Skip to main content

Effect of Label Noise on Robustness of Deep Neural Network Object Detectors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12853))

Abstract

Label noise is a primary point of interest for safety concerns in previous works as it affects the robustness of a machine learning system by a considerable amount. This paper studies the sensitivity of object detection loss functions to label noise in bounding box detection tasks. Although label noise has been widely studied in the classification context, less attention is paid to its effect on object detection. We characterize different types of label noise and concentrate on the most common type of annotation error, which is missing labels. We simulate missing labels by deliberately removing bounding boxes at training time and study its effect on different deep learning object detection architectures and their loss functions. Our primary focus is on comparing two particular loss functions: cross-entropy loss and focal loss. We also experiment on the effect of different focal loss hyperparameter values with varying amounts of noise in the datasets and discover that even up to 50% missing labels can be tolerated with an appropriate selection of hyperparameters. The results suggest that focal loss is more sensitive to label noise, but increasing the gamma value can boost its robustness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation approaches regarding the use of deep learning in safety-critical perception tasks. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 336–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2_25

    Chapter  Google Scholar 

  2. Wozniak, E., Cârlan, C., Acar-Celik, E., Putzer, H.J.: A safety case pattern for systems with machine learning components. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 370–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2_28

    Chapter  Google Scholar 

  3. Schwalbe, G., et al.: Structuring the safety argumentation for deep neural network based perception in automotive applications. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 383–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2_29

    Chapter  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  7. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  8. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Everingham, M., Eslami, S., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2014)

    Article  Google Scholar 

  12. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vision 128, 1956–1981 (2020)

    Article  Google Scholar 

  13. Adhikari, B., Peltomaki, J., Puura, J., Huttunen, H.: Faster bounding box annotation for object detection in indoor scenes. In: 7th European Workshop on Visual Information Processing (EUVIP), pp. 1–6 (2018)

    Google Scholar 

  14. Zhang, X., Liu, C., Suen, C.: Towards robust pattern recognition: a review. Proc. IEEE 108, 894–922 (2020)

    Article  Google Scholar 

  15. Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25, 845–869 (2014)

    Article  Google Scholar 

  16. Li, C., Zhang, C., Ding, K., Li, G., Cheng, J., Lu, H.: BundleNet: learning with noisy label via sample correlations. IEEE Access. 6, 2367–2377 (2018)

    Article  Google Scholar 

  17. Lee, K., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5447–5456 (2018)

    Google Scholar 

  18. Su, H., Deng, J., Fei-Fei, L.: Crowdsourcing annotations for visual object detection. In: AAAI Human Computation Workshop, pp. 40–46 (2012)

    Google Scholar 

  19. Russakovsky, O., Li, L., Fei-Fei, L.: Best of both worlds: human-machine collaboration for object annotation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2121–2131 (2015)

    Google Scholar 

  20. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020)

    Article  Google Scholar 

  21. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv (2017)

    Google Scholar 

  22. Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in unconstrained settings. Department of Computer Science, University of Massachusetts. UM-CS-2010-009 (2010)

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by Business Finland project 408/31/2018 MIDAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwo Adhikari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adhikari, B., Peltomäki, J., Germi, S.B., Rahtu, E., Huttunen, H. (2021). Effect of Label Noise on Robustness of Deep Neural Network Object Detectors. In: Habli, I., Sujan, M., Gerasimou, S., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2021 Workshops. SAFECOMP 2021. Lecture Notes in Computer Science(), vol 12853. Springer, Cham. https://doi.org/10.1007/978-3-030-83906-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83906-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83905-5

  • Online ISBN: 978-3-030-83906-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics