ). Let φ(v) be that number, i. e., if Ei is the left-most
hyperedge containing v, then φ(v) = i. Next, we compute the separators between consecutive
hyperedges (see Algorithm 1). Let Si denote the separator between Ei−1 and Ei and let φ(Si) =
maxv∈Si

φ(v). Then, for each Ej with j < i, it holds that (i) Ej ⊇ Ei if and only if |Ei| = |Si|
and j ≥ φ(Si), and (ii) EiEj is an edge of the union join graph of H if and only if j ≥ φ(Si).
Running the same approach again using the reverse of σ therefore allows to compute the subset
graph and union join graph in O

(

N + |G|
)

time.

Theorem 25. There is an algorithm that computes the union join graph and subset graph of a
given interval hypergraph in O

(

N + |G|
)

time, respectively, where |G| is the size of the computed
graph.
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