Skip to main content

Improving Low-Resource Named Entity Recognition via Label-Aware Data Augmentation and Curriculum Denoising

  • Conference paper
  • First Online:
Chinese Computational Linguistics (CCL 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12869))

Included in the following conference series:

Abstract

Deep neural networks have achieved state-of-the-art performances on named entity recognition (NER) with sufficient training data, while they perform poorly in low-resource scenarios due to data scarcity. To solve this problem, we propose a novel data augmentation method based on pre-trained language model (PLM) and curriculum learning strategy. Concretely, we use the PLM to generate diverse training instances through predicting different masked words and design a task-specific curriculum learning strategy to alleviate the influence of noises. We evaluate the effectiveness of our approach on three datasets: CoNLL-2003, OntoNotes5.0, and MaScip, of which the first two are simulated low-resource scenarios, and the last one is a real low-resource dataset in material science domain. Experimental results show that our method consistently outperform the baseline model. Specifically, our method achieves an absolute improvement of 3.46% \(F_1\) score on the 1% CoNLL-2003, 2.58% on the 1% OntoNotes5.0, and 0.99% on the full of MaScip.

W. Zhu and J. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We obtain the label descriptions from https://spacy.io/api/annotation#named-entities.

  2. 2.

    https://github.com/olivettigroup/annotated-materials-syntheses.

  3. 3.

    For OntoNotes5.0, we do not save the previous scale model, and all start training from scratch.

  4. 4.

    We leverage GloVe embedding for these experiments.

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML (2009)

    Google Scholar 

  2. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Dai, X., Adel, H.: An analysis of simple data augmentation for named entity recognition. In: COLING (2020)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  5. Ding, B., et al.: DAGA: data augmentation with a generation approach for low-resource tagging tasks. In: EMNLP (2020)

    Google Scholar 

  6. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural machine translation. In: ACL (2017)

    Google Scholar 

  7. Friedrich, A., et al.: The SOFC-EXP corpus and neural approaches to information extraction in the materials science domain. In: ACL (2020)

    Google Scholar 

  8. Gao, F., et al.: Soft contextual data augmentation for neural machine translation. In: ACL (2019)

    Google Scholar 

  9. Gong, C., Tao, D., Maybank, S.J., Liu, W., Kang, G., Yang, J.: Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans. Image Process. 3249–3260 (2016)

    Google Scholar 

  10. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: ACL (2020)

    Google Scholar 

  11. Han, X., Eisenstein, J.: Unsupervised domain adaptation of contextualized embeddings for sequence labeling. In: EMNLP (2019)

    Google Scholar 

  12. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR (2015)

    Google Scholar 

  13. Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with syntactically controlled paraphrase networks. In: NAACL (2018)

    Google Scholar 

  14. Kruengkrai, C., Nguyen, T.H., Aljunied, S.M., Bing, L.: Improving low-resource named entity recognition using joint sentence and token labeling. In: ACL (2020)

    Google Scholar 

  15. Kuru, O., Can, O.A., Yuret, D.: Charner: character-level named entity recognition. In: COLING (2016)

    Google Scholar 

  16. Liu, C., He, S., Liu, K., Zhao, J.: Curriculum learning for natural answer generation. In: IJCAI (2018)

    Google Scholar 

  17. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: ACL, August 2016

    Google Scholar 

  18. Mathew, J., Fakhraei, S., Ambite, J.L.: Biomedical named entity recognition via reference-set augmented bootstrapping. arXiv preprint arXiv:1906.00282 (2019)

  19. Matiisen, T., Oliver, A., Cohen, T., Schulman, J.: Teacher-student curriculum learning. IEEE Trans. Neural Netw. Learn. Syst. 3732–3740 (2020)

    Google Scholar 

  20. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM, 39–41 (1995)

    Google Scholar 

  21. Min, J., McCoy, R.T., Das, D., Pitler, E., Linzen, T.: Syntactic data augmentation increases robustness to inference heuristics. In: ACL (2020)

    Google Scholar 

  22. Mysore, S., et al.: The materials science procedural text corpus: annotating materials synthesis procedures with shallow semantic structures. In: Proceedings of the 13th Linguistic Annotation Workshop (2019)

    Google Scholar 

  23. Peng, M., Xing, X., Zhang, Q., Fu, J., Huang, X.: Distantly supervised named entity recognition using positive-unlabeled learning. In: ACL (2019)

    Google Scholar 

  24. Pentina, A., Sharmanska, V., Lampert, C.H.: Curriculum learning of multiple tasks. In: CVPR (2015)

    Google Scholar 

  25. Platanios, E.A., Stretcu, O., Neubig, G., Poczos, B., Mitchell, T.: Competence-based curriculum learning for neural machine translation. In: NAACL (2019)

    Google Scholar 

  26. Pradhan, S., et al.: Towards robust linguistic analysis using ontonotes. In: CoNLL (2013)

    Google Scholar 

  27. Raiman, J., Miller, J.: Globally normalized reader. In: EMNLP (2017)

    Google Scholar 

  28. Ruder, S.: Neural transfer learning for natural language processing. Ph.D. thesis (2019)

    Google Scholar 

  29. Shang, J., Liu, L., Gu, X., Ren, X., Ren, T., Han, J.: Learning named entity tagger using domain-specific dictionary. In: EMNLP (2018)

    Google Scholar 

  30. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: CoNLL (2003)

    Google Scholar 

  31. Wang, X., Pham, H., Dai, Z., Neubig, G.: SwitchOut: an efficient data augmentation algorithm for neural machine translation. In: EMNLP (2018)

    Google Scholar 

  32. Wang, Y., Gan, W., Yang, J., Wu, W., Yan, J.: Dynamic curriculum learning for imbalanced data classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: EMNLP (2019)

    Google Scholar 

  34. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: NIPS (2020)

    Google Scholar 

  35. Yu, A.W., et al.: QANet: combining local convolution with global self-attention for reading comprehension. CoRR (2018)

    Google Scholar 

  36. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: EMNLP (2015)

    Google Scholar 

Download references

Acknowledgements

The research work described in this paper has been supported by the National Key R&D Program of China (2020AAA0108001) and the National Nature Science Foundation of China (No. 61976015, 61976016, 61876198 and 61370130). The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, W., Liu, J., Xu, J., Chen, Y., Zhang, Y. (2021). Improving Low-Resource Named Entity Recognition via Label-Aware Data Augmentation and Curriculum Denoising. In: Li, S., et al. Chinese Computational Linguistics. CCL 2021. Lecture Notes in Computer Science(), vol 12869. Springer, Cham. https://doi.org/10.1007/978-3-030-84186-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84186-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84185-0

  • Online ISBN: 978-3-030-84186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics