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Abstract

The paper introduces a novel framework for extracting model-agnostic human
interpretable rules to explain a classifier’s output. The human interpretable rule
is defined as an axis-aligned hyper-cuboid containing the instance for which the
classification decision has to be explained. The proposed procedure finds the
largest (high coverage) axis-aligned hyper-cuboid such that a high percentage
of the instances in the hyper-cuboid have the same class label as the instance
being explained (high precision). Novel approximations to the coverage and
precision measures in terms of the parameters of the hyper-cuboid are defined.
They are maximized using gradient-based optimizers. The quality of the approx-
imations is rigorously analyzed theoretically and experimentally. Heuristics for
simplifying the generated explanations for achieving better interpretability and
a greedy selection algorithm that combines the local explanations for creating
global explanations for the model covering a large part of the instance space
are also proposed. The framework is model agnostic, can be applied to any
arbitrary classifier, and all types of attributes (including continuous, ordered, and
unordered discrete). The wide-scale applicability of the framework is validated
on a variety of synthetic and real-world datasets from different domains (tabular,
text, and image).

Keywords: Interpretable Machine Learning, Explainable Models, Rule Based
Explanations

1. Introduction

The working of classic machine learning models such as simple decision trees,
linear regression can be easily interpreted by analyzing the parameters of the
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model. But, for want of higher accuracy or better generalization performance,
complex classifiers such as deep neural networks, support vector machines, and
decision forests are being employed. However, improved performance comes at
the cost of reduced human interpretability. Recent research focuses on explaining
the working of these complex black-box models, thereby bridging the accuracy-
interpretability trade-off and making them useful and trustworthy for a wider
community.

An explainable approach that can work irrespective of the underlying black-
box model is desirable. Such approaches are referred to as model agnostic
approaches in the literature [1, 2, 3, 4]. Short and concise rules are highly
human interpretable [5, 3]. Hence we would like to develop a model-agnostic
explainable approach that is capable of providing the human interpretable rules
for any black-box machine learning model. A major challenge in designing such
approaches lies in preserving faithfulness to the black-box. An explanation
method is said to be faithful to a black-box model if it identifies features that
are truly important for the working of the model.

A popular method of explaining the black-box model’s working is by assigning
ranks to the features relative to the importance the black-box model gives to
a feature. This feature rank is easy to understand but is not complete. The
ranking approach does not capture the class discriminative information based
on the range of values. In other words, if a specific range of values for a feature
results in classification to a class and outside the range corresponds to a different
class, such a mechanism would not be revealed by feature ranking approaches
[6, 7]. For an explanation based on feature ranking approach to be complete, we
need a measure to say how relevant is the feature value to a particular prediction.
The sensitivity of the changes to the output of the model due to small changes
in the feature values must also be captured. In a nutshell, feature ranking by
itself is an incomplete explanation. Various factors like the importance of a
feature, tolerable range of values to get the same prediction, the influence of a
feature value in driving towards a prediction, is to be additionally considered
along with the feature rank to provide a complete explanation to the working of
the black-box model.

Another class of methods, called rule-based methods, provide intuitive expla-
nations. Decision trees, decision lists that provide rules in the form of if-then-else
statements in a hierarchical fashion, come under this category. These are global
explanation models that aim to explain the working of the model in the whole
instance space. Though the explanations are intuitive, it is not always simple
to comprehend. If the hierarchical structure of if-then-else statements grows
into longer chains, it is difficult to comprehend, and the interpretability suffers
[5]. It is to be noted that these methods partition the instance space based on
the attribute values. Longer chains of if-then-else statements would mean small
partitions created in the instance space. This further complicates the scenario
as the rules are less generalizable.

Anchors [2], a recent approach overcomes the limitations of feature ranking
and rule-based approaches. It builds on the observation that a complex tree
of rules encompasses many simple trees. Hence instead of attempting to build
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Table 1: Example MAIRE explanations obtained for the Adult, Abalone and German credit
datasets

a tree that spans the entire instance space and provides an explanation of the
black-box model globally, it is better to provide a local explanation spanning a
smaller partition of the whole instance space. The precision and coverage metrics
defined in [2] help to preserve the desired properties of posthoc explanations.
But a limitation of the Anchors approach is that it is applicable only for discrete
attributed datasets. In the case of continuous-valued attributes, Anchors can be
applied after the continuous values are mapped onto a discrete values set only.

Binning is employed to discretize the continuous-valued attributes by iden-
tifying a threshold to create bins. The binning threshold plays a crucial role
and it may not be always possible to obtain the tighter bounds on the range of
tolerable values for a prediction. Thus, an unsuitable binning threshold may lead
to loss of subtle class discriminant information that may otherwise be present in
the original continuous-valued attributes.

The proposed framework MAIRE is a non-trivial extension of Anchors that is
applicable across any attribute type - continuous, discrete (ordered or unordered).
A sample explanation generated from our approach is shown in the table 1.

2. Related Work

There are significant efforts in different directions towards improving the
explainability aspect of machine learning models. We broadly categorize the
approaches into three.

Model agnostic methods are like ‘meta-learning’ approaches that are
capable of explaining the behavior of any black-box classifier. LIME[1] approxi-
mates the working of the black box classifier in a local neighborhood by fitting a
linear model on the black box predictions for the neighbors. Anchors[2] finds
the decision rule for black-box model prediction such that the rule anchors the
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prediction adequately as governed by the precision and coverage metrics. Both
LIME and Anchor generate global explanations but apply only to discrete-valued
datasets. MAIRE overcomes this constraint by its novel optimization framework.
Learning To Explain (L2X) [6] does instance wise feature selection by maximizing
the mutual information between the subset of features and the target variable.
SHAP [8] uses Shapley values to predict the importance of features towards a
prediction. Both L2X and SHAP use feature ranking approach, which is accurate
in text classification. However, feature ranking may not always be optimal as
feature values may play an important role in distinguishing between two classes.
MAIRE, on the other hand, explains in terms of a range of values of an attribute.
LORE [3] explains the black-box model by extracting rules using a decision
tree applicable in a local neighborhood generated by a genetic algorithm. This
method is applicable for low dimensional datasets only as with high dimensional
datasets; the decision tree may grow complex, reducing interpretability. LLORE
[9] uses an autoencoder to perform dimensionality reduction so that LORE [3]
can be applied in the reduced dimensional space. Dimensionality reduction may
lead to loss of information and should be avoided. Further, LLORE [9] can
be used only for images and an extension to handle text data has only been
mentioned as a future possibility. Our proposed approach MAIRE can be applied
to different domains (text, tabular, image) and does not require any modification
to the dimensionality of the feature space, thus preserving all the information.

The proposed work is close to that of Lakkaraju et al [4] in the broader sense
from the perspective of explanation generation in terms of rules as per attribute
ranges. But their explanation generation algorithm requires value ranges to be
provided, and explanation is in terms of the rules explaining how the black-box
model works in the subspace defined by the given attribute values. This flexibility
may be beneficial for the tabular datasets, where the value range for attributes
shall make sense to end-users. While the approach in [4] is model agnostic like
MAIRE, the extensive experimentation has been carried out only on tabular
datasets. This need to give attribute value ranges for explanation generation
is challenging in case of images or textual datasets where the attributes the
black-box model works on may be different from how humans perceive the data.
Our proposed approach MAIRE does not have this requirement and hence is
readily applied to explain black-box models working on data from different
domains.

Model specific explainable methods are designed to explain the working
of a single or a class of models. Approaches like Guided Back Propagation [10],
CAM [11], and its extensions [12, 13, 14, 15] are applicable to architectures
involving Convolutional Neural Networks only. Specifically for deep learning
architectures, an attribution based technique, DeepLIFT [16] provides a set of
rules to assign contribution scores to every unit of a deep neural network. In
contrast, the MAIRE framework explains the output of any black-box model.

Models explainable by design consist of methods that propose new
explainable classifiers that are trained from scratch. Interpretable CNN [17]
uses mutual information to learn interpretable parts that are filtered through
predefined templates. A self-explaining architecture involving an autoencoder
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that determines representative prototypes clustered around inputs in a latent
space was proposed by Li et al [18]. In another approach, the convolutional layer
feature maps are used as latent representations that helps to localize regions of
the image that are similar to the prototypes [19, 20]. Models that explain the
output in terms of human interpretable rules have also been proposed [5, 21].
However, in contrast to the MAIRE framework, these models cannot be applied
to an already deployed model.

3. Methodology

3.1. Problem Statement

Let {xn, yn}Nn=1 be a set of N training examples, where xn ∈ RD is a data
point and yn ∈ Y is the associated label. For simplicity, let us assume that all
the attributes are continuous and are normalized to the range [0, 1] and that the
classification task is binary. The MAIRE framework can be easily extended for
discrete attributes and multi-class classification. Given a query data point x′q and

a classifier f : RD → Y, our objective is to explain the decision of the classifier
at x′q i. e. f(x′q). Prior literature suggests that explanations in the form of rules
defined on the values of the attributes are human interpretable [2, 5]. A simple
way to define these rules for continuous attributes is in terms of range on the
values. Thus, we define an explanation as E = {l, u}, where l, u ∈ RD represent
the lower and upper bounds of intervals such that li ≤ x′qi ≤ ui, ∀i ∈ {1, . . . , d}.

The Cartesian product of these intervals represents a hyper-cuboid denoted by
S(l,u). This is illustrated as a rectangle for the 2D dataset presented in Figure
1(a). Our objective is to find an explanation that has high coverage and satisfying
a certain threshold on precision. Coverage of an explanation E, Cov(l,u), is
defined as the fraction of data points that lie within the hyper-cuboid,

Cov(l,u) =
1

N

N∑
i=1

1(xi ∈ S(l,u)) (1)

where 1(A) is the indicator function that takes the value 1 if the argument A
is true. High coverage means that more data points are explained using the
hyper-cuboid.

Precision, Pre(l,u), is defined as the fraction of training instances that lie
within the hyper-cuboid representing the explanation E and whose classifier
predictions match with the classifier prediction of the query point,

Pre(l,u) =

∑N
i=1 1(f(xi) = f(x′q) and xi ∈ S(l,u))∑N

i=1 1(xi ∈ S(l,u))
(2)

The MAIRE framework allows for a user to define a minimum value P for the
precision of an explanation Pre(l,u). Thus the overall objective of the framework
is to find an explanation (or the hyper-cuboid) that maximizes the coverage,
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Figure 1: [Best viewed in color] Illustration of the explanation and the approximation to the
indicator function

while ensuring that the precision of the estimated explanation does not fall below
the threshold P i.e.,

argmax
{l,u}

Cov(l,u) s.t. Pre(l,u) ≥ P. (3)

The above optimization problem is challenging to solve due to the involvement
of the indicator function. For a binary classification setting, with P = 1, this
problem becomes the bichromatic rectangle problem, a widely studied combi-
natorial problem in computational geometry. Bichromatic rectangle problem
involves computing a rectangle containing maximum number of red points and
no blue points amongst the set containing n red points and m blue points in
d−dimensional space. Most of the results in this area hold for 2D [22, 23].
Further, the problem is NP-hard for arbitrary dimension [24]. Solving the above
problem even approximately is therefore important for many applications.

We propose a novel method to transform the coverage and precision functions
into differentiable approximations (with non-zero gradients), thereby making it
easier to optimize using gradient-based methods.

3.2. Approximations to Coverage and Precision

We first define the function Γ, which is an approximation to the indicator
function, as Γ(z) = c1σ(c2z) + c3(sgn(z)c4 + c5 where c1, c2, c3, c4, and c5 are
constants that determine the quality of the approximation, σ is the Sigmoid
function, and sgn(z) is the Signum function. The constant c1 is chosen to
scale down the sigmoid function so that, c1σ(c2z) takes values in a small range
(effectively modeling the horizontal lines of the indicator function, but still
retaining non-zero gradients). The constant c2 has a high value to model the
steep increase at z = 0 while making σ(c2z) flatter for z < 0 and z > 0. The

6



constants c4 and c5 are chosen so that (sgn(z)c4 + c5) is 1 when z > 0, 0.5
when x = 0 and 0 otherwise. c3 is chosen to provide a step at z = 0 such that
Γ(z) ∈ (0, 1). This makes Γ(z) piece-wise differentiable with non-zero gradients.
The behavior of Γ(z) is illustrated in Figure 1(b). Note that, Γ(z) = c1σ(c2z) if
z < 0, Γ(z) = c1σ(c2z) + c3 if z > 0, and Γ(z) = 0.5 if z = 0.

We can now approximate 1(x1 > x2) asG(x1, x2) = Γ(x1−x2) and 1(x1 ≥ x2)
as GE(x1, x2) = Γ(x1 − x2 + cl), where cl is a constant that has a low value
(close to 0). The approximation to the function 1(x1 and x2 . . . and xm) for
the logical operator ‘and’ is defined as A(x1, x2, . . . , xm) = Γ( 1

m

∑m
i=1 xi − ch),

where ch is a constant that has a high value (close to 1).
Let us define the functions a2j−1(l,u,x) = G(xj , lj) and a2j(l,u,x) = GE(uj , xj)

with j ∈ {1, . . . , D}. Then the approximation to the indicator function 1(x ∈
S(l,u)) can be defined as h(l,u,x) = A(a1(l,u,x), a2(l,u,x), . . . , a2D(l,u,x))
Note that h(l,u,x) should take a value close to 1 if the point x lies inside the
hyper-cuboid S(l,u), else should take a value close to 0. We can now define
approximate coverage and approximate precision as:

ˆCov(l,u) =
1

N

N∑
i=1

h(l,u,xi)

ˆPre(l,u) =

∑N
i=1 h(l,u,xi)(1− (f(xi)− f(x′q))

2)∑N
i=1 h(l,u,xi)

3.3. Accuracy of the Approximation

In this section, we theoretically bound the accuracy of our approximation
functions ˆCov and ˆPre. The accuracy of the approximation depends on the values
of the constants in the definition of Γ. Note that, by definition c4 = c5 = 0.5
and c3 = 1− c1. Thus we need to tune the parameters c1, ch, cl, and c2. Before
we bound ˆCov and ˆPre, we would like to make the following observation for the
function Γ(x) which is defined as Γ(x) = c1σ(c2x) + c3(sgn(x)c4 + c5).

Observation 1. When c4 = c5 = 0.5 and c3 = 1− c1, we have:

• If x > 0, Γ(x) = c1σ(c2x) + c3

• If x < 0, Γ(x) = c1σ(c2x)

• If x = 0, Γ(x) = 0.5

We first begin with bounding the term h(l, u, x). The following Lemma shows
h(l, u, x) is a good enough approximation for the indicator function for any poing
x ∈ Rd.

Lemma 3.1. Let c = c1
2 and ch > 1− c. If c < 1

4D , we have ∀xi:
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• If lj < xij ≤ uj ∀j = {1, 2, . . . , D}, we have:

h(l, u, x) ≤ 1 and

h(l, u, x) ≥ 1− c

i.e. for all points lying inside the hypercuboid, function h(·) is very close
to 1.

• If ∃k,m with k+m ≥ 1, such that xij ≤ lj for k attributes or xij > uj for
m attributes then:

h(l, u, x) ≤ c and

h(l, u, x) ≥ 0

i.e. for all points lying outside the hypercuboid, function h(·) is very close
to 0.

Proof. The proof considers four cases depending on the number of attributes
of a data point that lie between the lower bound and upper bound of the
hyperrectangle.
case 1: ∀j ∈ {1, 2, . . . , D}, lj < xij ≤ uj .

h(l, u, xi) = Γ

(∑D
j=1 Γ (xij − lj) +

∑D
j=1 Γ (uj − xij + cl)

2D
− ch

)

= Γ

(∑D
j=1(c1σ (c2 (xij − lj)) + c3)

2D
+

∑D
j=1(c1σ (c2 (uj − xij + cl)) + c3)

2D
− ch

)
(From Observation 1)

Let, t = c1

∑D
j=1 σ(c2(xij−lj))+

∑D
j=1 σ(c2(uj−xij+cl))

2D + c3 − ch, then using the fact
that σ(x) ≥ 0.5 if x > 0, we have:

t ≥ c1
2

+ c3 − ch

≥ 1− c1
2
− ch

> 0 (if ch + c1
2 < 1)

Thus, if ch+ c1
2 < 1, we have t > 0. Thus, we get, h(l, u, xi) = Γ(t) = c1σ(c2t)+c3

from Observation 1. Since, t > 0, c2t > 0 for any c2 > 0, we have, h(l, u, xi) ≥
c1
2 + c3 ≥ 1− c1

2 . Also, h(l, u, xi) = c1σ(c2t) + c3 ≤ c1 + c3 ≤ 1

Case 2: Let us assume that ∃k such that xij ≤ lj for k attributes i.e. point
lie outside or on the lower bound of hypercuboid for k ≥ 1 attributes and ∃m
such that xij > uj for m ≥ 1 attributes. Out of k attributes, let k1 attributes
have xij = lj and k − k1 attributes xij < lj . Then, we have:

• For all k1 attributes: Γ(xij − lj) = 0.5
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• For k − k1 attributes:Γ(xij − lj) = c1σ(c2(xij − lj)) ≤ c1

• For D − k attributes: Γ(xij − lj) = c1σ(c2(xij − lj)) + c3 ≤ 1

• For all m attributes: Γ(uj − xij + cl) = c1σ(c2(uj − xij + cl)) ≤ c1

• For D −m attributes: Γ(uj − xij + cl) = c1σ(c2(uj − xij + cl)) + c3 ≤ 1

We get,

h(l, u, xi)

= Γ

(
0.5k1 +

∑k−k1
j=1 c1σ(c2(xij − lj))

2D
+

∑D
j=k+1((c1σ(c2(xij − lj)) + c3)

2D

+

∑m
j=1 c1σ(c2(uj − xij + cl)

2D
+

∑D
j=m+1 c1σ(c2(uj − xij + cl) + c3

2D
− ch

)

Let, h(l, u, xi) = Γ(t) i.e. consider the entire term in Γ expression to be t then:

t ≤0.5k1 + (k − k1)0.5c1 + (D − k)(c1 + c3)

2D
+

0.5mc1 + (D −m)(c1 + c3)

2D
− ch

t ≤0.5k1(1− c1) + 0.5kc1 + 0.5mc1 + 2D − k −m
2D

− ch
(1 ≤ k +m ≤ 2D, k1 ≤ D, and 0 < c1 < 1)

≤0.5D(1− c1) + 0.5c1D

2D
+

2D − 1

2D
− ch

≤ 1

4D
+

2D − 1

2D
− ch ≤

4D − 1

4D
− ch

Thus, when ch >
4D−1
4D , then we get t < 0. In this case, we have: h(l, u, xi) =

Γ(t) = c1σ(c2t) ≤ c1
2 . From Case 1, we have c1

2 < 1−ch. Substituting ch >
4D−1
4D ,

we get, c1
2 < 1

4D . Thus, if any of the attribute of the example lies outside the
boundary, we get h(l, u, xi) ≤ 1

4D and if all the attributes lie inside the boundary,

we get h(l, u, xi) ≥ 4D−1
4D

Thus, choosing c1 and ch according to the lemma ensures that h is a good
approximation to the indicator function 1(x ∈ S(l,u)). Further, we can arrive
at the following important result that bounds the difference between Cov and
the corresponding approximation ˆCov.

Theorem 3.2. If c1 <
1
2D and ch >

4D−1
4D , then(

4D − 1

4D

)
Cov ≤ ˆCov ≤ 1

4D
+

(
4D − 1

4D

)
Cov
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Proof. Let the actual coverage from the hypercuboid (l, u) be k
N i.e.

∑N
i=1 I(xi ∈

S(l, u)) = k. Then:

ˆCov =
1

N

N∑
i=1

h(l, u, xi)

=
1

N

∑
xi∈S(l,u)

h(l, u, xi) +
1

N

∑
xi /∈S(l,u)

h(l, u, xi)

≥ 1

N
k(1− c) (From Lemma 3.1)

≥ Cov
(

4D − 1

4D

)
(c < 1

4D )

Also,

ˆCov =
1

N

∑
xi∈S(l,u)

h(l, u, xi) +
1

N

∑
xi /∈S(l,u)

h(l, u, xi)

≤ k

N
+
N − k
N

c From Lemma 3.1

≤ c+ Cov (1− c)

≤ 1

4D
+ Cov

(
4D − 1

4D

)
(c < 1

4D )

The above result is interesting not only because it bounds the approximate
coverage in terms of true coverage but it also suggests that as the features
(dimension) increases, approximate coverage becomes closer to the true coverage.
We also verify this from our experiments in Table 2.

We also have additional result for the bounds on the approximate precision.

Theorem 3.3. ˆPre ≤ Pre
(

1 + 1
Cov

(
4D

4D−1

))
. Thus, when algorithm returns

a hypercuboid with ˆPre ≥ P then Pre ≥ 1

(1+ 1
Cov ( 4D

4D−1 ))
P

Proof. Let, k points be inside the hyper-cuboid, out of k points, q points satisfy
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Figure 2: Comparison of Cov, ˆCov, Pre, ˆPre for a 1D case for x′q = [0.5] where the interval
[0.3, 0.7] has positive class label.

f(xi) = f(xq) and m points satisfy f(xi) = f(xq) in total.

ˆPre =

∑
xi=xq

xi∈S(l,u)
h(l, u, xi) +

∑
xi=xq

xi /∈S(l,u)
h(l, u, xi)∑

xi∈S(l,u) h(l, u, xi) +
∑
xi /∈S(l,u) h(l, u, xi)

≤ q + (m− q)c
(1− c)k

≤ Pre+
m

k

(
c

1− c

)
≤ Pre+

qN

k2

(
4D

4D − 1

) (
M
N ≤

q
k and c < 1

4D

)
≤ Pre+

Pre

Cov

(
4D

4D − 1

)

In summary, when the dimension of the dataset increases, c1 ≈ 0 and
ch ≈ 1, and the difference between analytical coverage and the corresponding
approximation tends to 0. The accuracy of the approximation was further
studied experimentally using a synthetic 1-D dataset. Figure 2 presents the
plots of the analytical coverage, precision, and the corresponding estimates
for a synthetic 1D dataset with [0.3, 0.7] representing the positive class. The
query point is 0.5. It is evident from the figures the actual values and their
approximations match quite well. Even though the theoretical bounds depend
on the dimensionality of the data, we conclude from the experiments that the
values c1 = 0.4, c2 = 15, c3 = 0.6, c4 = 0.5, c5 = 0.5, cl = 0.02, and ch = 0.8 work
well for a wide variety of datasets and do not have to be tuned for a new dataset.
We use these values for all the experiments performed in the paper.

4. Optimization to Estimate the Explanation

Our next objective is to formulate the optimization problem in the MAIRE
framework for estimating the explanation. In the simplest case, we want to find
the optimal values for the parameters l and u that maximize coverage while
maintaining a minimum precision P . The user sets this lower bound on precision.
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It is assumed that any value of Pre(l,u) above P is acceptable. If the current
value of precision is greater than the threshold, we would only like to maximize
the coverage. If the analytical precision becomes less than the specified threshold,
then in addition to maximizing coverage, the MAIRE framework also maximizes
the precision ˆPre. This component is weighted by a constant factor λ1 to signify
the importance of increasing the precision at the cost of reducing the coverage.
If λ1 is high, ˆPre will increase whenever the precision is less than the threshold.
Thus the overall objective function L(l,u) is defined as:

L(l,u) = ˆCov(l,u) + λ1 ˆPre(l,u)(1 + sgn(P − Pre(l,u)))

Note that the analytical precision value Pre(l,u) is only required to activate
the approximation term. The objective function L(l,u) is maximized subject
to two constraints. First, the lower and upper bound vectors l and u need to
be in [0, 1]D. As Γ(z), the approximator to the indicator function, never truly
achieves a zero gradient, if the explanation is unbounded, then the optimization
procedure might never converge as the explanation could keep expanding in all
directions indefinitely. This constraint is implemented by clipping the values of l
and u at 0 and 1 respectively after every iteration. The second constraint is that
the explanation finally generated must contain the query instance: lj ≤ x′qj ≤
uj ,∀j = 1, . . . , D. The optimizer focuses on these constraints, only when they are
not satisfied. When the constraints are satisfied, the optimizer only maximizes
the coverage. This is achieved by using the ReLU function on the difference
lj − x′qj and x′qj − uj . These constraints are added to the final optimization
function with a weighting constant λ2 (can be viewed as the Lagrange multiplier
used for constrained optimization) that signifies the penalty on the objective
when the constraint is not satisfied. Thus, the final objective function in the
MAIRE framework that is maximized with respect to the parameters l and u is
defined as follows

arg max
l,u

L(l,u)− λ2

 D∑
j=1

ReLU(lj − x′qj) +

D∑
j=1

ReLU(x′qj − uj)

 (4)

Adam optimizer [25] is used for this non-linear and non-convex optimization
with default parameter values for obtaining the results. On an average across
the datasets, with a learning rate of 0.01, the Adam optimizer required around
2500 iterations to converge.

4.1. Greedy Attribute Elimination for Human Interpretability

The explanations created might still be too large (containing non-trivial
bounds for many dimensions) for a human to understand. We reduce the size
of the generated explanations using a greedy elimination procedure to improve
human interpretability. An attribute whose removal results in a maximum
increase in the coverage while retaining precision above the user-defined threshold
is eliminated. If no such attribute exists, then the attribute whose removal
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reduces the precision by the minimum extent is excluded from the explanation.
Attributes are removed greedily at least for D − K times, where K is the
maximum number of attributes that can be part of an explanation as set by the
user. Note that once we get the the hypercuboid S(l, u), the greedy selection of
a single feature will take O(D) time because computing coverage and precision
for a given hypercuboid with one feature removal will take constant time to
compute.

4.2. Local to Global Explanations

To gain a broader understanding of how the classification model works
on the entire dataset, we would need to generate multiple explanations for a
comprehensive set of instances. This is an infeasible task due to the significant
computational complexity. Instead of creating a global explanation by combining
local explanations of randomly selected instances, we identify an optimal set of
local explanations that can approximate the global behavior of the classification
model.

The process of creating a global explanation is started by considering a
moderately sized subset of the training set (chosen randomly). Local explanations
are generated using the MAIRE framework for all the instances in this set. A
subset of these explanations is selected greedily, such that every new local
explanation added to the global explanation leads to the maximum increase in
the overall coverage of the global explanation. We call this procedure Maximum
Symmetric Difference (MSD Select) as the local explanation that results in
the maximum symmetric difference with the current estimate of the global
explanation is added to the global explanation.

The global explanation can be viewed as a new rule-based classifier f ′(x).
Given a test data point, several local explanations that are part of f ′(x) can be
applied to predict the class label. We propose to use the majority class label
among the applicable explanations for generating the class label.

4.3. Extension to Discrete Attributes

The MAIRE framework is directly applicable on ordered discrete attributes.
The final explanation is a set of consecutive discrete values. The generated
explanation is slightly modified for ordered discrete attributes by changing li to
the smallest discrete value that is greater than or equal to li and changing ui to
the largest discrete value that is lesser than or equal to ui. This modification
does not affect coverage or precision and improves readability. In the case of a
categorical attribute (unordered), finding intervals is not meaningful. We instead
convert all categorical attributes to their equivalent one-hot encoding. The
transformed boolean representation is treated as ordered discrete attributes. If
an explanation contains both the values of a boolean attribute, the corresponding
attribute is dropped from the explanation. If only the value one is selected, then
the value of the unordered attribute in x′q is included in the explanation. Due
to the enforcement of the second constraint, selection of only 0 is not possible as
x′q has the value 1 for the corresponding boolean attribute.
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5. Experiments and Results

Code for the experiments mentioned is available at https://github.com/

anonymousID2242/code-submission. The MAIRE framework is tested on a
wide variety of synthetic and real-world datasets. The instances for all synthetic
datasets are sampled from the interval [0, 1]. For these datasets, a simple shape
was chosen for positive class (f(x) = 1) region. Everywhere else, f(x) is 0. Using
simple shapes allows for easy visualization of the explanations generated by the
model.

5.1. Synthetic Datasets

Figure 3 illustrates the explanations generated by the MAIRE framework
on various synthetic datasets. In all of these figures, the blue regions represent
f(x) = 1, the red rectangle marks the final explanation generated by the
framework and the black point refers to the query point, i.e., x′q. The lighter
colors are used for marking regions that are not included in the explanations. In
Figures 3 (a)-(f), the non-blue regions represent f(x) = 0. In Figures 3 (g) and
(h), the red regions represent f(x) = 0 and non-blue regions are not included in
the instance space, i.e. the instance space is discretized. The attribute along
axis 1 is discretized to take 5 values - { 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6}.

Figures 3(a) and (b) represents the MAIRE explanations on a rectangular
decision boundary with different query points. We observe that in Figure 3(a),
because x′q belongs to f(x) = 1 region, the explanation completely covers the
rectangle as this is the largest region that includes x′q and has a high precision.
Similarly, in Figure 3(b), x′q belongs to f(x) = 0 region. So, the explanation
generated is correspondingly the largest rectangle that includes x′q such that
most of the region has f(x) = 0, thus having a high precision. An interesting
observation here is that the framework has two potential options - horizontally
cover the whole range or vertically cover the whole range. We want to point
out that for the MAIRE framework, these correspond to two local maxima.
Vertical cover has a larger area and so, is the global maxima. We observe that
the MAIRE explanation corresponds to the vertical cover. However, it could
have very well chosen the other local maxima, i.e., the horizontal cover instead.
This is an artifact of any gradient-based optimization routine.

Figures 3(c) and (d) represent the MAIRE explanations on a circular decision
boundary with different values of the precision threshold P . In Figure 3(c), as P
was 0.80, we observe that the final explanation almost completely circumscribes
the circle. On the other hand, in Figure 3(d), as P was 0.95, the explanation
generated is smaller in size as this size has lesser percentage of points with
f(x) = 0.

Figures 3(e) and (f) compare the explanations generated by the MAIRE
framework when the second constraint (i.e., the explanation must contain x′q) is
active and inactive. In this set of experiments, there are two f(x) = 1 regions.
One is marked in blue (the blue rectangle). Other than that, f(x′q) is also 1.

In the Figure 3(e), the constraint was inactive (with λ2 = 0). We observe
that the final explanation does not contain x′q. This is simply because the
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(c) P = 0.80
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(d) P = 0.95
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(e) Second Constraint Off (λ2 = 0)
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(f) Second Constraint On (λ2 = 5)
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(g) f(x′q) = 1
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(h) f(x′q) = 0

Figure 3: [Best viewed in color]MAIRE Explanations for Synthetic Datasets (a) and (b) for
Rectangular Decision Boundaries, (c) and (d) for Circular Decision Boundaries, (e) and (f)
Effect of the Second Constraint (with x′q = [0.250, 0.500]), (g) and (h) for Synthetic Datasets
with Discrete Attributes.
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framework maximizes the precision by minimizing the thin f(x) = 0 strip. In
the Figure 3(f), the constraint was active (with λ2 = 5). We observe that the
final explanation contains x′q. Here, the entire vertical range was not covered
because that would have led to a precision lower than the threshold P .

Figures 3(g) and (h) represents the MAIRE explanations for a synthetic
dataset where one attribute has an ordered discrete domain and the other has
a continuous domain. In the Figure 3(g), f(x′q) = 1 and so, the corresponding
blue regions from the two adjacent strips were selected. While in the Figure 3(h),
f(x′q) = 0 and so, the corresponding red strip was selected as the explanation.

5.2. Tabular Datasets

We conducted experiments to study the quality of the approximations to
coverage and precision using the tabular datasets. Explanations for 100 randomly
sampled data points for each of the datasets were computed. The true coverage
and precision were determined for each explanation as well as the values for
the corresponding approximations. The mean squared error between the true
and approximate values averaged over 100 data points for the three datasets is
presented in Table 2. It can be noticed that difference in the true values and the
corresponding approximations is not significant. Further this difference reduces
as the number of attributes increases supporting our theoretical analysis. The
German credit dataset has the highest number of attributes (20), followed by
Adult (14), and Abalone (8) data sets.

The MAIRE framework is evaluated on three tabular datasets - Adult,
Abalone, and German credit datasets. A three-layer neural network (containing
150, 100, and 50 nodes in each layer with ReLU activation) serves as the black-box
model (though any classifier can serve the purpose). The datasets are divided
into train and test splits according to the ratio of 3:1. The neural network
is trained for 100 epochs. The test accuracy of the black box model for the
Adult, Abalone, and German credit datasets is 81.52%, 87.76%, and 79.28%,
respectively. A sample of the explanations generated by MAIRE for the three
datasets is presented in Table 1.

We compare the quality of the global explanations extracted from MAIRE
against other model-agnostic rule-based explanation methods capable of com-
posing global explanations, namely; LIME and Anchors. LIME and Anchor
are applicable only on discrete datasets. Hence, for a fair comparison, we have
used the same discretized version of the dataset across all the models, including
MAIRE. The precision threshold is set at 0.95 for all the datasets. We compare
the sub-modular pick (SP) versions of LIME and Anchor against the MSD Select
of MAIRE. Coverage over unseen test instances in the global explanation is used
as the metric for comparison. Figure 5 a-c presents the results averaged over
five trials on the three tabular datasets. MSD-MAIRE consistently performs
better than SP-LIME and SP-Anchor, achieving the maximum coverage using a
lesser number of explanations. Thus MSD-MAIRE has higher coverage at the
same precision threshold. It is also observed that SP-LIME performs better than
SP-Anchors on the German-credit dataset.
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(a) (b) (c)

Figure 4: [Best viewed in color] Change in test precision as a function of number of local
explanations included in the global explanation Test Coverage for (a) Adult (b) Abalone (c)
German-Credit datasets for SP-LIME, SP-Anchors and MSD-MAIRE.

We further conduct experiments on the original non-discretized version of the
tabular datasets only using MAIRE. We compare the global explanation created
by MSD-MAIRE against randomly selected local explanations - RP-MAIRE.
The results on the adult dataset are presented in Figure 5d. Similar trends were
observed for the Abalone and German-credits datasets.

Adult Abalone German credit
MSD Coverage 0.0015 0.0004 8.552e-05
MSD Precision 0.3217 0.1265 0.0985

Table 2: Mean Square difference between Cov and ˆCov, Pre and ˆPre for adult, abalone and
German credit datasets averaged over 100 data points.

Figures 4 (a-c) compare the change in precision as the local explanations are
incrementally added to the global explanation for the three tabular datasets.
It is observed that the proposed framework results in a minimal reduction in
precision consistently across the three datasets. The observation is in line with
the mechanism the MAIRE framework employs to create a global explanation
ensuring a minimum reduction in precision. LIME shows the maximum decrease
in precision.

Figures 5(a-c) compares the performance of the MAIRE framework for both
the discretized and non-discretized versions of the tabular datasets. We observe
that the coverage of the global explanation for MSD-MAIRE for both versions of
the datasets is comparable for Adult and Abalone datasets. However, we notice a
significant improvement in the performance of MAIRE on the discretized version
of the German-Credit dataset. Further investigation is required to understand
this anomaly.

5.3. Text Datasets

The MAIRE framework is evaluated on two text datasets- IMDB movie
reviews and a reduced 20-Newsgroups dataset (containing the data belonging to
the four classes - medicine, graphics, Christian, and atheism). We illustrate the
model-agnostic capability of the MAIRE framework by training a decision forest
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(a) (b)

(c) (d)

Figure 5: [Best viewed in color]Change in test coverage as a function of number of local
explanations included in the global explanation Test Coverage for (a) Adult (b) Abalone
(c) German-Credit Data sets (d) Comparison of discretized vs non-discretized version of the
datasets for RP-MAIRE and MSD-MAIRE

classifier for the IMDB dataset and a deep learning classifier for the Newsgroup
dataset. The datasets are divided into train and test splits in the ratio of 4:1. A
bag of words representation was used to characterize the reviews and documents.

In the case of IMDB movie reviews, we considered a random forest with
500 trees as our black-box model to be explained. In the case of 20-Newsgroup
dataset, we have only considered output labels ‘medicine,’‘graphics,’ ‘Christian,’
and ‘atheism’ as it is not feasible to present 20 labels to a human subject. We
use a four-layer network consisting of two hidden layers with 512 nodes each,
having ReLU activation, and dropout probability set to 0.3 among layers, and
softmax activation at the output layer as the base classifier. The model is trained
for 30 epochs using Adam optimizer. The test classification accuracy on the two
datasets is 87.3% and 81.2%, respectively.

We use ten data points (three medicine, three atheism, two graphics, two
Christian) and generated explanations for each review using 5 different approaches
mentioned in the paper. For generating the MAIRE explanation, the review
was converted into a bag of words vector, and the sample points for computing
Cov, ˆCov, Pre, and ˆPre were taken by randomly flipping bits in the bag of words.
The words are ranked based on the effect they have on the classification using
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Method LIME SHAP Anchor L2X MAIRE

IMDB 0.66 0.56 0.62 0.70 0.67

Newsgroup 0.66 0.64 0.70 0.69 0.75

Table 3: Human accuracy of various model agnostic approaches on IMDB and Newsgroup
datasets.

Greedy Attribute Elimination. Tables 5 and 6 present explanations generated
by various explanatory models for both correct and incorrect classifications by
the base classifier.

We conduct human subject experiments on the explanations for ten random
test instances for each of the datasets to compare MAIRE against other model-
agnostic approaches, namely; LIME and Anchors and feature ranking approaches,
namely; L2X, and SHAP. We employ the experimental protocol of Chen et al., [6]
for computing human accuracy. We assume that the explanations, in terms of the
keywords (maximum of 10), convey sufficient information about the sentiment
or class label of the document. We ask human subjects to infer the sentiment
or the class label of the text when provided with only the explanations. The
explanations from the different models and the various instances of a dataset
are randomized. The final label for each document is averaged over the results
of 25 human annotators. We measure the accuracy of the label predicted by the
human annotator against the output of the model. The subjects are also allowed
to label an explanation “can not infer” if the explanation is not sufficiently
informative. We use the Human Accuracy metric for comparing the different
approaches and treat the instances labeled as “can not infer” as misclassified
instances.

The results are reported in Table 3. The human judgment given only ten
words aligns best with the model prediction when the words are chosen from L2X
and MAIRE for the IMDB and Newsgroup datasets, respectively. While on the
binary classification dataset (IMDB), L2X is better than MAIRE by around 3%,
on the more challenging 4-way classification dataset (Newsgroup) MAIRE leads
over L2X by 6%. Overall the result indicates the competitiveness of MAIRE
against other feature ranking approaches. It is also evident that MAIRE has
significantly higher human accuracy over the other model-agnostic approaches
LIME and Anchors. Table 4 shows the results of the various models for two
examples.

5.4. Image Datasets

We use the MAIRE framework to explain the classification results of the
VGG16 model [26]. For explaining the model output, the image is segmented
into superpixels and each superpixel is treated as a Boolean attribute. x′q is
taken to be a vector of 1 indicating the presence of all superpixels in the image.
Sample points for calculating Cov, ˆCov, Pre and ˆPre are computed by flipping
the bits of x′q randomly (i.e. randomly removing some superpixels). In the
final explanation, the superpixels that covered both the values {0, 1} of the
corresponding Boolean attributes are removed as these superpixels do not affect
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Review/Document LIME SHAP Anchors L2X MAIRE

I have to say that this miniseries was the
best interpretation of the beloved novel
“Jane Eyre”. Both Dalton and Clarke are
very believable as Rochester and Jane. I’ve
seen other versions, but none compare to
this one. The best one for me. I could never
imagine anyone else playing these charac-
ters ever again. The last time I saw this
one was in 1984 when I was only 13. At
that time, I was a bookworm and I had just
read Charlotte Bronte’s novel. I was com-
pletely enchanted by this miniseries and I
remember not missing any of the episodes.
I’d like to see it again because it’s so good.
:-)

best, com-
pletely,
believ-
able, 13,
say, just,
imagine,
good, read,
remember

beloved,
none,
interpreta-
tion, good,
novel,
missing,
remember,
best, read,
imagine

believable
remember,
best, novel

imagine,
interpre-
tation,
best good,
novel, just,
remem-
ber, read,
characters,
believable

enchanted,
best, inter-
pretation,
remember,
good, be-
lievable,
novel,
imagine,
beloved,
com-
pletely

In article 47974@sdcc12.ucsd.edu—
wsun@jeeves.ucsd.edu (Fiberman) writes:
Is erythromycin effective in treating
pneumonia? It depends on the cause of
the pneumonia. For treating bacterial
pneumonia in young otherwise-healthy
non-smokers, erythromycin is usually
considered the antibiotic of choice, since it
covers the two most-common pathogens:
strep pneumoniae and mycoplasma
pneumoniae.

cause,
treat-
ing, edu,
common,
effective,
healthy,
usually,
antibiotic,
bacterial,
non

healthy,
writes,
common,
cause,
effective,
young,
pneu-
moniae,
choice,
treating,
cover

pneumonia,
healthy,
antibiotic

cause,
treating,
antibi-
otic, edu,
young,
covers,
bacterial,
pathogens,
choice,
consid-
ered,

common,
bacterial,
covers,
young,
pathogens,
healthy,
usually,
smokers,
cause,
pneumo-
niae

Table 4: Sample Explanations for documents in the IMDB and Newsgroup Dataset.
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Figure 6: [Best viewed in color]Results on the beagle image (a) Original Image (b) Explanation
Generated (c) Heat Map (d) Confidence Score as more number of Superpixels are Removed
(RSR = Random Superpixels Removed, MSR = MAIRE Superpixels Removed) (e) Confidence
Score as more number of Superpixels are Removed (the removal order is from most important
to least as given by Greedy Attribute Elimination)

the decision of the classifier. Figures 6 (a-c) show the explanation generated
by the MAIRE framework and the heat map of the explanation (generated by
ordering the superpixels chosen in the local explanation using Greedy Attribute
Elimination) for a sample image (beagle). The VGG model has high confidence
in its prediction for this image.

We first validate the performance of the MAIRE framework by measuring the
classifier confidence when random superpixels are removed (RSR) and when the
superpixels picked by the MAIRE framework for the explanation are removed
(MSR) from the original image. The results of this experiment are presented
in Figure 6(d). It is observed that the decrease in the classifier confidence on
the removal of superpixels picked by the MAIRE framework is significantly
larger than randomly selecting a superpixel. This illustrates that the MAIRE
framework does indeed select the superpixels that have a big impact on the
classifier.

In the second experiment, we only pick the superpixels selected by the
greedy algorithm in the MAIRE framework. We iteratively remove the selected
superpixels in the decreasing order of importance as estimated by the greedy
algorithm, while also computing the classifier confidence. Our hypothesis is that
if the greedy algorithm does indeed pick only important superpixels, then we
would expect a sharp drop in the classifier confidence when the initial set of
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Figure 7: [Best viewed in color] Results on the bluetick image (a) Original Image (b) Explanation
Generated (c)Heat Map (d) Confidence Score as more number of Superpixels are Removed
(RSR = Random Superpixels Removed, MSR = MAIRE Superpixels Removed) (e) Confidence
Score as more number of Superpixels are Removed (the removal order is from most important
to least as given by Greedy Attribute Elimination)

superpixels are removed from the image. Figure 6(e) presents the results for the
beagle image. We observe that by removing the top 4 superpixels selected by
the MAIRE framework, the classifier confidence drops to less than 0.5.

The Figure 7 shows the explanation generated by the MAIRE framework
and heat map of the explanation (generated by ordering the superpixels chosen
in the local explanation using Greedy Attribute Elimination) for the bluetick
image. The VGG model has high confidence in its prediction for this image as
well. The decrease in the classifier confidence (Figure 7(d)) with the removal of
superpixels picked by the MAIRE framework is more significant than randomly
selecting a superpixel. This also illustrates that the MAIRE framework does
indeed select the superpixels having a significant impact on the classifier. We
also observe that by removing the top 2 superpixels selected by the MAIRE
framework, the classifier confidence drops to less than 0.5 for the bluetick image.
It is interesting to note that the images in Figures 7(b) and 7(c) show that
the MAIRE framework selected superpixels mostly from the background in the
bluetick image. Surprisingly, the VGG16 model classified the image, containing
only the superpixels selected by the MAIRE framework for the bluetick image,
correctly with the confidence of 0.953. Further, when we remove the superpixel
containing the background snow, the VGG16 classifier confidence drops to 0.007.
This indicates that the VGG16 network is focusing on perhaps incorrect regions
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of the image. The MAIRE framework is effective at detecting such wrong
correlations learned by the machine learning model.

5.5. Comparison Against Decision Trees

(a) (b) (c)

(d) (e) (f)

Figure 8: (a), (b), (c) Precision of MAIRE and Decision Tree for Adult, Abalone and German
Credit datasets respectively, (d), (e), (f) Coverage of MAIRE and Decision Tree for for Adult,
Abalone and German Credit datasets respectively

The MAIRE framework generates rules that are similar to explanations
created by a rule-learner such as a decision tree. We compare the precision (also
referred to as fidelity in rule-learning literature) and interpretability of the two
methods. Interpretability is measured in terms of the length of the number of
antecedents in a rule generated by the explanatory model. A large number of
conditions in the if-then-else rule makes it difficult for a human to interpret the
explanation.

We use all the three tabular datasets and a neural network as a black-box
model for the comparison. A global explanatory model is extracted using 200
training data points from both MAIRE and a decision tree. We learn different
global explanations for varying values of the parameter K that refers to the
number of conditions in the MAIRE explanation as well as the depth of the
decision tree. The precision of the global explanation for each value of K is
measured on an unseen test set. A global explanation may not predict the
black-box model’s output for some data points due to limited coverage. The
union of such data points not explained by either of the global explanation
models is left out when computing precision for both the models. The result of
this experiment is presented in Figure 8. It is observed that MAIRE has higher
precision than decision trees for almost all values of K. Further, for small K,
the coverage of both the models is similar. This indicates that MAIRE is able
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to generate better explanations in terms of both precision and interpretability
than a decision tree.

6. Summary

In this paper, we propose a novel model-agnostic interpretable rule extraction
(MAIRE) framework for explaining the decisions of black-box classifiers. The
framework quantifies the goodness of the explanations using coverage and preci-
sion. We propose novel differentiable approximations to these measures that are
then optimized using the gradient-based optimizer. The flexible framework can
be applied to any classifier for a wide variety of datasets. We test the framework
on multiple datasets (tabular, text, and image) and show that the generated
explanations are competitive to state-of-the-art approaches.
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Review/Document LIME SHAP Anchors L2X MAIRE

model prediction : negative, True la-
bel : negative
Encouraged by the positive comments
about this film on here I was looking for-
ward to watching this film. Bad mistake.
I’ve seen 950+ films and this is truly one
of the worst of them - it’s awful in almost
every way: editing, pacing, storyline, ’act-
ing,’ soundtrack (the film’s only song - a
lame country tune - is played no less than
four times). The film looks cheap and nasty
and is boring in the extreme. Rarely have
I been so happy to see the end credits of
a film. The only thing that prevents me
giving this a 1-score is Harvey Keitel - while
this is far from his best performance he at
least seems to be making a bit of an effort.
One for Keitel obsessives only.

worst,
Bad, aw-
ful, lame,
boring,
best,
cheap, act-
ing, thing,
effort

mistake,
best, lame,
pacing,
extreme,
credits,
obsessives,
far, cheap,
happy

bad, story-
line, nasty,
boring

credits,
worst,
comments,
awful,
cheap,
nasty,
mistake,
extreme,
lame,
effort

Worst, aw-
ful, lame,
boring,
mistake,
less, bad,
cheap,
obsessives,
extreme

model prediction : graphics, True la-
bel : graphics
I am looking for EISA or VESA local
bus graphic cards that support at least

—1024x786x24 resolution. I know Matrox
has one, but it is very —expensive. All the
other cards I know of, that support that

—resoultion, are striaght ISA. What about
the ELSA WINNER4000 (S3 928, Bt485,
4MB, EISA), or the Metheus Premier-4VL
(S3 928, Bt485, 4MB, ISA/VL) ? —Also
are there any X servers for a unix PC
that support 24 bits? As it just hap-
pens, SGCS has a Xserver (X386 1.4) that
does 1024x768x24 on those cards. Please
email to info@sgcs.com for more details. -
Thomas

VESA,
PC, look-
ing, 24,
unix,
email,
resolution,
graphic,
info, sup-
port

cards,
resoultion,
support,
unix, bus,
details,
com, bits,
Metheus,
servers

expensive,
cards,
support

support,
details,
expensive,
cards, bits,
servers,
info, Pre-
mier,
resolution,
bus

Bus, Pre-
mier,
graphic,
Metheus,
support,
unix, ex-
pensive,
details,
ELSA,
com

Table 5: Sample Explanations for correctly classified documents in the IMDB and Newsgroup
Dataset.
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model prediction : negative, True la-
bel : positive
this movie gets a 10 because there is a lot
of gore in it.who cares about the plot or the
acting.this is an Italian horror movie people
so you know you can’t expect much from
the acting or the plot.everybody knows fulci
took footage from other movies and added
it to this one.since i never seen any of the
movies that he took footage from it didn’t
matter to me.the Italian godfather of gore
out done himself with this movie.this is one
of the goriest Italian movies you will ever
see.no gore hound should be without this
movie in their horror movie collection.buy
this movie no matter what it is a hore-
hound’s dream come true.

Plot,
acting,
didn, true,
horror,
collection,
dream,
footage,
gets,
movie

horror,
cares,
goriest,
footage,
never,
expect,
hound,
fulci,
matter,
plot

horror,
plot,
hounds,
matter

True,
cares,
collection,
dream,
never,
acting,
gore, fulci,
matter,
expect

Matter,
acting,
horror,
dream,
plot,
movie,
footage,
collection,
matter,
cares

model prediction : christian, True la-
bel : atheism
Pardon me if this is the wrong newsgroup.
I would describe myself as an agnostic, in so
far as I’m sure there is no single, universal
supreme being, but if there is one and it is
just, we will surely be judged on whether
we lived good lives, striving to achieve that
goodness that is within the power of each
of us. Now, the complication is that one of
my best friends has become very fundamen-
talist. That would normally be a non-issue
with me, but he feels it is his responsibility
to proselytize me (which I guess it is, ac-
cording to his faith). This is a great strain
to our friendship. I would have no problem
if the subject didn’t come up, but when
it does, the discussion quickly begins to
offend both of us: he is offended because
I call into question his bedrock beliefs; I
am offended by what I feel is a subscrip-
tion to superstition, rationalized by such
circular arguments as ’the Bible is God’s
word because He tells us in the Bible that
it is so.’ So my question is, how can I con-
vince him that this is a subject better left
undiscussed, so we can preserve what is
(in all areas other than religious beliefs) a
great friendship? How do I convince him
that I am ’beyond saving’ so he won’t try?
Thanks for any advice.

Bible,
faith, be-
liefs, just,
religious,
good,
word,
feel, lives,
Thanks

universal,
lives, faith,
power,
religious,
offend, su-
perstition,
convince,
beliefs,
complica-
tion

Superstition,
Bible,
faith

Religious,
respon-
sibility,
compli-
cation,
universal,
subject,
strain,
power,
circular,
Subscrip-
tion,
convince

Strain,
faith, God,
super-
stition,
saving,
great,
good,
beliefs,
religious,
Bible

Table 6: Sample Explanations for incorrectly classified documents in the IMDB and Newsgroup
Dataset.

26



References

[1] M. T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you?: Explaining
the predictions of any classifier, in: Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.

[2] M. T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-precision model-
agnostic explanations, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

[3] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini,
Factual and counterfactual explanations for black box decision making,
IEEE Intelligent Systems (2019).

[4] H. Lakkaraju, E. Kamar, R. Caruana, J. Leskovec, Faithful and customizable
explanations of black box models, in: Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, 2019, pp. 131–138.

[5] H. Lakkaraju, S. H. Bach, J. Leskovec, Interpretable decision sets: A joint
framework for description and prediction, in: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
2016, pp. 1675–1684.

[6] J. Chen, L. Song, M. J. Wainwright, M. I. Jordan, Learning to explain: An
information-theoretic perspective on model interpretation, arXiv preprint
arXiv:1802.07814 (2018).

[7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek,
On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation, PloS one 10 (7) (2015) e0130140.

[8] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model pre-
dictions, in: Advances in neural information processing systems, 2017, pp.
4765–4774.

[9] R. Guidotti, A. Monreale, S. Matwin, D. Pedreschi, Black box explanation
by learning image exemplars in the latent feature space, ECML, PKDD
(2019).

[10] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for
simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806 (2014).

[11] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep fea-
tures for discriminative localization, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2921–2929.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra,
Grad-cam: Visual explanations from deep networks via gradient-based
localization, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 618–626.

27



[13] A. Chattopadhyay, A. Sarkar, P. Howlader, V. N. Balasubramanian, Grad-
cam++: Generalized gradient-based visual explanations for deep convo-
lutional networks, in: 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, 2018, pp. 839–847.

[14] H. Wang, M. Du, F. Yang, Z. Zhang, Score-cam: Improved visual ex-
planations via score-weighted class activation mapping, arXiv preprint
arXiv:1910.01279 (2019).

[15] S. Desai, H. G. Ramaswamy, Ablation-cam: Visual explanations for deep
convolutional network via gradient-free localization, in: The IEEE Winter
Conference on Applications of Computer Vision, 2020, pp. 983–991.

[16] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features
through propagating activation differences, in: Proceedings of the 34th
International Conference on Machine Learning-Volume 70, JMLR. org, 2017,
pp. 3145–3153.

[17] Q. Zhang, Y. Nian Wu, S.-C. Zhu, Interpretable convolutional neural
networks, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8827–8836.

[18] O. Li, H. Liu, C. Chen, C. Rudin, Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions, in:
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[19] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, J. K. Su, This looks like
that: deep learning for interpretable image recognition, in: Advances in
Neural Information Processing Systems, 2019, pp. 8928–8939.

[20] P. Hase, C. Chen, O. Li, C. Rudin, Interpretable image recognition with
hierarchical prototypes, in: Proceedings of the AAAI Conference on Human
Computation and Crowdsourcing, Vol. 7, 2019, pp. 32–40.

[21] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, C. Rudin, Learning
certifiably optimal rule lists for categorical data, The Journal of Machine
Learning Research 18 (1) (2017) 8753–8830.

[22] A. Acharyya, M. De, S. C. Nandy, S. Pandit, Variations of largest rectangle
recognition amidst a bichromatic point set, Discrete Applied Mathematics
(2019).

[23] B. Armaselu, O. Daescu, Maximum area rectangle separating red and blue
points, arXiv preprint arXiv:1706.03268 (2017).

[24] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, B. Simeone, The maxi-
mum box problem and its application to data analysis, Computational
Optimization and Applications 23 (3) (2002) 285–298.

28



[25] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR
(2015).

[26] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014).

29


	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Approximations to Coverage and Precision
	3.3 Accuracy of the Approximation

	4 Optimization to Estimate the Explanation
	4.1 Greedy Attribute Elimination for Human Interpretability
	4.2 Local to Global Explanations
	4.3 Extension to Discrete Attributes

	5 Experiments and Results
	5.1 Synthetic Datasets
	5.2 Tabular Datasets
	5.3 Text Datasets
	5.4 Image Datasets
	5.5 Comparison Against Decision Trees

	6 Summary

