Skip to main content

Revisiting the Security of DbHtS MACs: Beyond-Birthday-Bound in the Multi-user Setting

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2021 (CRYPTO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12827))

Included in the following conference series:

Abstract

Double-block Hash-then-Sum (DbHtS) MACs are a class of MACs that aim for achieving beyond-birthday-bound security, including SUM-ECBC, PMAC_Plus, 3kf9 and LightMAC_Plus. Recently Datta et al. (FSE’19), and then Kim et al. (Eurocrypt’20) prove that DbHtS constructions are secure beyond the birthday bound in the single-user setting. However, by a generic reduction, their results degrade to (or even worse than) the birthday bound in the multi-user setting.

In this work, we revisit the security of DbHtS MACs in the multi-user setting. We propose a generic framework to prove beyond-birthday-bound security for DbHtS constructions. We demonstrate the usability of this framework with applications to key-reduced variants of DbHtS MACs, including 2k-SUM-ECBC, 2k-PMAC_Plus and 2k-LightMAC_Plus. Our results show that the security of these constructions will not degrade as the number of users grows. On the other hand, our results also indicate that these constructions are secure beyond the birthday bound in both single-user and multi-user setting without additional domain separation, which is used in the prior work to simplify the analysis.

Moreover, we find a critical flaw in 2kf9, which is proved to be secure beyond the birthday bound by Datta et al. (FSE’19). We can successfully forge a tag with probability 1 without making any queries. We go further to show attacks with birthday-bound complexity on several variants of 2kf9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This term is mainly due to the usage of Markov inequality and appears in all security bounds of three-key \(\mathsf {DbHtS}\) constructions [24].

  2. 2.

    Here we omit lower-order terms and small constant factors.

References

  1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authentication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_16

    Chapter  Google Scholar 

  2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  3. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_22

    Chapter  Google Scholar 

  4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18

    Chapter  MATH  Google Scholar 

  5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    Chapter  Google Scholar 

  6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000). https://doi.org/10.1006/jcss.1999.1694

  7. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_32

    Chapter  Google Scholar 

  8. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_10

    Chapter  MATH  Google Scholar 

  9. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers: collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 456–467. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978423

  10. Biham, E.: How to decrypt or even substitute DES-encrypted messages in \(2^{28}\) steps. Inf. Process. Lett. 84(3), 117–124 (2002)

    Article  Google Scholar 

  11. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_25

    Chapter  Google Scholar 

  12. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  13. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_14

    Chapter  Google Scholar 

  14. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_18

    Chapter  Google Scholar 

  15. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_18

    Chapter  Google Scholar 

  16. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19

    Chapter  Google Scholar 

  17. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a paradigm for constructing BBB secure PRF. IACR Trans. Symm. Cryptol. 2018(3), 36–92 (2018). https://doi.org/10.13154/tosc.v2018.i3.36-92

  18. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of PMAC\(\_\)Plus. IACR Trans. Symm. Cryptol. 2017(4), 268–305 (2017). https://doi.org/10.13154/tosc.v2017.i4.268-305

  19. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_1

    Chapter  Google Scholar 

  20. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 381–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_13

    Chapter  Google Scholar 

  21. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM, revisited: tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1429–1440. ACM Press, October 2018. https://doi.org/10.1145/3243734.3243816

  22. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_11

    Chapter  Google Scholar 

  23. Jha, A., Nandi, M.: Revisiting structure graph and its applications to CBC-MAC and EMAC. Cryptology ePrint Archive, Report 2016/161 (2016). http://eprint.iacr.org/2016/161

  24. Kim, Seongkwang., Lee, Byeonghak, Lee, Jooyoung: Tight security bounds for double-block hash-then-sum MACs. In: Canteaut, Anne, Ishai, Yuval (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 435–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_16

    Chapter  Google Scholar 

  25. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_11

    Chapter  Google Scholar 

  26. Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 575–605. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_20

    Chapter  Google Scholar 

  27. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_3

    Chapter  Google Scholar 

  28. Morgan, Andrew., Pass, Rafael, Shi, Elaine: On the adaptive security of MACs and PRFs. In: Moriai, Shiho, Wang, Huaxiong (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 724–753. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_24

    Chapter  Google Scholar 

  29. Mouha, N., Luykx, A.: Multi-key security: the Even-Mansour construction revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 209–223. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_10

    Chapter  Google Scholar 

  30. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_16

    Chapter  Google Scholar 

  31. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21

    Chapter  Google Scholar 

  32. Tessaro, S.: Optimally secure block ciphers from ideal primitives. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 437–462. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_18

    Chapter  Google Scholar 

  33. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_25

    Chapter  Google Scholar 

  34. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_34

    Chapter  Google Scholar 

  35. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_19

    Chapter  Google Scholar 

Download references

Acknowledgments

Yaobin Shen is more than grateful to Viet Tung Hoang for motivating this work and many helpful discussions. We thank the anonymous reviewers for their useful feedback. Yaobin Shen and Lei Wang were supported partially by National Key Research and Development Program of China (No. 2019YFB2101601). Dawu Gu was supported partially by Natural Science Foundation of China (No. 62072307) and National Key Research and Development Project (No. 2020YFA0712300). Jian Weng was supported by National Natural Science Foundation of China (Grant Nos. 61825203, U1736203, 61732021), Major Program of Guangdong Basic and Applied Research Project (Grant No. 2019B030302008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Wang, L., Gu, D., Weng, J. (2021). Revisiting the Security of DbHtS MACs: Beyond-Birthday-Bound in the Multi-user Setting. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12827. Springer, Cham. https://doi.org/10.1007/978-3-030-84252-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84252-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84251-2

  • Online ISBN: 978-3-030-84252-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics