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Abstract

In this article, we present a construction of a spanner on a set of n
points in Rd that we call a heavy path WSPD spanner. The construction
is parameterized by a constant s > 2 called the separation ratio. The size
of the graph is O(sdn) and the spanning ratio is at most 1+2/s+2/(s−1).
We also show that this graph has a hop spanning ratio of at most 2 lg n + 1.

We present a memoryless local routing algorithm for heavy path WSPD
spanners. The routing algorithm requires a vertex v of the graph to store
O(deg(v) log n) bits of information, where deg(v) is the degree of v. The
routing ratio is at most 1+4/s+1/(s−1) and at least 1+4/s in the worst
case. The number of edges on the routing path is bounded by 2 lg n + 1.

We then show that the heavy path WSPD spanner can be constructed
in metric spaces of bounded doubling dimension. These metric spaces have
been studied in computational geometry as a generalization of Euclidean
space. We show that, in a metric space with doubling dimension λ, the
heavy path WSPD spanner has size O(sλn) where s is the separation
ratio. The spanning ratio and hop spanning ratio are the same as in the
Euclidean case.

Finally, we show that the local routing algorithm works in the bounded
doubling dimension case. The vertices require the same amount of storage,
but the routing ratio becomes at most 1 + (2 + τ

τ−1
)/s + 1/(s − 1) in the

worst case, where τ ≥ 11 is a constant related to the doubling dimension.
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1 Introduction

Routing in a graph refers to the problem of sending a message from one vertex
to another. The vertex that sends the message is called the source and the
vertex that is meant to receive the message is called the destination. At a vertex,
a routing algorithm must decide where to forward the message in such a way
that the message will eventually reach the destination. By repeatedly making
forwarding decisions, one constructs a path from the source to the destination.

Centralized algorithms for computing paths in a graph are well-studied.
For example, Dijkstra’s algorithm [18] can compute the shortest path between
any two vertices in a weighted graph. However, Dijkstra’s algorithm requires
knowledge of the entire graph. The problem is more challenging if we want
distributed algorithms that must make forwarding decisions at a vertex based
only on the message itself and information stored at the vertex.

A routing algorithm on a graph G can be modelled as a function. The
function takes as input the current vertex and the destination vertex, as well as
information about the neighbourhood of the current vertex. It may take extra
information that is stored either in the message itself or at the vertex. The
information stored in the message is called the message header. The routing
algorithm computes where the message should be forwarded to, and potentially
modifies the header. Formal definitions for all of these concepts appear in
Section 2.

The information that we store at a vertex is called a routing table. It is
desirable for the routing tables to be as small as possible. At one extreme, the
routing tables are large enough to store the shortest path tree at each vertex.
At the other extreme, we only store the vertices directly adjacent to the current
vertex.
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If, for any pair of vertices in the graph G, the routing algorithm succeeds in
finding a path between them, we say that the algorithm guarantees delivery on
G. In addition to guaranteeing delivery and having small routing tables, there
are other measures of the quality of a routing algorithm. Similar to the routing
tables, it is desirable to make the message header as small as possible. In the
best case, there is no need for a message header at all. Such an algorithm is
called memoryless.

We may also be interested in bounding the length of the path produced by
the routing algorithm. An algorithm with such a bound is called competitive. In
addition to bounding the length of the path, we can also bound the number of
edges on the path. This is called the hop distance.

These goals are naturally in conflict with each other. To achieve a low routing
ratio on a large class of graphs, it may be necessary to store a lot of information
in the routing tables or message header. A good routing algorithm must consider
the trade-offs between these different parameters.

1.1 Background

A geometric graph is a graph whose vertices are points in Rd. The edges of
a geometric graph are line segments joining their endpoints. The edges are
weighted according to their length. A geometric routing algorithm is a routing
algorithm that uses this position information. The routing table of a vertex
can store the coordinates of its neighbours and use that information to make
forwarding decisions.

Several geometric routing algorithms have been proposed. One of the simplest
examples is greedy routing. Given the destination q and the current vertex u,
greedy routing forwards the message to the neighbour v of u that minimizes
the distance |vq|, where |vq| is the Euclidean distance between the points v
and q. Another example is compass routing, where it is the angle formed by
the segments uq and uv that is minimized. For a survey of geometric routing
algorithms, see [27].

A serious drawback of many routing algorithms such as these is that they do
not guarantee delivery, even for very simple classes of graphs. The greedy and
compass routing algorithms fail on certain triangulations, see for example [10].
The message can get stuck in a loop and never reach the destination.

If a routing algorithm makes a forwarding decision based only on the positions
of its current vertex, its neighbours, the destination, and potentially the source,
then the routing algorithm is called memoryless. In other words, a memoryless
routing algorithm does not make use of a message header. It can be shown that
no deterministic memoryless routing algorithm can succeed on all graphs [6]. In
fact, the result is even stronger than that: no deterministic memoryless routing
algorithm can guarantee delivery even when restricted to convex subdivisions.

If our goal is to design memoryless routing algorithms, then we must restrict
the class of graphs under consideration. The unit disk graph is a popular model
of an ad hoc wireless network, and so it is a natural arena for studying routing
algorithms. In the unit disk graph, there is an edge between two vertices if and
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only if the distance between them is at most some radius R. Several routing
algorithms have been proposed that guarantee delivery on the unit disk graph
[11, 23].

A competitive routing algorithm will route a message along a path that is at
most a constant times the length of the shortest possible path. The constant
is called the routing ratio of the algorithm. The length of a path is defined to
be the sum of the lengths of all the edges on the path. Instead of bounding the
length of the path, we may be interested in bounding the number of edges on
the path. We refer to this as the hop distance. This is equivalent to setting the
weight of each edge to 1. In this article a routing algorithm will be presented
that constructs a path with both low length and a small number of edges.

We want to find classes of graphs that support competitive local routing. One
potential class of graphs to consider are different geometric spanner graphs [25].
Let G be a graph such that for any two vertices u and v we have dG(u, v) ≤ t·|uv|
for some constant t > 0, where dG(u, v) is the length of the shortest path between
u and v. We call G a t-spanner, and the smallest t for which G is a t-spanner
the spanning ratio of G. Again, a more formal definition appears in Section 2.
Note that this is a property of a graph, whereas the routing ratio is a property
of a routing algorithm.

Many well-known geometric graphs happen to be t-spanners. For example,
the Delaunay triangulation is known to be a 1.998-spanner for any set of points
in the plane [19, 29]. Variations on the Delaunay triangulation are also known
to be spanners [15].

Other constructions have been devised specifically to build (1 + ε)-spanners,
for any ε > 0. These constructions are parameterized by the desired spanning
ratio, which can be made arbitrarily close to 1. This usually requires more edges
to be added to the graph, however.

The greedy spanner [14] is constructed by considering each pair of points,
sorted by distance in ascending order. If there is not already a short path between
the two points (i.e. a path with length (1 + ε) times the distance between the
two points), the edge is added.

Another (1 + ε)-spanner construction is the Theta graph, independently
introduced by Clarkson [16] and Keil and Gutwin [24]. To construct a Theta
graph, the space around each point is partitioned into k cones of equal angle.
An edge is added between a point and its nearest neighbour in each cone, where
the nearest neighbour is determined by projecting the points onto the bisector
of the cone and taking the closest point.

Another construction technique for (1 + ε)-spanners comes from the well-
separated pair decomposition [12]. The well-separated pair decomposition
(WSPD) is a data structure that stores information about distances between
points in a concise manner. Intuitively, a WSPD is a partition of the edges of
the complete graph on a point set, so that all the edges in a set of the partition
are similar. By similar, we mean the edges have nearly the same length and
orientation. The degree of similarity is controlled by a parameter s > 2, called
the separation ratio.

A spanner can be constructed from a WSPD by adding a single edge from
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each set in the partition to the graph. No matter which edges are chosen, the
resulting graph will be a spanner. In Section 2 we will describe how to choose
the edges in such a way that efficient competitive local routing is possible.

Local routing on some of these spanners has been studied in the past. Com-
petitive local routing algorithms exist for the Delaunay triangulation [4, 5, 10]
and the Theta graph (for k = 4 and k > 6 cones) [8, 9]. No competitive local
routing algorithm is known for the greedy spanner.

1.2 Related work

This article considers the local routing problem on (1 + ε)-spanners constructed
from a WSPD. A few routing algorithms for this problem have been previously
proposed [7, 3]. All achieve a 1 + O(1/s) routing ratio, where s is the parameter
used in the WSPD construction.

The first algorithms for routing on WSPD spanners appeared in Bose et al.
[7]. They propose two algorithms, a 2-local and a 1-local routing algorithm. A
routing algorithm is k-local if the routing table of a vertex u has information
about not just the neighbours of u, but all vertices v where there exists a path
between u and v that contains at most k edges. In this article, a local routing
algorithm specifically refers to a 1-local algorithm.

Neither of the algorithms in Bose et al. use a modifiable header, and both
achieve a competitive routing ratio of 1 + O(1/s). A disadvantage of these
algorithms is that they require the WSPD spanner to be constructed specifically
to support local routing. They also require points to store coordinates in the form
of bounding boxes, which makes them hard to generalize to higher dimensions
and metric spaces.

The spanner construction and routing algorithm in this article are similar to
those in Bose et al., but we do not require any coordinates to be stored in the
routing tables. Our construction of a WSPD spanner also improves on theirs
by achieving a bound of 2 lg n + 1 on the number of edges in the spanning path
obtained1.

The other competitive local routing algorithm for WSPD spanners is from
Baharifard et al. [3]. Their algorithm requires a modifiable header, but it
guarantees delivery on any spanner constructed from a WSPD.

All previous work has only considered sets of points in the plane. In this
article we consider routing on WSPD spanners in any number of dimensions.
We then further generalize the routing to metric spaces of bounded doubling
dimension.

Table 1 summarizes the quantitative properties of the different routing algo-
rithms, including the ones that are presented in this article. All of them route
on a (1 + O(1/s))-spanner constructed from a WSPD with separation ratio s.

The problem of online routing has also been studied for metric spaces of
bounded doubling dimension. See Section 4.1 for the relevant definitions. Pre-
vious work has focused on routing algorithms for graphs whose shortest path

1throughout this article, lg is used to mean log2
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Algorithm Table size at v Header size
Bose et al. (2-local) O(s2nB) n/a
Bose et al. (1-local) O(deg(v)B) n/a
Baharifard et al. O(s2 log ∆) O(log ∆)
This article (Euclidean space) O(deg(v) log n) n/a
This article (Doubling space) O(deg(v) log n) n/a

Table 1: Comparison of routing algorithms for WSPD spanners. s is the spanning
ratio, n is the number of points, B is the number of bits needed to store an
axis-aligned rectangle, and ∆ is the ratio of the largest distance between two
points in the input to the smallest distance.

Paper Table size Header size

Talwar [28] O
(
λ(6/ελ)λ logλ+2(∆)

)
O(λ2 log λ log ∆)

Chan et al. [13] (λ/ε)O(λ) log ∆ log δ O(λ log2 ∆)
Abraham et al. [1] (1/ε)O(λ) log3 n 2O(λ) log3 n
This article (Doubling space) O(deg(v) log n) n/a

Table 2: Comparison of routing algorithms for doubling spaces. The routing
ratio is 1 + ε, λ is the doubling dimension of the point set, and δ is the diameter
of the point set.

metric has bounded doubling dimension. Our work is first constructing a spanner
in a metric space of bounded doubling dimension, and then routing on that
graph. A result of Talwar [28] implies that our spanner will have bounded
doubling dimension.

Proposition 1.1 (28, Proposition 3). Let (X, d) and (Y, δ) be metric spaces such
that the doubling dimension of X is λ. Suppose there is a bijection f : X → Y
satisfying d(x1, x2) ≤ δ(f(x1), f(x2)) ≤ td(x1, x2). Then the doubling dimension
of Y is at most 2λ⌈lg(4t)⌉.

Corollary 1.2. Let G be a t-spanner constructed in a metric space with doubling
dimension λ. Then the doubling dimension of the shortest path metric on G is
at most 4λ⌈lg(4t)⌉.

This implies that the shortest path metric on the heavy-path WSPD spanner
has bounded doubling dimension, and so previous work applies to our graph.
However, restricting attention to graphs that are constructed in a certain way as
we have allows arguably simpler algorithms. In particular, our algorithm does
not require a modifiable header.
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2 Preliminaries

In this section we show how the spanner is constructed and analyze some of its
basic properties. We also describe the various data structures that are needed
for our local routing algorithm.

2.1 Basic definitions

A graph G = (V, E) consists of a set V of vertices and a set E of edges. An edge
e connects two vertices, called the endpoints of e. A geometric graph has a set
of points in Rd for vertices and a set of line segments connecting those points
for edges. In a geometric graph, an edge is weighted by the Euclidean distance
between its endpoints. The complete geometric graph on a point set S has an
edge between every pair of points in S.

Let G = (V, E) be a graph, and let H = (V, E′) be a subgraph of G. We
say that H is a t-spanner of G if dH(u, v) ≤ t · dG(u, v) for all u, v in V , where
dG(u, v) denotes the length of the shortest path between u and v in G. The
smallest constant t for which H is a t-spanner of G is called the spanning ratio.
If we say that H is a spanner, we mean that it is a t-spanner for some unspecified
constant t = O(1).

In the special case where G is the complete geometric graph on some point set
S, then a t-spanner of G is also called a geometric spanner. If H is a geometric
t-spanner for some point set S, then dH(u, v) ≤ t · |uv| for all points u and v in
S.

The hop distance between a pair of vertices u and v in a graph G is the
smallest number of edges on a path between u and v. Let H be a subgraph of
G. If, for any pair u and v of vertices in H, the hop distance from u to v is at
most k times the hop distance from u to v in G, then we say that H is a k-hop

spanner of G. This is equivalent to being a k-spanner in the special case where
all edges have weight 1. A geometric graph H is a k-hop spanner if the hop
distance between every pair of vertices is at most k.

A local routing algorithm takes as input the current vertex u, the destination
vertex q, and some information stored either at the vertex u or in the message.
The information stored at u is called the routing table. The information that is
stored with the message is called the header. Instead of storing the coordinates
of the points directly, we will label the points of the graph and store the labels
instead. Formally, a local routing algorithm on a graph G = (V, E) is modelled
as a function f that takes as input four parameters in the form of bitstrings
corresponding to: the label of the current vertex u, the label of the destination
vertex q, the routing table R(u) stored at u, and the message header h. The
function computes the label of a neighbour of u in G that the message is forwarded
to, and the new header. The header is initially empty. If the header is never
modified (i.e. it is always empty), then the routing algorithm is memoryless.

The k-neighbourhood of a vertex u is the set of vertices v at hop distance at
most k from u. If the routing table stored at a vertex u contains information
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about the k-neighbourhood of u, then we say that the routing algorithm is k-local.
If k = 1 we say the algorithm is local.

Let G = (V, E) be a graph and let p and q be vertices of G. Starting from p,
repeated application of the routing function f will construct a path from p to q
in G. Formally, let p1 = p, and let pi+1 = f(pi, q, R(pi), hi), where R(pi) is the
routing table of vertex pi and hi is the header computed during the previous
forwarding decision. If pk = q for some integer k, then the routing algorithm
successfully routes from p to q. If it successfully routes for every pair of vertices
in G, then we say that it guarantees delivery on G.

A routing algorithm is competitive on a graph if dR(p, q) ≤ t · dG(p, q) for
all p and q in G, where dR(p, q) is the length of the path from p to q found by
the routing algorithm. If G is a geometric spanner with spanning ratio t′, then
we have dR(p, q) ≤ tt′|pq|, so the algorithm is competitive with respect to the
Euclidean distance between p and q, not just the distance in G. In this article,
the routing ratio of an algorithm is defined to be the smallest constant t with
dR(p, q) ≤ t|pq| for all p, q in V . With this definition, note that the routing ratio
is an upper bound on the spanning ratio.

2.2 Compressed quadtrees

A quadtree is a tree data structure for storing spatial data. The tree is constructed
by recursively subdividing space into smaller regions. The leaves of the tree
represent points, and the internal nodes represent regions of space.

Let S be a set of n points in Rd. If n = 1, then the quadtree for S is a single
node that stores the lone point of S. If n > 1, to construct a quadtree for S we
need a hypercube that contains S. Let C be a hypercube that contains S. We
can assume that this is given to us, but if not it is simple to construct such a
hypercube in time O(dn).

Subdivide C into 2d smaller hypercubes Ci, . . . C2d by bisecting it along each
dimension. For each Ci that contains at least two points, recursively construct a
quadtree on the points in Ci. The root of the quadtree stores the hypercube C.
Each of the recursively constructed quadtrees is a child of the root.

The construction as described yields a tree with n leaves. Each internal node
has at least one child, and at most 2d children. The fact that a node can have
only a single child means the height of the tree can be unbounded.

Theorem 2.1 (17, Lemma 14.1). Let S be a set of points in Rd. The height of
a quadtree for S is at most lg(s/m) + 1

2 lg d + 1, where s is the side length of
the initial hypercube used to construct the tree and m is the minimum distance
between two points of S.

This drawback means that the time needed to construct a quadtree can be
arbitrarily large. Fortunately, there is a solution. If a quadtree has a long chain
of internal nodes with only one child, then compress them all into a single edge.
The resulting structure is called a compressed quadtree, and the height is now
linear with respect to the number of points in the worst case.
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In a (uncompressed) quadtree, each node a is associated with a hypercube
C(a). If a is at level i in the tree, then the side length of C(a) is 2−iL, where L
is the side length of hypercube associated to the root.

In a compressed quadtree, a node no longer corresponds to just one hypercube.
Instead, each node a corresponds to two hypercubes. A node in a compressed
quadtree might correspond to an entire path in the uncompressed quadtree.
We store the hypercube CL(a) that corresponds to the shallowest node on that
path, and the hypercube CS(a) that corresponds to the deepest node on that
path. If p(a) denotes the parent of a, then CL(a) is obtained by splitting
CS(p(a)) along each dimension. Let S(a) denote the set of points stored in the
leaves of the subtree rooted at a. For any compressed quadtree node, we have
S(a) ⊂ CS(a) ⊆ CL(a). The two hypercubes CS(a) and CL(a) can be equal if
the node a does not correspond to a compressed chain of nodes in the quadtree.

Instead of constructing a quadtree (which could take an unbounded amount of
time) and then compressing it afterwards, we can directly construct a compressed
quadtree. There are algorithms for constructing these trees in O(dn log n) time
[2].

Theorem 2.2 (2, Section 19.2.5). Let S be a set of points in Rd. A compressed
quadtree for S can be constructed in O(dn log n) time.

See [2] for a more comprehensive overview of different quadtree variants. For
our application, we will need the following property of compressed quadtrees.

Lemma 2.3. Let T be a compressed quadtree, and let a be a non-root node of
T . The node a corresponds to two hypercubes, CL(a) and CS(a). Let ℓ(a) be
the diagonal length of CS(a). Note that this is an upper bound on the diameter
of the points stored in the subtree of a. We have ℓ(a) ≤ (1/2)ℓ(p(a)), where p(a)
is the parent of a in T .

Proof. By definition, the diagonal length of CL(a) is equal to (1/2)ℓ(p(a)).
Since CS(a) ⊂ CL(a), the diagonal length of CL(a) is an upper bound on ℓ(a).
Therefore ℓ(a) ≤ (1/2)ℓ(p(a)).

2.3 The well-separated pair decomposition

In a set of n points, there are
(

n
2
)

ways to select a pair of points. The well-
separated pair decomposition [12] is a data structure that can approximately
represent those Θ(n2) distances in linear space. The idea behind this is that
if two clusters of points are sufficiently far apart, then all of the inter-cluster
distances are approximately equal. Additionally, the distance between two points
in the same cluster is small relative to the distance between the clusters.

More formally, let S and T be two point sets in Rd. We say that S and T
are well-separated with respect to s > 2 if d(S, T ) ≥ s · max{diam S, diam T},
where d(S, T ) = min{|pq| : p ∈ S, q ∈ T} and diam S is the diameter of S,
the maximum distance between two points in S. The number s is called the
separation ratio.
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Figure 1: These two point sets are well-
separated.

There are various definitions of
well-separated that appear in the liter-
ature. The definition in Narasimhan
and Smid [25], for example, differs
from the one that we use here. The
definition that we use more easily gen-
eralizes to sets of points in a metric
space.

The following lemma [12] about
well-separated pairs will make precise
the idea that distances in one set are
small compared to distances between
sets.

Lemma 2.4. Let S and T be well-separated point sets with respect to s >
2. Then for any points p, p′ ∈ S and q, q′ ∈ T : (a) |pp′| ≤ (1/s)|pq|; and
(b) |p′q′| ≤ (1 + 2/s)|pq|.

Proof. First we will prove (a). By chaining together the definitions we have

|pp′| ≤ diam S by definition of diameter
≤ (1/s)d(S, T ) by definition of well-separated
≤ (1/s)|pq|. by definition of d(P, Q)

Now we can use the triangle inequality and (a) to prove (b):

|p′q′| ≤ |p′p| + |pq| + |qq′| triangle inequality
≤ (1/s)|pq| + |pq| + (1/s)|pq| by (a)
= (1 + 2/s)|pq|.

A well-separated pair decomposition (WSPD) of S is a sequence {A1, B1},
. . . , {Am, Bm} of pairs of subsets of S such that: (a) Ai ∩ Bi = ∅ for all i; (b) for
each pair p, q of points in S there is exactly one i such that p ∈ Ai and q ∈ Bi

(or p ∈ Bi and q ∈ Ai); and (c) Ai and Bi are s-well separated for all i.
Given a compressed quadtree T , we can construct a WSPD with a recursive

algorithm [21, Section 3.1.1]. Let S be a set of points and let T be a compressed
quadtree for S. For an internal node a of T , let CS(a) be the (smaller) hypercube
represented by a, let ℓ(a) be the diagonal length of CS(a), and let S(a) be the
subset of S in CS(a). Calling the following procedure with the root of T as both
arguments, i.e. the initial call is WSPD(r, r) where r is the root of T , will result
in a WSPD.

If we assume that the nodes of T store their diagonal length and containing
hypercube, then each call to this algorithm takes O(d) time, excluding the work
done in the recursive calls. Computing the distance between two hypercubes
takes O(d) time, and all other operations take constant time.

By considering the tree of recursive calls made, we can show that there are
O(m) calls in total, where m is the number of pairs returned by the algorithm.
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Algorithm 1 Construction of a WSPD
Input: a and b are nodes of a compressed quadtree T that stores a set S of
points in its leaves, s > 2 is the separation ratio
Output: if initially called with both a and b equal to the root of T , the
algorithm outputs a WSPD of S with separation ratio s
procedure WSPD(a, b)

if a = b = {p} for some point p then return ∅
if ℓ(a) < ℓ(b) then

swap a and b
end if ▷ now ℓ(a) ≥ ℓ(b)
if d(CS(a), CS(b)) ≥ s · max{ℓ(a), ℓ(b)} then

return {{S(a), S(b)}} ▷ CS(a) and CS(b) are well-separated
else

let a1, a2, . . . , ak be the children of a
return

⋃k
i=1 WSPD(ai, b)

end if
end procedure

The leaves of this recursion tree correspond to calls that returned a well-separated
pair, and the internal nodes correspond to calls that recursed. The leaves
represent the well-separated pairs in the WSPD, so there are exactly m leaves.

Since every internal node in the compressed quadtree T has at least two
children, the internal nodes of the recursion tree also all have at least two children.
The number of internal nodes cannot exceed m. Therefore since there are O(m)
nodes in the recursion tree the running time of this algorithm is O(dm). What
remains to be shown is that m is linear in n = |S|, the number of points.

Theorem 2.5 (21, Lemma 3.9). Let T be a compressed quadtree for a set S of
n points in Rd. The number of pairs returned by Algorithm 1, with the root of
T as both arguments, is O(sdn). The running time of the algorithm is O(dsdn).

The WSPD that results from this algorithm has an important property that
we will need in Section 2.5, so we will prove it now.

Lemma 2.6. Let T be a compressed quadtree for some point set P , and let
W be a WSPD computed with Algorithm 1. Every pair in W has the form
{S(a), S(b)} for some nodes a, b of T . Let p, q be any two points of P and let
{S(a), S(b)} be the pair that separates them. If c is a node that stores both p
and q in its subtree, then a and b are both descendants of c.

Proof. Assume that p ∈ S(a) and q ∈ S(b). The sets S(a) and S(b) are disjoint
[22]. Therefore, one of a or b cannot be an ancestor of the other. Also, a must
lie on the path from the leaf storing p to the root of T . Likewise for b.

Let d be the least common ancestor of p and q. Since S(a) and S(b) are
disjoint, both a and b must be descendants of d. Since d is defined to be the
deepest node that stores both p and q in its subtree, c must be d or an ancestor
of d. See Figure 2.
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a

b

p
q

c

Figure 2: Illustration of Lemma 2.6. The points p and q are separated by the
pair {S(a), S(b)}, where a and b are nodes in the compressed quadtree. The
node c contains both p and q in its subtree.

Finally, the construction of a WSPD from a point set can be summarized in
the following theorem.

Theorem 2.7 (21, Theorem 3.10). Given a set S of n points in Rd, a WSPD
with separation ratio s > 2 with O(sdn) pairs can be constructed in time
O(d(n log n + sdn)).

In the construction of a WSPD, we used compressed quadtrees. There are
alternative tree structures that have been used instead. For example, the fair
split tree of Callahan and Kosaraju [12]. A WSPD with a linear number of pairs
can be constructed from the fair split tree, with the same time bound. The fair
split tree is a binary tree, which can be desirable for some applications.

The reason compressed quadtrees are used is so that we can use Lemma 2.3.
The diameter of the hypercube representing a compressed quadtree node is a
constant fraction of the diameter of its parent. In a fair split tree this fraction
depends on the dimension of the point set since a split is only done along one
dimension, instead of along all dimensions simultaneously. This results in having
to go d levels down the fair split tree before the diameter of a node is a constant
fraction of the diameter of its ancestor. This property of compressed quadtrees
will be used in the analysis of the routing algorithm.

2.4 The heavy path decomposition

We now describe the heavy path decomposition of a tree. Let T be a rooted tree.
If a is a node of T , then the size of a is the number of leaves in the subtree rooted
at a. It is worth noting here that a node a is considered to be an ancestor and a
descendant of itself. For each internal node a, choose one child whose subtree
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a

h(a)

r(a)

Figure 3: A heavy path in a tree. The leaf r(a) is the representative of every
node on the path from r(a) to h(a).

size is maximal among all children of a (breaking ties arbitrarily), and mark the
edge from a to that child as heavy. The other edges are marked as light. If b is
a child of a and the edge from a to b is heavy, then we call b the heavy child of
a. Otherwise b is a light child of a. What results is a decomposition of the tree
into heavy paths, one for each leaf node. The heavy path decomposition of a
tree with n leaves can be computed in O(n) time [26].

For an internal node a, let r(a) be the leaf node defined by following the unique
heavy path down the tree starting from a. This leaf is called the representative
of a. Let h(a) be the node defined by following the heavy path up the tree, again
starting from a, until the edge to the parent is no longer heavy.

Lemma 2.8. The number of light edges on any root-to-leaf path in a heavy
path decomposition of a compressed quadtree is at most lg n, where n is the
number of leaves in the compressed quadtree.

Proof. Let T be a tree for which we have computed a heavy path decomposition.
Let a be an internal node of T , and let b be any light child of a. The size of b
must be at most half the size of a, otherwise the edge to b would be marked
heavy. Since following a light edge reduces the size of the subtree by at least a
factor of two, the number of such edges on a root-to-leaf path is at most lg n.
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Lemma 2.9. Let T be a tree, and let a be an inter-
nal node of T . Compute a heavy path decomposition
of T . Let r(a) be the representative of a. Then for
every node b on the path from h(a) to r(a), we have
r(b) = r(a).

Proof. The representative of b is the leaf node defined
by following the heavy path down the tree. Since
b is contained on the heavy path from h(a) to r(a),
and there is a unique heavy path from each node
down to a leaf, r(a) must also be the representative
of b.

p

b

a

Figure 4: Illustration of
Lemma 2.9. The point
p is the representative of
both a and b.

2.5 Constructing a heavy path WSPD spanner

Constructing a spanner graph given a WSPD is simple. For each pair in the
WSPD, choose an arbitrary point from each set and add an edge between those
two points. The result is a t-spanner for t = (s + 4)/(s − 4), where s > 4 is
the separation ratio of the WSPD [25]. Since we can choose these points in
any manner, we are free to decide on a scheme that benefits our application. In
this article, we will choose the points using a method based on the heavy path
decomposition described in the previous section. The spanner that we construct
will be called a heavy path WSPD spanner.

Let T be the compressed quadtree used to compute the WSPD. Compute a
heavy path decomposition of T . For each pair {A, B} in the WSPD, there is a
corresponding pair {a, b} of nodes in T . The edge that we add to the graph will
be between the points r(a) and r(b).

Now we will prove that this graph is a (1 + 2/s + 2/(s − 1))-spanner. To
construct a path between two points p and q, consider Algorithm 2. Let
{S(a), S(b)} be the WSPD pair that separates p from q. The algorithm adds
an edge between r(a) and r(b), and recursively constructs a path from p to r(a)
and from r(b) to q.

Algorithm 2 Constructing a short path in a heavy path WSPD spanner
Input: Two points p and q in a heavy path WSPD spanner
Output: A path between p and q
procedure BuildPath(p, q)

if p = q then ▷ Base case
return ∅

else
let {S(a), S(b)} be the WSPD pair that separates p from q
return BuildPath(p, r(a)) ∪ r(a)r(b) ∪ BuildPath(r(b), q)

end if
end procedure

To analyze the spanning ratio, we will first consider a special case, where q
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is the representative of a node storing p. In other words, h(q) is an ancestor of
h(p). In this case, in every call made to BuildPath that does not immediately
return, at least one of the two recursive calls will be to the base case.

Lemma 2.10. Let S be a set of points in Rd, and let T be a compressed
quadtree for the points of S. Construct a heavy path WSPD spanner for S. Let
p and q be points stored in the leaves of T such that q is the representative of
some node containing p. Note that r(p) is not necessarily equal to r(q). In a
call to BuildPath(p, q), at most one edge is added at each level of recursion.

Proof. Let c be the lowest common ancestor of both p and q with q = r(c). The
proof is by induction on the size of S(c). In the base case, S(c) = 1. That means
p = q, and so the algorithm returns immediately, adding no edges.

Now consider the case p ̸= q. Let {S(a), S(b)} be the pair that separates
p from q. By Lemma 2.6, both a and b are descendants of c. Since a is a
descendant of c, we have |S(a)| < |S(c)|. By induction, at most one edge is
added in each level of recursion when constructing the path from p to r(a).

By Lemma 2.9, q = r(b). One of the recursive calls is BuildPath(r(b), q),
which will return without adding any edges. Since only the edge r(a)r(b) is
being added in the original call, the induction holds.

Consider an initial call to BuildPath(p, q), where q is not necessarily the
representative of an ancestor of p. Two recursive calls are made, to Build-
Path(p, r(a)) and BuildPath(r(b), q), respectively. Both of these calls satisfy
the conditions for Lemma 2.10.

We can also bound the length of the edges being added to the path, as a
function of the recursion depth.

Lemma 2.11. Let S be a set of points in Rd, and let T be a compressed
quadtree for the points of S. Construct a heavy path WSPD spanner for S. Let
p and q be points of S. Consider the series of recursive calls made during a call
to BuildPath(p, q). If the level of recursion of some call is k, the length of the
edge added during that call is at most (1/s)k|pq|.

Proof. The proof is by induction on the depth of recursion. In the base case,
k = 1. Let {S(a), S(b)} be the pair separating p from q. Assume without loss
of generality that we are in the call to BuildPath(p, r(a)). Every edge added
by this call and the recursive calls made by it will be in the subtree of a. By
Lemma 2.4, any such edge has length at most (1/s)|pq|.

Now assume that it is true for recursion up to some depth k ≥ 1. Consider a
call BuildPath(x, y) made at recursion depth k. Let {S(c), S(d)} be the pair
that separates x from y. By induction the length of the edge r(c)r(d) is at most
(1/s)k|pq|. By Lemma 2.4 the length of any edge in S(c) or in S(d) is at most
(1/s)|r(c)r(d)| ≤ (1/s)k+1|pq|.

Using these two lemmas, we can bound the spanning ratio of the path between
p and q. Note that this implies the graph is connected, since a graph with finite
spanning ratio must have a path between any two vertices.
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Theorem 2.12. Let S be a set of n points in Rd. The heavy path WSPD
spanner G for S has a spanning ratio of at most 1 + 2/s + 2/(s − 1).

Proof. Let p and q be points of S. Algorithm 2 constructs a path from p to q.
The edge added from r(a) to r(b) has length at most (1+2/s)|pq| by Lemma 2.4.
The length of the path from p to r(a) can be bounded using Lemma 2.10 and
Lemma 2.11. There is at most one edge being added at each level of recursion,
and the length of the edge being added at level k is at most (1/s)k|pq|. Let M
be the maximum recursion depth. Therefore, the length of the path from p to
r(a) is at most

M∑
k=1

(
1
s

)k

|pq| ≤ 1
s − 1 |pq|.

The length of the path from r(b) to q can be bounded in the same way. Therefore
the total length of the path is at most

1
s − 1 |pq| +

(
1 + 2

s

)
|pq| + 1

s − 1 |pq| =
(

1 + 2
s

+ 2
s − 1

)
|pq|.

In addition to bounding the length of the path, we can bound the number of
edges on the path from p to q, using Lemma 2.8. This is because every edge on
the spanner path “traverses” at least one light edge. The diameter of a spanner
is the maximum number of edges over all the shortest paths between any pair of
points in the spanner.

Lemma 2.13. For two points p and q in a heavy path WSPD spanner, the
number of edges on the path from p to q found by BuildPath(p, q) is at most
2 lg n + 1. In other words, the heavy path WSPD spanner is a (2 lg n + 1)-hop
spanner.

Proof. Let {S(a), S(b)} be the WSPD pair that separates p from q. Consider
the subpath p = p1, p2, . . . , pk = r(a). For each edge pipi+1, we know that pi is
contained in the subtree of h(pi+1), where h(pi+1) is the shallowest node in the
compressed quadtree that pi+1 is the representative of.

The sequence of nodes h(p1), h(p2), . . . , h(pk) must then all lie on the same
root-to-leaf path (that is, the path from p to the root). Since all of these nodes
have different representatives, by Lemma 2.8 there can be at most lg n of them.

The same is true for the subpath between r(b) and q, and then adding the
edge between r(a) and r(b) gives an upper bound of 2 lg n + 1 edges on the
spanner path.

We end this section with a theorem that summarizes the entire construction
of a heavy path WSPD spanner and all its properties. Note that the BuildPath
algorithm that finds a path between two points in a heavy path WSPD spanner
is not a local algorithm since it requires knowing the pair {S(a), S(b)} from p.

Theorem 2.14. Let S be a set of n points in Rd, and let s > 2. In O(d(n log n+
sdn)) time, we can construct a graph G called a heavy path WSPD spanner
with the following properties:
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• The number of edges in G is O(sdn).
• G is a (1 + 2/s + 2/(s − 1))-spanner.
• G is a (2 lg n + 1)-hop spanner.

Additionally, between any two points there is a single path (found by algorithm
BuildPath) that achieves both the spanning and hop-spanning ratio.

3 Local routing in Euclidean space

In this section, we present a local routing algorithm for heavy path WSPD
spanners. Let S be a set of points, T be a compressed quadtree for S, W be a
WSPD computed using T , and G be a heavy path WSPD spanner constructed
as described in the previous section. The main difficulty here is trying to
make a decision at a point p locally, without knowing the neighbourhood of the
destination. We now have all the tools to describe the routing algorithm. First,
we will explain what we need to store at each vertex. Then, we show how to use
this information to design a routing algorithm and analyze it.

3.1 Routing tables

First, we describe a labelling scheme for the nodes of T . The vertices of G will
store these labels. The message will only use the label of the destination to route.
In other words, the algorithm is memoryless.

Each leaf will get a unique label in the range 1, 2, . . . , n. Perform a depth-first
traversal of T , and label the leaves in the order that they are visited. The label
of an internal node will be the set of all the labels in the leaves of that node’s
subtree. We call this the DFS labelling scheme. The labelling scheme ensures
that this set will be an interval. This fact is well-known but we include a proof
for completeness.

Lemma 3.1. Let T be a tree, and label its leaves using a depth first search. Let
a be a node of T . Let I be the set of labels of the leaves in the subtree rooted
at a. The labels form a contiguous subset of {1, 2, . . . , n}. That is, if i is the
minimum label and j is the maximum label in I, then I = {i, i + 1, . . . , j − 1, j}.

Proof. We prove this by induction on the size of the tree. Let n(a) be the size
of the subtree rooted at a node a. If n(a) = 1 then a is a leaf and the label of a
is a single integer.

If n(a) > 1, then a is an internal node and it has children a1, . . . , ak. Assume
that a1 is the first child visited in the depth-first search, a2 is the second child
visited, and so on. By induction, the label of each child node is an interval. They
must be disjoint since the label of each leaf is unique. Let [xi, yi] be the label of
ai, for all 1 ≤ i ≤ k, where xi is the minimum label and yi is the maximum label.
Since depth-first search will visit the nodes in the subtree of ai+1 immediately
after visiting the nodes in the subtree of ai, we must have xi+1 = yi + 1 for all
1 ≤ i < k. Therefore when we take the union of all k intervals, we get an interval
of the form [x1, yk].
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Since we only need to store the minimum and maximum labels of each
interval, we only need 2 lg n bits to store the label of an internal node.

In a depth-first search, the children of a node can be visited in any order. If
we always visit the child with the largest subtree first (i.e. , always follow the
heavy edge), and then visit the other children in an arbitrary order, then we can
save some memory as shown in the following lemma. We call this type of DFS
labelling scheme a heavy path DFS labelling scheme.

Lemma 3.2. Let T be a compressed quadtree and let a be an internal node of
T . In a heavy path DFS labelling of T , the label of r(a) is the minimum label of
all the points stored in the subtree of a. That is, if the label of a is [x, y], then
the label of r(a) is x.

Proof. The proof is by induction on the size of the tree. Let a be a node of T .
If a is a leaf, then the label of a is of the form [x, x], where x is the label of the
point stored at a.

Now assume that a is an internal node, and that b is the first child visited
by the heavy path DFS labelling. By definition, a and b are on the same heavy
path, and so r(a) = r(b). If [x, y] is the label of b, then by induction the label
of r(a) = r(b) is x. Since b is the first child of a visited, the labels of all the
points in b are smaller than the labels of the points stored in the subtrees of
other children of a. Therefore, x is the smallest label in the subtree of a.

We now describe the information that needs to be stored in the routing
table of a vertex u of the graph G. First, store the label of u. Second, for each
neighbour v of u, let {S(av), S(bv)} be the WSPD pair that generated the edge
between u and v, where v ∈ S(bv), i.e. v is the leaf in the subtree of bv with
minimum label. Store the labels (defined by the heavy path DFS labelling of T )
of v, bv, and h(v). Recall that h(v) is the shallowest node in T for which v is a
representative. Notice that the label of av is not stored, as it is never used by
the routing algorithm. Furthermore, since there is an edge between u and v we
know that u is the representative of S(av).

Lemma 3.3. The total size of the routing tables is O(sdn log n).

Proof. The label of a point is a single integer in the range {1, . . . , n}, and the
label of an internal node is two integers in the same range, so in total we need
to store 5 lg n bits for each neighbour of u: we need lg n bits to store the label
of v, and 2 lg n bits each for the labels of bv and h(v). This can be improved by
applying Lemma 3.2. We know that v is the representative of bv, since the edge
uv was generated by the pair {av, bv}. We also know that v is the representative
of h(v), by the definition of h(v). So if x is the label of v, then the labels of bv

and h(v) are of the form [x, y] and [x, z], respectively. Since three of the integers
being stored are equal, we actually only need 3 lg n bits.

The total size of the routing table at a vertex u of G is (3 deg(u) + 1) lg n,
where deg(u) is the number of neighbours of u in G. The total size of the routing
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tables stored in the entire graph is∑
u∈P

(3 deg(u) + 1) lg n = (6m + n) lg n

where m is the number of edges in the spanner. Since we know m = O(sdn), the
total size of the routing tables is therefore O(sdn log n).

3.2 Routing in a heavy path WSPD spanner

We now present the routing algorithm. Let p be the starting vertex, and let q
be the destination vertex. We can assume that the label of the destination q
is stored with the message. No other information is stored with the message
(that is, the algorithm is memoryless). The algorithm proceeds in two stages:
the ascending stage and the descending stage. We first check if we are in the
descending stage of the algorithm. If so, perform a descending step. If not,
perform an ascending step. We will refer to this algorithm as the heavy path
routing algorithm. Let u be the current vertex.

1. [Descending step] If u has a neighbour v (with WSPD pair {S(av), S(bv)})
such that q ∈ bv, then forward the message to v.

2. [Ascending step] Otherwise, find the representative of the parent of h(u),
and forward the message to that vertex.

The proof that this routing algorithm guarantees delivery is split into two
stages. Let {S(a), S(b)} be the WSPD pair separating p from q. First we will
prove that the ascending step will be applied until the message reaches r(a).
Then, we will prove that the descending step will be applied until the message
reaches its destination. That is, the routing algorithm can be split into two
“stages”: a series of ascending steps followed by a series of descending steps.

First we need to show that it is possible to implement an ascending step
using only the information stored in the vertices of G.

Lemma 3.4. The representative of the parent of h(u) is a neighbour of u in G,
and can be found using only the information in the routing table at u.

Proof. Let z be the parent of h(u), and let v be the point that represents z, i.e.
v = r(z). Consider the WSPD pair {S(c), S(d)} that separates u ∈ S(c) from
v ∈ S(d). Both c and d must be descendants of z, since u and v are both in the
subtree rooted at z.

We know that c is somewhere on the path from u to h(u), and since u is the
representative of every node on that path, it is the representative of c. Likewise,
since v is the representative of every node on the path from v to a, it must be
the representative of d. Therefore, there must be an edge between u and v.

To find that edge using the routing tables, iterate over all neighbours of u,
finding the neighbour w such that u ∈ h(w) and h(w) is as small as possible.
That is, h(w) is a descendant of h(x) for any other neighbour x with u ∈ h(x).
The point w is the representative of the parent of h(u).
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Figure 5: Illustration of Lemma 3.4. There must be an edge between u and v in
the heavy path WSPD spanner.

Another way of viewing Lemma 3.4 is that one application of the ascending
step will move the message one light edge “up” in the quadtree.

The next two lemmas prove that, from p, the routing algorithm will repeatedly
apply an ascending step until r(a) is reached. This part of the algorithm is called
the ascending stage. Let u refer to the current vertex.

Lemma 3.5. Starting from p, repeated application of the ascending step will
forward the message to r(a).

Proof. The node a is an ancestor of p in the quadtree. By Lemma 3.4, repeatedly
applying the ascending step will send the message to the representative of
every node on the path from p to the root in turn. Since r(a) is one of these
representatives, eventually the message reaches r(a).

Lemma 3.6. The ascending step is always applied if u is a leaf in the subtree
rooted at a, but not equal to r(a).

Proof. Consider the pair {S(c), S(d)} separating u from q. Assume that r(c) = u,
so that a descending step is applied. Recall that {S(a), S(b)} is the WSPD
pair that separates p from q. Since there can only be one pair in the WSPD
separating u from q, we must have {S(c), S(d)} = {S(a), S(b)}, and so u = r(a).
Therefore the only way for the descending step to be applied if u is in the subtree
of a is for u to be equal to r(a).

Once the message reaches r(a), the descending step will be applied until the
destination is reached. In fact, the path constructed by the descending steps
from r(a) to q is identical to the path from r(a) to q constructed by Algorithm 2,
as the following lemma shows.

Lemma 3.7. If u is on the path constructed in Algorithm 2 from p to q and
u ̸∈ S(a), then the descending step is applied and u forwards the message to the
next point on the spanner path constructed by Algorithm 2.
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Proof. Consider the construction of the spanner path from Algorithm 2. Let
{c, d} be the WSPD pair separating u from q. An edge from r(c) to r(d) is
added to the path. In both the spanner construction and the descending step, u
is the representative of c.

Putting the ascending and descending steps together will therefore successfully
route a message from p to q.

Theorem 3.8. The heavy path routing algorithm will successfully route a
message in a heavy path WSPD spanner, with information stored in each vertex
as outlined in Section 3.1.

Proof. Starting at p, the message will reach r(a) by repeatedly applying the
ascending step by Lemmas 3.5 and 3.6. Then Lemma 3.7 implies that the
message will be forwarded along the path of Algorithm 2 from r(a) to q.

3.3 Analysis of the local routing algorithm

In this section we will bound the routing ratio of the heavy path local routing
algorithm. First we will bound the length of the path found in the descending
stage, as it is much easier to do.

Lemma 3.9. Let p and q be points in a heavy path WSPD spanner. The length
of the path constructed during the descending stage of the heavy path local
routing algorithm is at most (1 + 2/s + 1/(s − 1))|pq|.

Proof. Lemma 3.7 implies that the descending stage finds a path from r(a) to
q, where r(a) is the representative of the set containing p in the WSPD pair
{S(a), S(b)} that separates p from q.

From Theorem 2.12, we know that the edge r(a)r(b) has length at most
(1 + 2/s)|pq|, and that the subpath constructed in Algorithm 2 from r(b) to q
has length at most 1/(s − 1)|pq|. Lemma 3.7 implies that the path from r(a) to
q found by the heavy path routing algorithm is the same as the spanner path,
so its length is at most 1 + 2/s + 1/(s − 1) times |pq|, because that is the length
of the spanner path from r(a) to q as proven in Theorem 2.12.

The only thing that remains to be bounded is the length of the path con-
structed from p to r(a) during the ascending stage.

Lemma 3.10. Let p = p1, p2, . . . , pk = r(a) be the points visited during the
ascending stage. For any point pi, the points p1 through pi−1 are all stored in
the subtree rooted at h(pi).

Proof. For i = 1, the claim is vacuously true. Assume that the claim is true for
some i ≥ 1. The points p1, . . . , pi are all stored in the subtree rooted at h(pi).
By definition of the ascending step, pi+1 is the representative of the parent of
h(pi) in the compressed quadtree, so h(pi) is a descendant of h(pi+1). Therefore,
the points p1, . . . , pi are all stored in the subtree rooted at h(pi+1). Since pi+1
is also stored in that subtree, the proof is complete.
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We can bound the length of the path constructed during the ascending stage
using the previous lemma.

Lemma 3.11. The length of the path constructed from p to r(a) during the
ascending stage of the algorithm is no more than (2/s)|pq|.

Proof. Recall that ℓ(a) is the diagonal length of the hypercube CS(a) that
contains S(a). First, note that if a is the parent of b in the quadtree, then
ℓ(a) ≥ (1/2)ℓ(b), by Lemma 2.3. The path from p to r(a) is contained in the
subtree rooted at a, so the length of every edge on the path is at most ℓ(a).
That path, minus the last edge, is contained in the subtree rooted at one of the
children of a by Lemma 3.10, so the length of all but the last edge is at most
(1/2)ℓ(a).

Repeating this argument shows that the length of the entire path is not more
than ℓ(a) + (1/2)ℓ(a) + (1/2)2ℓ(a) + · · · = 2ℓ(a). By the condition for checking
well-separatedness in the WSPD construction algorithm, ℓ(a) ≤ (1/s)d(a, b) ≤
(1/s)|pq|. Therefore, the length of the path from p to r(a) is at most (2/s)|pq|.

Theorem 3.12. The routing ratio of the heavy path routing algorithm is at
most 1 + 4/s + 1/(s − 1).

Proof. By Lemma 3.11, the total length of the path constructed during the
ascending stage from p to r(a) is no more than (2/s)|pq|. The path constructed
during the descending step is equal to the spanner path from r(a) to q. The
length of the spanner path from r(a) to q is at most (1 + 2/s + 1/(s − 1))|pq|,
as proven in Lemma 3.9. Therefore the length of the path from p to q is

2
s

|pq| +
(

1 + 2
s

+ 1
s − 1

)
|pq| =

(
1 + 4

s
+ 1

s − 1

)
|pq|.

Similar to Lemma 2.13, we can bound the number of edges on the spanner
path. In fact, the proof is almost identical to the proof of Lemma 2.13.

Lemma 3.13. Starting at a point p, a message can be forwarded to any other
point q after forwarding only 2 lg n + 1 times.

Proof. Let {S(a), S(b)} be the WSPD pair that separates p from q. Consider
the subpath p = p0, p1, . . . , pk = r(a) found during the ascending stage. There
will be one edge added to this path for each light edge on the path from p to a
in the compressed quadtree. By Lemma 2.8, this is at most lg n.

Since the path constructed during the descending stage follows the spanner
path, Lemma 2.13 implies that the number of forwards during the descending
stage is at most lg n + 1. Therefore the number of forwards for the entire routing
algorithm is at most 2 lg n + 1.

The results of this section are summarized in the following theorem.

Theorem 3.14. Let G be a heavy path WSPD spanner for a set S of points in
Rd, and let p and q be points of S. There exists a local, memoryless routing
algorithm that can find a path from p to q, such that:
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• The number of bits stored at each vertex u is (3 deg(u) + 1) lg n
• The length of the path found from p to q is at most (1+4/s+1/(s−1))d(p, q)
• The number of edges on the path is at most 2 lg n + 1

Note that the routing ratio is slightly larger than the spanning ratio. This
is due to the fact that the path found by Algorithm 2 and the path found by
the routing algorithm differ in the ascending step. In the routing algorithm,
the ascending step “goes up” the tree T one light edge at a time. However, in
Algorithm 2, the corresponding ascending steps may jump up several levels.

The routing algorithm cannot make these jumps since it has no way of
knowing if one of the levels that it skips will be the one that contains the
pair {S(a), S(b)}. In other words, it cannot recognise from a vertex u if one
of its neighbours is r(a). It is only when we reach r(a) and have access to its
neighbours when we realize that we are at r(a).

In the next section, we give a lower bound that shows our analysis of the
routing ratio is fairly tight.

3.4 A lower bound on the routing ratio

We can get a lower bound on the routing ratio by constructing a point set and
explicitly computing the routing ratio for a pair of points. In this section we
will give an example of a point set where the lower bound is close, but not equal
to, the upper bound from the previous section.

Given any s > 2, we can construct a set of points in R that demonstrates
this. Fix k = ⌈lg(4s + 8)⌉ and let α = 2−k. Now let P = {α, 3α, 5α, 7α, 1 −
7α, 1 − 5α, 1 − 3α, 1 − α}. Construct a compressed quadtree for P with [0, 1]
as the hypercube that contains P , which is needed for the construction. The
compressed quadtree for these points is shown in Figure 6, with heavy and light
edges marked.

Each internal node of the quadtree represents a one-dimensional hypercube,
which is just an interval. It is easy to check that CS(a) and CS(b) are well-
separated. However, for any pair of points in the subtree of a, the WSPD pair
must be a pair of singletons. For example, we can check that {p2} and CS(d)
are not well-separated since d({p2}, CS(d)) = 3α/2 < 2sα = s · ℓ(d). So the pair
that separates p2 from p3 must be {{p2}, {p3}}.

The WSPD that results from this quadtree will have 13 pairs. One of the
pairs will be {S(a), S(b)}. The other 12 will be pairs of singleton sets, each
separating one pair of points in either the subtree of a or the subtree of b. The
combinatorial structure of the heavy path WSPD spanner for P will be two
4-cliques joined by a single edge.

Consider routing from p4 to p5. The pair separating these two points is
{S(a), S(b)}. The ascending step forwards the message one light edge up in the
compressed quadtree until r(a) = p1 is reached. The first application of the
ascending step sends the message to p3. The second application sends it to p1.
From there, the descending stage is entered and the message is forwarded to
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p6p1 p2 p3 p4 p5 p7 p8

a b

c d e f

r

α 3α 5α 7α 1− 7α 1− 5α 1− 3α 1− α

Node n C(n) ℓ(n)
r [0, 1] 1
a [0, 8α] 8α
b [1 − 8α, 1] 8α
c [0, 4α] 4α
d [4α, 8α] 4α
e [1 − 8α, 1 − 4α] 4α
f [1 − 4α, 1] 4α

Figure 6: The compressed quadtree for the point set P . The heavy edges are
solid, and the light edges are dashed. The table gives the quadtree cell for each
node, along with the length.

r(b) = p8, and then to p5 since those two points are neighbours. Therefore, the
path followed by the routing algorithm is p4, p3, p1, p8, p5.

Now consider the spanner path from p4 to p5 as computed in Algorithm 2.
First, an edge between r(a) = p1 and r(b) = p8 is added. Then an edge is added
between the representatives of the pair that separates p2 from p3. Since that pair
must be a singleton, an edge is added between those two points. The spanner
path is p4, p1, p8, p5, meaning that the routing algorithm forwards the message
to one extra vertex along the way.

Since p3 is between p4 and p1, the length of both the routing path and the
spanning path will be the same, even though they visit different points. The
routing ratio achieved by this example is therefore

R = |p4p1| + |p1p8| + |p8p5|
|p4p5|

. (1)

The next theorem shows that this fraction can be made arbitrarily close to
1 + 4/s. This will also imply a lower bound of 1 + 4/s on the spanning ratio,
since the spanner path has the same length as the routing path in this example.
This lower bound is nearly tight, the upper bound for the routing ratio is only
1/(s − 1) more than the lower bound. The upper bound for the spanning ratio is
even closer, the difference between the upper and lower bounds for the spanning
ratio is 2/(s − 1) − 2/s.

Theorem 3.15. The routing ratio of the heavy path routing algorithm is at
least 1 + 4/s in the worst case, and the spanning ratio of the heavy path WSPD
spanner is at least 1 + 4/s in the worst case.
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Proof. Let P be the same set of points from the previous example. Notice that
we can perturb the points of P slightly without changing the structure of the
compressed quadtree or the WSPD. As long as no point is shifted by a distance
greater than α, the structure will remain the same.

Shifting p4 and p5 inwards and shifting p1 and p8 outwards will simultaneously
increase the length of the routing path, and decrease the distance between p4
and p5. This leads to an increased routing ratio.

More precisely, let 0 ≤ ε < α be the amount to shift by. Now change the set
P so that p1 = α − ε, p4 = 7α + ε, p5 = 1 − 7α − ε, and p8 = 1 − α + ε.

Now, we can plug values into Equation 1. The routing ratio achieved by this
example is

R = |p4p1| + |p1p8| + |p8p5|
|p4p5|

= [(7α + ε) − (α − ε)] + [(1 − α + ε) − (α − ε)]
[(1 − 7α − ε) − (7α + ε)]

+[(1 − α + ε) − (1 − 7α − ε)]
[(1 − 7α − ε) − (7α + ε)]

= 1 + 10α + 6ε

1 − 14α − 2ε
.

The true worst-case routing ratio of the algorithm, R∗, is at least R for every
value of ε < α. In other words, R∗ ≥ sup{R : 0 ≤ ε < α}. But since R is
increasing as a function of ε, this can be computed by setting ε = α. By doing
so we get

R∗ ≥ 1 + 16α

1 − 16α
= 1 + 32α

1 − 16α
.

Finally, due to the way α was chosen we have 2α > (4s + 8)−1, so

R∗ ≥ 1 + 16(4s + 8)−1

1 − 8(4s + 8)−1 = 1 + 4
s

3.5 Comparing the spanning and routing ratios

One more thing we can do is quantify the difference between the spanning and
routing ratios. Let R = 1 + 4/s + 1/(s − 1) and S = 1 + 2/s + 2/(s − 1) be the
upper bounds on the routing and spanning ratios, respectively. We can see that
R > S whenever s > 2.

The routing algorithm can be thought of as an approximate shortest path
algorithm that only uses local information. With that view we can quantify
the difference in terms of absolute and relative error. The absolute error is
defined to be ∆ = R − S = 2/s − 1/(s − 1) and the relative error is defined to
be δ = ∆/S = R/S − 1 = (s − 2)/(s2 + 3s − 2). Since R > S for all s > 2, both
of these errors will be positive.

We can calculate an upper bound for these two quantities. Let dR(p, q) be
the length of the routing path and dS(p, q) be the length of the spanner path
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between two given points in a heavy path WSPD spanner. If we have some upper
bound ∆ ≤ ε on the absolute error, then we know that dR(p, q) ≤ dS(p, q)+ε|pq|.
Likewise, if we have some bound δ ≤ η on the relative error, then dR(p, q) ≤
(1+η)dS(p, q). The following two lemmas compute actual values for these bounds
on the errors.

Lemma 3.16. The absolute error ∆(s) is bounded by 0.1716, meaning in any
heavy path WSPD spanner with separation ratio s > 2 we have dR(p, q) ≤
dS(p, q) + 0.1716|pq| for all points p and q.

Proof. To bound ∆(s) we compute its maximum value. We first differentiate
with respect to s,

∆′(s) = 1
(s − 1)2 − 2

s2 .

We can then solve the equation ∆′(s) = 0 for s to find that ∆ is maximized at
s∗ = 2 +

√
2. The maximum value attained is ∆(s∗) = 3 − 2

√
2 ≈ 0.1716.

Lemma 3.17. The relative error δ(s) = (s−2)/(s2+3s−2) is bounded by 0.0790,
meaning in any heavy path WSPD spanner we have dR(p, q) ≤ 1.0790 · dS(p, q)
for all points p and q.

Proof. To bound the relative error, we again follow the same procedure. First,
compute the derivative of δ with respect to s

δ′(s) = − s2 − 4s − 4
s4 + 6s3 + 5s2 − 12s + 4 .

We then solve the equation δ′(s) = 0 for s to find that δ is maximized at s∗ =
2 + 2

√
2. The maximum value attained is δ(s∗) = (7 − 4

√
2)/17 ≈ 0.0790.

4 Doubling spaces

The local routing algorithm of the previous section relies on very few properties
of Euclidean space. The only information that needs to be stored in either
the routing tables or the message header are labels of nodes in the compressed
quadtree. As such, in this section we extend our results to the class of metric
spaces with bounded doubling dimension. In the following section, the local
routing algorithm will be generalized to this new setting.

4.1 Metric spaces

We provide a summary of some geometric notions as described in Har-Peled
and Mendel [22]. Let X be a set. A metric on X is a function that defines the
distance between elements in X. Formally, a metric is a function d : X ×X → R
that satisfies the following conditions for all x, y, and z in X:

• d(x, y) ≥ 0, with equality if and only if x = y,
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• d(x, y) = d(y, x); and
• d(x, y) ≤ d(x, z) + d(z, y).

The third condition is called the triangle inequality.
Perhaps the prototypical example of a metric space is Rd, with the usual

Euclidean metric

d(x, y) = ∥y − x∥ =
√∑d

i=1(yi − xi)2.

Another example is Rd with the taxicab metric: d(x, y) =
∑d

i=1|yi − xi|.
We want to consider metric spaces that have similar properties to Euclidean

space. One such type of metric space is a doubling space. Before we define a
doubling space, we need a few basic definitions.

A (closed) ball in a metric space X is the set of all points whose distance to
a given point x ∈ X is at most r. The point x is called the centre of the ball
and r is called the radius. The closed ball centred at x with radius r, written
B(x, r), is the set {y ∈ X : d(x, y) ≤ r}. Replacing the inequality with a strict
one in the definition gives an open ball.

Let A be a subset of X. We call A an ε-cover of X if for any point x in X,
there is some point y in A with d(x, y) ≤ ε. In other words, the union of all
closed balls with radius ε centred at the points of A contains X.

Let B be a subset of X. We call B an ε-packing of X if the distance between
any two points of B is at least ε. Sometimes, B is called ε-discernible. This is
equivalent to the condition that the balls of radius ε/2 centred at the points of
B are pairwise disjoint.

A set C is called an ε-net of X if it is both an ε-cover and an ε-packing of
X. See Figure 7 for an illustration.

A metric space is called doubling if there exists a constant K ≥ 0 such that
any ball of radius r can be covered by K balls of radius r/2. Let K∗ be the
smallest such constant. We call K∗ the doubling constant of X, and lg K∗ the
doubling dimension of X.

A metric space with bounded doubling dimension can also be called a doubling
space. We will use these two terms interchangeably throughout the rest of the
article.

4.2 Heavy path WSPD spanners in doubling spaces

The construction of a heavy path WSPD spanner can be generalized to doubling
spaces. The procedure remains largely the same, but a few key changes are
necessary. First we need a replacement for the compressed quadtree, because
there is no general way to define a hypercube in a doubling space. We will use
the net tree [22]. From there, the construction of a heavy path WSPD spanner
is largely unchanged.

Our definition of well-separated used the notion of Euclidean distance. We
simply replace that with any metric to get a more general definition of well-
separated. Explicitly, let S and T be two point sets in a metric space (X, d).
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Figure 7: An ε-net of a simple polygon. The points of the net are drawn in
black. A disk of radius ε has been drawn around each black point using dashed
grey lines. Every point in the polygon lies in at least one of the disks, and none
of the black points lie in a disk centred at another black point.

We say that S and T are well-separated with respect to s > 0 if d(S, T ) ≥
s · max{diam S, diam T}, where d(S, T ) = min{d(p, q) : p ∈ S, q ∈ T} and
diam S is max{d(x, y) : x, y ∈ X}. The number s is called the separation ratio.

We can also generalize Lemma 2.4 to general metric spaces by simply replacing
the Euclidean distance with any metric. The proof is identical to that of
Lemma 2.4, so we can simply restate the result here.

Lemma 4.1. Let S and T be well-separated point sets in some metric space
(X, d) with respect to s > 0. Then for any points p, p′ ∈ S and q, q′ ∈ T :
(a) d(p, p′) ≤ (1/s)d(p, q); and (b) d(p′, q′) ≤ (1 + 2/s)d(p, q).

We cannot compute a compressed quadtree for a set of points in an arbitrary
metric space, so we will require some other data structure that has similar
properties. In [22], Har-Peled and Mendel describe how to construct a tree that
they call a net tree that has all the desired properties. They also show how to
construct a WSPD and a WSPD spanner from that tree. The routing algorithm
will be generalized to work on that spanner.

Let S be a set of n points in a metric space of doubling dimension λ. Like
the compressed quadtree, the net tree is a data structure that stores the points
of S in its leaves. An internal node a corresponds to the set S(a) of points stored
in the leaves of the subtree of a. The net tree also has similar properties to the
compressed quadtree that will make constructing a WSPD of linear size and
local routing possible.
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In particular, the net tree has the following properties as outlined in [22].
Let τ ≥ 11 be a constant chosen before constructing the net tree. Every non-leaf
node a in T has a level ℓ(a) ∈ Z ∪ {−∞} with the property that the level of a
node is less than the level of its parent. The level of a leaf is defined to be −∞.
Additionally, every node has a representative r(a) with the property that if p
is the representative of an internal node a, then a has some child b for which
r(a) = r(b). The parent of a node a is denoted p(a), and the set of points stored
in the subtree rooted at a is denoted S(a).

There are two more properties of the net tree that make it appropriate for
our application:

1. [Covering property] For every node a of T ,

S(a) ⊂ B
(

r(a), 2τ

τ − 1τ ℓ(a)
)

.

2. [Packing property] For every non-root node a of T ,

B
(

r(a), τ − 5
2(τ − 1)τ ℓ(p(a))−1

)
⊂ S(a).

Importantly, the covering property implies that, for every node a in a net
tree, the diameter of S(a) is at most 4τ

τ−1 τ ℓ(a).
The details of the construction of a net tree can be found in Har-Peled and

Mendel [22]. We summarize their bound on the running time in the following
theorem.

Theorem 4.2 ([22, Theorem 3.1]). Given a set of n points in a metric space
of doubling dimension λ, a net tree can be computed in O(2λn log n) expected
time.

The following lemma is analogous to Lemma 2.3, where the diameter of a
compressed quadtree node was bounded by a constant fraction of the diameter
of its parent. This lemma will be used in a similar way, to bound the length of
the ascending stage of the routing algorithm.

Lemma 4.3. Let T be a net-tree, and let a be any node of the net tree. Then
we have

diam S(a) ≤ 4τ

τ − 1τ ℓ(pk(a))−k (2)

where pk(a) is the k-th ancestor of a: p0(a) = a and pk(a) = p(pk−1(a)) for
k > 0.

Proof. The proof is by induction on k. The base case follows directly from the
covering property of net trees. Since S(a) can be contained in a ball of radius
r = 2τ

τ−1 τ ℓ(a), its diameter is at most 2r.
Now assume that Equation (2) holds for some k ≥ 0. Recall that for every

non-root node a in T , we have ℓ(a) < ℓ(p(a)). Since the level of a node is an
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integer this is equivalent to ℓ(a) ≤ ℓ(p(a))−1. Applying the induction hypothesis
and then this inequality to the node pk(a) yields

diam S(a) ≤ 2 2τ

τ − 1τ ℓ(pk(a))−k

≤ 2 2τ

τ − 1τ ℓ(pk+1(a))−(k+1).

Given a net tree T , the procedure for computing a WSPD is similar to
the Euclidean case. The following algorithm will produce a WSPD for P with
separation s, when given the root of T as both inputs. The algorithm is from
Har-Peled and Mendel [22].

Algorithm 3 Computing a WSPD for a set of points in a doubling space
Input: a and b are nodes of a net tree T that stores a set S of points in a
metric space of bounded doubling dimension, and s > 2 is the separation ratio
Output: if initially called with both a and b equal to the root of T , the
algorithm outputs a WSPD of S with separation ratio s
procedure WSPD(a, b)

if a = b = {p} for some point p then return ∅
if ℓ(a) < ℓ(b) then

swap a and b ▷ now ℓ(a) ≤ ℓ(b)
end if
if 8s 2τ

τ−1 · max{τ ℓ(a), τ ℓ(b)} ≤ d(r(a), r(b)) then
return {{S(a), S(b)}} ▷ S(a) and S(b) are well-separated

else
let a1, a2, . . . , ak be the children of a
return

⋃
i WSPD(ai, b)

end if
end procedure

The only difference between this algorithm and the one to compute a WSPD
given a quadtree is the condition for checking if two sets are well-separated.

Theorem 4.4 (22, Lemma 5.1). Given a set of n points in a metric space
of doubling dimension λ, a WSPD with separation s > 2 can be computed in
O(2λn log n + sλn) expected time. The number of pairs is O(sλn).

Notice that the nodes in a net tree have representatives, by definition. The
representatives of the net tree satisfy Lemma 2.9, so we could use them in the
construction of the spanner. However, they do not necessarily satisfy Lemma 2.8.
This means that if a spanner is constructed using these representatives, the
hop spanning ratio cannot be bounded like in Lemma 2.13. Instead, we can
choose the representatives according to a heavy path decomposition, as we did
in Euclidean space, since the representatives computed in the construction of
the net tree are arbitrary. Since a heavy path decomposition can be computed
in O(n) time, this does not increase the running time of the algorithm. From
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this point on, the representative r(a) of a node will be defined by the heavy path
decomposition.

Finally, the construction of a spanner from a WSPD is identical. For each
pair {S(a), S(b)} in the WSPD, we add an edge between r(a) and r(b). Again,
r(a) and r(b) are chosen according to the heavy path decomposition, they are
not the representatives from the definition of the net tree.

The proof that this graph was a spanner in Euclidean space also relied on
Lemma 2.4, which can be verified to hold for any WSPD in any metric space,
and Lemma 2.6. Notice that the WSPD computed in this section satisfies the
hypothesis for Lemma 2.6, namely that every pair in the WSPD is of the form
{S(a), S(b)} for some nodes a, b in the net tree. So everything that was used to
prove that the WSPD graph was a spanner in Section 2.5 has been shown to
hold in a metric space of bounded doubling dimension when we use a net tree.
We have the following theorem, which is analogous to Theorem 2.12.

Theorem 4.5. Given a set P of n points in a metric space with doubling
dimension λ, a (1 + 2/s + 2/(s − 1))-spanner of P with O(sλn) edges can be
computed in O(2λn log n + sλn) expected time.

Finally, we mention that Lemma 2.13 holds for the net tree as well, since
we chose the representatives using a heavy path decomposition. Therefore,
Lemma 2.8 can be applied to a net tree as well, and the proof of Lemma 2.13
only relied on that lemma. The construction of a heavy path WSPD spanner in
a metric space of bounded doubling dimension is summarized by the following
theorem.

Theorem 4.6. Let S be a set of n points in a metric space X of doubling
dimension λ, and let s > 2. In O(2λn log n + sλn) expected time, we can
construct a graph G called a heavy path WSPD spanner with the following
properties:

• The number of edges in G is O(sλn).
• G is a (1 + 2/s + 2/(s − 1))-spanner.
• G is a (2 lg n + 1)-hop spanner.

Additionally, between any two points there is a single path that achieves both
the spanning and hop-spanning ratio.

5 Local routing in doubling spaces

We wish to apply our routing algorithm to a heavy path WSPD spanner con-
structed in some metric space (X, d) with bounded doubling dimension. We
have already seen that the compressed quadtree cannot be used, and so we have
substituted the net tree. From there, the construction of a spanner is very similar
to the Euclidean case. Now the question is what, if anything, has to be modified
in order to route in this more general setting.
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The labelling scheme, as stated, can be applied to any rooted tree. So we
can label the points in the same manner, using lg n bits per point, and 2 lg n
bits for each internal node.

None of the arguments in the proof of correctness for the routing algorithm
made reference to the properties of the compressed quadtree or Euclidean space.
Only properties of the WSPD and the heavy path decomposition were needed.
We have already shown that the WSPD computed using the net tree satisfies
all the relevant properties. In particular, the proofs of Section 3.2 rely on
Lemmas 2.6 and 2.9, which also apply to the WSPD constructed in a doubling
space.

Since we computed a heavy path decomposition of the net tree, we know
that Lemma 2.13 holds. The proof of Lemma 3.13 only relied on the use of a
heavy path decomposition, and so it will hold here as well.

5.1 Analysis for doubling spaces

Part of the correctness proof showed that the descending stage followed the
spanner path from r(a) to q. Since the length of the spanner path is the same
for both Euclidean and doubling spaces (see Theorem 4.5), the length of the
path constructed during the descending stage is (1 + 2/s + 1/(s − 1))d(p, q), as
it was in Euclidean space. The analysis of the ascending stage, however, relied
on properties of the compressed quadtree to bound the length of the path. The
following lemma bounds the length of the ascending stage using Lemma 4.3
instead.

Lemma 5.1. The length of the path constructed during the ascending step of
the algorithm is no more than

τ

s(τ − 1)d(p, q).

Proof. The path from p to r(a) is contained in the subtree rooted at a, so the
length of every edge on the path is at most diam(S(a)) ≤ 2 2τ

τ−1 τ ℓ(a). That path,
minus the last edge (i.e., the edge with endpoint r(a)), is contained in the subtree
rooted at one of the children of a by Lemma 3.10, so the length of all but the
last edge is at most 2 2τ

τ−1 τ ℓ(a)−1, by Lemma 4.3.
Repeating this argument will show that the length of the entire path is not

more than
∞∑

k=0
2 2τ

τ − 1τ ℓ(a)−k = 2 2τ

τ − 1τ ℓ(a) ·
∞∑

k=0
τ−k

= 2 2τ

τ − 1τ ℓ(a) · τ

τ − 1 .
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From Algorithm 3 we know that

2 2τ

τ − 1τ ℓ(a) ≤ 1
4s

d(r(a), r(b))

≤ 1
4s

(
1 + 2

s

)
d(p, q)

≤ 1
s

d(p, q),

where the last inequality follows because s ≥ 2. The first inequality is the
condition for being well-separated in Algorithm 3. And so therefore the length
of the path is at most

2 2τ

τ − 1τ ℓ(a) · τ

τ − 1 ≤ τ

s(τ − 1)d(p, q).

Now we have all the ingredients to analyze the routing algorithm in doubling
spaces. The following theorem summarizes the result.

Theorem 5.2. The routing ratio of this algorithm on a heavy path WSPD
spanner in a doubling space is at most

1 +
(

2 + τ

τ − 1

)
1
s

+ 1
s − 1 .

Proof. Since the descending stage follows the spanner path, its length is at most
(1 + 2/s + 1/(s − 1))d(p, q), just like in the Euclidean case. By Lemma 5.1, the
length of the ascending stage is at most τ/(τ − 1) · (1/s) · d(p, q). Since the
ascending and descending stages make up the entire algorithm, we can add these
two bounds to get the routing ratio.

Because we know that τ ≥ 11, this theorem implies that the routing ratio
in doubling spaces is at most 1 + 3.1/s + 1/(s − 1). This is smaller than the
routing ratio in the Euclidean case. However, the constants hidden by the big-O
notation in the net tree construction will depend on τ , and so the number of
edges in the heavy path WSPD spanner will also depend on the choice of τ .

As we did in the Euclidean case, we can analyze the difference between the
routing and spanning ratios. Let S = 1+2/s+2/(s−1) and R = 1+(2+τ/(τ −
1))/s + 1/(s − 1) be the spanning and routing ratios. Before, the spanning ratio
was always less than the spanning ratio. Here, however, the spanning ratio is
only less than the routing ratio if s > τ . Otherwise, the inequality is flipped.
Since the routing algorithm produces a path on the same graph, this implies a
new upper bound for the spanning ratio.

The length of the path constructed during the ascending stage depends on
the constant τ . Since we are free to choose any τ ≥ 11 when constructing the net
tree, if we choose τ to be large enough then the length of the path will approach
(1/s)d(p, q), which is less than the length of the spanner path from p to r(a).
Using this fact, we can get a better bound on the spanning ratio of the heavy
path WSPD spanner.
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Theorem 5.3. If s ≤ τ , then the spanning ratio of the graph of Theorem 4.5 is
at most 1 + 4.2/s.

Proof. Let p, q be points of P , and let {S(a), S(b)} be the WSPD pair that
separates p from q. Consider routing from p to q. The ascending stage constructs
a path from p to r(a) with length at most

τ

s(τ − 1)d(p, q).

If we run the routing algorithm from q to p instead, we get a path from q to r(b)
with the same length.

The distance between r(a) and r(b) is at most (1 + 2/s)d(p, q). Add the two
paths constructed by the ascending stages to this edge to get a path of length at
most

dG(p, q) ≤ dG(p, r(a)) + dG(r(a), r(b)) + dG(r(b), q)

≤ τ

s(τ − 1)d(p, q) +
(

1 + 2
s

)
d(p, q) + τ

s(τ − 1)d(p, q)

=
(

1 +
(

2 + 2τ

τ − 1

)1
s

)
d(p, q).

Since τ ≥ 11, we have τ/(τ − 1) ≤ 1.1, and the inequality follows.

We can also bound the number of edges on the routing path, like Lemma 3.13.
The proof of that lemma relied on Lemma 2.8 and Lemma 2.13, which we have
show to hold in doubling spaces. Therefore the number of edges on the routing
path has the same upper bound of 2 lg n + 1. The results of this section are
summarized in the following theorem.

Theorem 5.4. Let G be a heavy path WSPD spanner for a set S of points in
a metric space of doubling dimension λ, and let p and q be points of S. There
exists a local, memoryless routing algorithm that can find a path from p to q,
such that:

• The number of bits stored at each vertex u is (3 deg(u) + 1) lg n
• The length of the path found from p to q is at most(

1 +
(

2 + τ

τ − 1

)
1
s

+ 1
s − 1

)
d(p, q),

where τ ≥ 11 is a constant
• The number of edges on the path is at most 2 lg n + 1

5.2 Error analysis redux

As before, we have upper bounds on the spanning ratio and the routing ratio.
We can again quantify the difference between them using absolute and relative
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error. But since we have two different bounds on the spanning ratio depending
on whether or not s ≤ τ , we need to consider two cases.

Recall dR(p, q) is the length of the routing path and dS(p, q) is the length of
the spanner path between two points, p and q. If R and S are our upper bounds
on the routing and spanning ratios, then the absolute error is ∆ = R − S and
the relative error is δ = R/S − 1.

Our two bounds on the spanning ratio are

S≤τ = 1 +
(

2 + 2τ

τ − 1

)
1
s

and S>τ = 1 + 2
s

+ 2
s − 1 .

In both cases, the routing ratio is the same

R = 1 +
(

2 + τ

τ − 1

)
1
s

+ 1
s − 1 .

Notice that if s = τ , then all three of these values coincide. If s < τ , then we
have S≤τ < R < S>τ . And if s > τ , then we have S>τ < R < S≤τ .

Lemma 5.5. The absolute error ∆ is bounded by 0.5, meaning in any heavy
path WSPD spanner we have dR(p, q) ≤ dS(p, q) + 0.5d(p, q) for all points p and
q, and for any choice of s and τ .

Proof. We will consider two separate cases: s ≤ τ and s > τ . In the first case,
the absolute error is

∆≤τ = R − S≤τ = 1
s − 1 − τ

s(τ − 1) .

In the second case, it is

∆>τ = R − S>τ = τ

s(τ − 1) − 1
s − 1 .

Interestingly, ∆≤τ = −∆>τ .
It can be shown that ∆≤τ is decreasing on the interval [2, τ ], so its maximum

is achieved at s = 2. For ∆>τ , we find that the function achieves a maximum at
s = τ +

√
τ2 − τ . Computing the spanning ratios for these values of s, we find

∆≤τ (2) = 2 − τ

2 − 2τ

∆>τ (τ +
√

τ2 − τ) = 2τ

(τ − 1)(τ +
√

τ2 − τ)
− 2

(τ +
√

τ2 − τ) − 1
.

Finally, we can check that ∆≤τ (2) > ∆>τ (τ +
√

τ2 − τ) for all τ ≥ 11, that
∆≤τ (2) is increasing as a function of τ , and that limτ→∞ ∆≤τ (2) = 1/2.

Lemma 5.6. The absolute error δ is bounded by 0.1667, meaning in any heavy
path WSPD spanner we have dR(p, q) ≤ 1.1667d(p, q) for all points p and q, and
for any choice of s and τ .
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Proof. Again the analysis is split into two separate cases: s ≤ τ and s > τ . In
the first case, the relative error is

δ≤τ = s − τ

(s2 + 3s − 4)(1 − τ) + 2s + 2 .

In the second case, it is

δ>τ = 2(s − τ)
(s2 + 3s − 2)(τ − 1) .

Once again, δ≤τ is decreasing on the interval [2, τ ] and so is maximized when
s = 2. The function δ>τ is maximized at the point s = τ +

√
τ2 + 3τ − 2. We

see that
δ≤τ (2) = τ − 2

6τ − 4 .

It can be shown that δ≤τ (2) is increasing as a function of τ and that the limit as
τ approaches infinity is 1/6. It can also be shown that δ>τ < 1/6 for any values
of s and τ , therefore the maximum relative error is 1/6.

6 Conclusion

The main contribution of this article is a competitive local routing algorithm
for heavy path WSPD spanners that succeeds for points in a metric space of
bounded doubling dimension, with routing ratio 1 + O(1/s).

Given a WSPD with separation ratio s > 2 for a set of n points, we showed
how to construct a spanner with spanning ratio 1 + 2/s + 2/(s − 1) and hop
spanning ratio 2 lg n + 1, which we called a heavy path WSPD spanner. In
Euclidean space the construction takes O(d(n log n + sdn)) time and in a metric
space with doubling dimension λ the construction takes O(2λn log n + sλn)
expected time. The number of edges in the spanner is O(sdn) in Rd, or O(sλn)
in a doubling space.

We then presented a local memoryless routing algorithm for heavy path
WSPD spanners. We showed that, if the spanner was constructed from a
compressed quadtree in Euclidean space, the routing ratio of the algorithm is at
most 1 + 4/s + 1/(s − 1). We also provided a worst-case lower bound of 1 + 4/s.
The number of edges on the path generated by the routing algorithm is at most
2 lg n + 1.

We also analyzed the routing ratio for point sets in metric spaces of bounded
doubling dimension. If the WSPD was constructed using the net tree of Har-Peled
and Mendel, then the routing ratio is at most 1 + (2 + τ/(τ − 1))/s + 1/(s − 1),
where τ ≥ 11 is constant. The bound on the number of edges on the path
remains 2 lg n + 1. Notice that the analysis of the routing ratio depends on the
properties of the metric space and the tree used to construct the WSPD. Finally
we gave a better bound on the spanning ratio of a heavy path WSPD spanner
in a doubling space in the special case where s ≤ τ .
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The spanning ratio of a heavy path WSPD spanner and the different routing
ratios are all 1 + O(1/s), but the constants differ. Ideally the routing ratio would
be the same as the spanning ratio, but this may not be possible. We analyzed
the difference between the bounds in an effort to quantify how far from the ideal
we are.

6.1 Future work

Given that the routing algorithm generalized so naturally to doubling spaces,
it is natural to wonder if it could generalize to WSPD spanners constructed in
other types of metric spaces. Is there a more general class of metric spaces that
supports competitive local routing, using the heavy path WSPD spanner?

Another avenue to explore is considering other spanner constructions. The
spanner construction that we presented is relatively simple. There are more
elaborate constructions that can produce spanners with desirable properties. For
example, there are constructions of WSPD spanners with bounded degree. If we
could apply our algorithm to these spanners then the size of the routing tables
at each node would be O(log n).

There is also a construction of a WSPD spanner with constant hop spanning
ratio. We showed that a heavy path WSPD spanner has a hop spanning ratio
of at most 2 lg n + 1. In some applications, the number of edges on the routing
path might be more important than the total length of the path. For example, if
the time for a message to be transmitted is much smaller than the time needed
to make a forwarding decision. In this case routing on spanners with a small
hop spanning ratio would be desirable. For details on the various constructions
of spanners from WSPDs, see Narasimhan and Smid [25].

Finally, WSPDs have been defined for the unit disk graph [20]. Using these
WSPDs, local routing in the unit disk graph is possible [23]. Our algorithm
routes on spanners constructed directly from a WSPD, so the result does not
immediately transfer. However, we do not need to use a modifiable header, and
it would be interesting to see if our algorithm could be modified to work on the
unit disk graph.
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