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Abstract. In this paper, we explore the benefits of incorporating context into a
Recurrent Neural Network (RNN-T) based Automatic Speech Recognition (ASR)
model to improve the speech recognition for virtual assistants. Specifically, we
use meta information extracted from the time at which the utterance is spoken
and the approximate location information to make ASR context aware. We show
that these contextual information, when used individually, improves overall per-
formance by as much as 3.48% relative to the baseline and when the contexts
are combined, the model learns complementary features and the recognition im-
proves by 4.62%. On specific domains, these contextual signals show improve-
ments as high as 11.5%, without any significant degradation on others. We ran
experiments with models trained on data of sizes 30K hours and 10K hours. We
show that the scale of improvement with the 10K hours dataset is much higher
than the one obtained with 30K hours dataset. Our results indicate that with lim-
ited data to train the ASR model, contextual signals can improve the performance
significantly.

Keywords: End-to-End Speech Recognition, RNN-T, Contextual ASR, Contex-
tual RNN-T

1 Introduction

Humans often use contextual information to disambiguate a particular utterance and
understand incoming speech. The contextual information forms prior knowledge which
can be the knowledge about a particular user or world knowledge acquired from many
users. In use cases such as voice assistants, there is a lot of prior information about ASR
queries. Since we train ASR on data collected from multiple users, which have been said
at different contexts, some contextual information is implicitly captured and learned by
the model. However, effective use of context may further improve ASR performance.
For RNN-T based ASR, there is not much prior art in leveraging contextual information
such as state of the device, dialog state, time at which the utterance was spoken, and
state or country of origin etc.

In this paper, we focus on providing date-time and geographical information to
RNN-T based ASR [1,4,5]. We hypothesize that date-time can be an useful signal for
ASR as it carries information about type of utterances, e.g. Christmas related queries
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will occur frequently in December. Similarly, geographical location may encapsulate
user accent, and therefore benefits ASR. We demonstrate the efficacy of explicitly
providing contextual information to RNN-T based ASR using up to 30K hours of de-
identified queries from smart speakers.

The rest of the paper is organized as follows. We review prior work around the use
of context in end-to-end (E2E) ASR in Section 2. Our context representation techniques
and details of the models are outlined in Section 3. Section 4 contains the experimental
details. Results and discussions are presented in Section 5. Finally, Section 6 concludes
the paper.

2 Prior Work

In the literature, contextual information has been successfully used in the language
modelling. In [13], location and spoken queries are used for on-the-fly adaptation of the
n-gram language model. In neural models, context is often supplied either via embed-
dings or one-hot vectors. In [9], RNN language model is adapted based on input con-
textual information. Where as in [6], context embeddings are used to control a low-rank
transformation of the recurrent layer weight matrix. For document classification task,
temporal information has been shown to be useful [15]. Explicitly extracting contex-
tual information also improved the results [11]. In Knowledge graphs, time information
is used to learn relation between entities [3]. For RNN-T ASR, using intent based se-
mantic signals has been shown to improve performance [12]. In [16] contextual meta
data such as music playing state and dialog state information has been explored. Since
dialog state information is available only at the end of first turn (or utterance), it can
be applied to improve recognition of subsequent turns (or utterances). Where as, in our
work presented here, we explore using context that is applicable to all utterances.

ENCODERPREDICTION 
NETWORK

JOINT NETWORK

SOFTMAX

Fig. 1. Incorporating context embeddings into RNN-T ASR. Audio features at each frame are
concatenated with et which is either per-frame context embeddings or one-hot vector
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3 Context Representation with RNN-T

In order to use contextual information such as date-time and geo-location in RNN-T
ASR, it first needs to be transformed from textual representation to continuous repre-
sentation. RNN-T model consists of encoder network henc, prediction network hpredu

and joint network zt,u. A typical RNN-T network follows the following operations:

henct = fenc(x1, x2, · · · , xt) (1)

hpredu = fpred(ypred1 , · · · , ypredu−1 ) (2)

zt,u = f join(henct , hpredu ) (3)
P (yu|x1, · · · , xt, y1, · · · , yu−1) = softmax(zt,u) (4)

where x1 · · ·xt are the audio feature inputs to the RNN-T encoder and y1 · · · yu are
the corresponding label sequence.

We extend this by adding contextual information to the encoder network by con-
catenating feature vector x with context vector e. Context vector e can be derived or
presented to the network in multiple ways, such as:

1. one-hot representation of the context (o)
2. transforming context (c) using a contextual embedding matrix W
3. feature engineered constant sized vectors (f ).

The advantage of representing context as embedding is that it provides the flexi-
bility of combining multiple contextual signals in a lower dimensional space. In our
experiments, we use 64 dimensional contextual embeddings.

hencctxone−hot
= fenc(x; o) (5)

hencctxembed
= fenc(x;Wc) (6)

hencctxfeature−engg
= fenc(x; f) (7)

3.1 Date Time as Context

A typical date-time information in our dataset looks like - 2020− 01− 01T13 : 21. We
extract the following information from this datum:

Hour - 13, Weekday - Wednesday, Week No. - 1, Month - 1

In order to bias RNN-T recognition with temporal information, we consider two
methods to convert the above information into a continuous vector representation.
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Embedding Representation In this method, we learn embedding matrices for hour
(24), weekday (7), week number (53) and month (12), where the numbers in the bracket
indicate the maximum number of embedding vectors we use for representing corre-
sponding information. These contexts are passed through an embedding layer to gen-
erate contextual vectors which are then averaged to represent the complete date-time
information. This averaged embedding is used as biasing signal within RNN-T, and is
learnt along with RNN-T model training. Assuming embedding vectors of hour, week-
day, week number, and month to be ht, wdt, wnt and mt respectively, then

et = (ht + wdt + wnt +mt)/4 (8)

In the rest of the paper, this embedding method is addressed as TimeEmbeddingLookUp

Positional Encoding The above embedding approach (Sec 3.1) does not explicitly en-
code the temporal proximity and cyclical nature of time information. To capture this, we
represent the date-time information using an 8-dimensional feature-engineered vector
following [8]: 

sin(
2π.hour

24
), cos(

2π.hour

24
)

sin(
2π.weekday

7
), cos(

2π.weekday

7
)

sin(
2π.weeknum

53
), cos(

2π.weeknum

53
)

sin(
2π.month

12
), cos(

2π.month

12
)


The above representation can clearly express the repetitive behaviour of temporal in-
formation. In the following sections, this embedding method is referred to as TimePo-
sitionalEncoding.

3.2 Location as Context

In this work, we used location information up to the state level in the US. The state
information for utterances are collected from de-identified user specified information.
Given that accent typically varies across the US states, location information is a strong
signal to adapt the model to learn these variations. Instead of using all available loca-
tion information, we clustered utterances with location information to form 20 clusters.
The number of clusters are decided empirically with the objective of avoiding multi-
ple centres getting mapped to the same state. Approximate geo-location information
available from latlong1 is used to obtain the state-level geo-location, and euclidean dis-
tance is used as the distance metric to learn the cluster centroids. With this we got 20
cluster centroids which are closer in distance. The clusters also include locations out-
side the US, which correspond to small percentage of users using the devices outside
the main region. For some utterances, the location information is not available and we
assign it to None cluster. We explored transforming geo-location using an embedding
layer (GeoEmbeddingLookUp), and also encoding it as a one-hot vector (GeoOneHot)
to bias the RNN-T model.

1 https://www.latlong.net/category/states-236-14.html
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3.3 Combination of Context

We also ran experiments combining date-time and location information to bias the
RNN-T search. We expect the date-time and location together to be a much stronger
signal than either individual signals alone. We use embedding approach to combine the
context (CombinedTimeGeo), where the embedding matrix is learned to map combined
context into lower dimension contextual embedding vector.

4 Data and Experimental Setup

4.1 Datasets

For our experiments, we used de-identified human-labelled speech data collected from
queries to voice controlled far-field devices. The dataset was randomly split into train,
dev and eval. The training set comprised of 30K hours of de-identified human-labelled
US English recordings. Each recording includes meta information such as time stamp
and optional US state from which it originated. The eval set consists of approximately
100 hours of generic utterances. We also evaluate our models on a communication spe-
cific test set of 23 hours of utterances. Both the evaluation test sets are mutually exclu-
sive. We refer to the former as Eval test set and the latter as Comms test set.

4.2 Experimental Setup

Full Resource RNN-T ASR The baseline RNN-T model consists of 5 encoder layers
of 1024 hidden units, with a final layer output dimension of 512. The prediction net-
work has an embedding layer of 512 units, 2 LSTM layers of 1024 units, and a final
output dimension 512. The joint network is a feed forward network of 512 hidden units
and a final output dimension of 4001. The 4001 dimensional output, corresponds to
the number of subword tokens, is passed through a final softmax layer. The subword
vocabulary was generated using the byte pair encoding algorithm [14]

The contextual RNN-T ASR model has an additional embedding layer generating
embedded representation of 64 dimensions which are appended to the input of the en-
coder at every time step. The two exceptions being:

1. the positional time encoding has an 8 dimensional context vector
2. one-hot geographical information has a 21 dimensional context vector

All the models are trained on 30K hours of training data.

Low Resource RNN-T ASR We also trained both the baseline and contextual models
on 10K hours of data. The main motivation for this study is to analyze the effect of con-
text in the low training data regime. In order to prevent over-fitting, we scaled down the
number of parameters of the models. Number of hidden units of both the encoder and
decoder layers were reduced to 760. The feed-forward joint network is also removed.
The encoder and decoder outputs are summed and provided as an input to the softmax
layer. All other specifications are kept consistent with the full-resource models.
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Both full-resource and low-resource models use a 64-dimensional log filter bank
energy features computed over 25ms window with 10ms shift. Each feature vector is
stacked with 2 frames to the left and down sampled to a 30ms frame rate. We also
augment the acoustic training data with SpecAugment [10] to improve the robustness.
All models are trained using the Adam optimizer [7], with a learning rate schedule
including an initial linear warm-up phase, a constant phase, and an exponential decay
phase [2]. These hyper-parameters are not specifically tuned for this work.

5 Results and Discussion

5.1 Overall WER Comparison

Table 1 shows the overall Relative Word Error Rate Reduction (WERR) with respect
to the baseline RNN-T model without context. Performance of our baseline system
is below 10% WER absolute. The magnitude of improvement on Comms test set is
more than that of Eval test set, which signifies that these contextual signals are more
favourable for communication specific utterances. Overall, incorporating geo-location
information as one-hot provides the maximum WERR of 3.48%. Based on the perfor-
mance, we chose TimeEmbeddingLookUp and GeoOneHot models for further analy-
ses.

Table 1. Relative WERRs of full resource contextual models w.r.t baseline

Model Eval Comms #params

Baseline — — 58.4M

TimeEmbeddingLookUp 1.73% 2.68% 58.7M
TimePositionalEncoding 1.33% 2.39% 58.4M

GeoEmbeddingLookUp 1.47% 1.6% 58.6M
GeoOneHot 2.27% 3.48% 58.5M

5.2 Domain-wise WER Comparison

We show the WER improvement of Eval set for various domains in Table 2. In gen-
eral, we see gains on all top domains of interest with both approaches. Geo-location
exhibits superior performance in domains like Music and CallingAndMessaging etc.
These domains capture region specific preferences for music and video along with ac-
cent variations of proper nouns. On the other hand temporal context shows improve-
ment on domains where queries come mostly at a certain point of time in a day, e.g.
DailyBriefing, Weather etc.
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Table 2. Per-domain relative WERR (%) breakdown on top 10 frequent domains selected from
the test set. Analysis was done using the full resource model.

Domain TimeEmbeddingLookUp GeoOneHot

Music 1.72 3.57
Shopping 2.03 1.49
CallingAndMessaging 2.04 5.68
Global 0.86 2.58
DailyBriefing 4.55 0.91
Knowledge 2.14 1.97
Video 3.13 6.26
Weather 5.92 4.67
Information 1.44 1.96
ScienceAndTechnology -0.49 -2.17

Table 3. Relative WERRs of combined contextual model w.r.t baseline. Both the models are
trained on complete 30K hours of data

Model Eval Comms

Baseline — —

CombinedTimeGeo 3.6% 4.62%

5.3 Combined Context

The effect of combining the two contextual signals is captured in Table 3. Combining
the contextual information shows superior performance compared to individual con-
textual models (Table 1). This establishes the additive effect of the location and date-
time signals. In domain-wise study, we see a similar additive effect on several domains
like CallingAndMessaging (6.05%), Knowledge (4.44%), Video (7.86%) and Weather
(11.56%) etc. Moreover, in domains like ScienceAndTechnology, where neither of the
individual contextual models showed any improvement, the combined model performed
significantly better (6.61% WERR).

5.4 Low Resource Simulation

In practice we often face data scarcity while developing ASR for a new language or
locale. In such cases, we can easily leverage contextual information as they are readily
available to gain additional performance benefits. We simulated this situation by ran-
domly selecting a 10K hours subset from the full training data, and trained both the
baseline and the contextual models on this subset. The model sizes have also been re-
duced to avoid over-fitting as described in Section 4.2. Table 4 shows that the magnitude
of gains have increased as compared to full resource, which demonstrates the efficacy
of these contextual signals for low resource scenarios.
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Table 4. Relative WERRs of Low Resource contextual models wrt baseline

Model Eval test set Comms test set #params

Baseline — — 38M
TimeEmbeddingLookUp 4.03% 3.66% 38.2M

GeoOneHot 4.29% 3.76% 38.1M

Table 5. WERR (%) for top 3 and bottom 3 performing month and geographical state/country

Model Top 3 (WERR) Bottom 3 (WERR)

December (11.61) November (0.25)
TimeEmbeddingLookUp February (10.49) August (-0.64)

January (5.24) September (-4.86)

Germany (9.48) Ohio (1.52)
GeoOneHot Hawaii (5.38) Florida (1.02)

Washington (4.77) California (0.79)

5.5 Month and State-wise WER Comparison

To further understand the effect of our proposed methods, we performed a month-wise
and state-wise WERR analyses for date-time and geo-location based models respec-
tively. We have captured the best and worst performing month/state for date-time/geo-
location models in Table 5. The date-time information enhances the performance of
RNN-T for some winter months considerably. On the other hand, geo-location signal
significantly enhance the performance on utterances coming from low resource regions
like Germany, Hawaii and its nearby locations. This can be mostly attributed to differ-
ence in acoustics of utterances coming from these regions as they are different from that
of other regions captured by the geo-location clusters. Even for the worst performing
region, we do not see any degradation of performance with geo-location as context.

Table 6. Comparison of contextual model output and baseline output

Reference Baseline output Contextual output Context used

good night and happy
hanukkah

good night and happy
hobbiter

good night and happy
hanukkah

Time

what’s the christmas
cat story

what’s the christmas car
story

what’s the christmas
cat story

Time

call guillermo call galermo call guillermo Geo-location

turn to my kirk
franklin radio

turn to my park franklin
radio

turn to my kirk
franklin radio

Geo-location
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5.6 Baseline and Contextual Model Outputs

In Table 6 we compare a few example predictions from baseline and contextual model.
We see that, the time information helps in recognition of phrases like “hanukkah” and
“christmas cat”, which the baseline model fails to recognize. These phrases are seen in
December which is implicitly captured by the contextual model.

Similar to time, when we use location information as context, it captures the accent
variations and local preferences of music and videos. The contextual model was able to
capture the local accent variation and correctly output “guillermo” while the baseline
model outputs “galermo” which is somewhat phonetically similar to the correct phrase.
Similarly “kirk franklin” was correctly recognized compared to incorrect baseline out-
put of “park franklin” which shows that the model was able to capture local variation in
music preferences without any external supervision.

Texas
Alabama

South
Carolina

Florida

New Jersey

Illinois
Ohio

Missouri
Colorado

California
Washington

Alaska

Hawaii

Brazil

Germany Philippines

India

Africa

Australia

Fig. 2. t-SNE plot for geo-embeddings

5.7 t-SNE Plot Analysis

Embeddings are meant to capture some implicit information about the context it repre-
sents. To understand the significance of the embedding vectors learnt by the models, we
projected the 64 dimensional geo-location and month embedding vectors from GeoEm-
beddingLookUp and TimeEmbeddingLookUp on 2-D space using t-SNE with default
parameters of Embedding Projector2.

2 https://projector.tensorflow.org/
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January

February

MarchApril

May

June

July
August

September October

November

December

Fig. 3. t-SNE plot for month embeddings

In Figure 2 we show the t-SNE plot for the learnt geo-embedding vectors. We can
see that the geographically close states in the US have formed clusters in the embedding
space (e.g - California:Washington, Illinois:Ohio etc.) which seems to capture local
variations like regional movies and song preference and also local accents. We can
also see a clear demarcation between the US locations and the non-US locations like
Brazil, Germany and India. Users across the US and the non-US will have different
accents which are captured by the model. This proves that the geographical location
distribution is important for the model and the model has learnt that without any external
supervision.

Figure 3 shows the t-SNE plot for embedding vectors corresponding to month. We
can observe a clear temporal ordering among the learnt month vectors which demon-
strate the capacity of our models to implicitly learn the ordering among months from
data. This phenomenon also proves that the temporal ordering of months is somewhat
important for the task of ASR. Note that, we have not imposed any ordering constraint
on any of our models.

6 Conclusions

In this paper, we explored the benefits of using contextual signals to improve the overall
performance of end-to-end ASR based on RNN-T. We demonstrated the effectiveness
of date-time and location as context by building ASR models on 30K and 10K hours
of data. We provided empirical evidence that biasing ASR using contextual signals im-
proves the overall accuracy. The use of individual contextual signals improved the ASR
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WER up to 3.48% relative, and where as their combination resulted in about 4.62%
relative gain. Our analysis with t-SNE plot of embedding vectors for both geo-location
and date-time context showed that the model was able to extract meaningful informa-
tion from these signals and improving ASR, thereby possibly reducing the need for
additional training data which is now critical for performance improvement. As a part
of future work, we would like to add dynamic contextual signals along with these static
ones to further enhance RNN-T ASR performance.
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