Skip to main content

A Heterogeneous 1D Convolutional Architecture for Urban Photovoltaic Estimation

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2021)

Abstract

Global energy transition to renewable sources is among the substantial challenges facing humanity. In this context, the precise estimation of the renewable potential of given areas is valuable to decision-makers. This is particularly difficult for the urban case. In Chile, valuable data for solving this problem is available, however, standard machine learning algorithms struggle with their variable-length input. We take advantage of the ability of 1-D Convolutional Neural Network to fuse feature extraction and learning over a heterogeneous representation of the data. In the present manuscript, we propose an architecture to estimate the PV potential of Chilean cities and extract the relevant features over heterogeneous representations of available data. To this end, we describe and examine the performance of said architecture over the available data. We also extract its intermediate convolutional features and use them as inputs of other machine learning algorithms to compare performances. The network outperforms all other tested machine learning algorithms, while the intermediate learned convolutional representations improve the results of all non-linear algorithms explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assouline, D., Mohajeri, N., Scartezzini, J.-L.: Estimation of large-scale solar rooftop pv potential for smart grid integration: a methodological review. In: Amini, M.H., Boroojeni, K.G., Iyengar, S.S., Pardalos, P.M., Blaabjerg, F., Madni, A.M. (eds.) Sustainable Interdependent Networks. SSDC, vol. 145, pp. 173–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74412-4_11

    Chapter  Google Scholar 

  2. Assouline, D., Mohajeri, N., Scartezzini, J.-L.: Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. Appl. Energy 217, 189–211 (2018)

    Article  Google Scholar 

  3. Campos, P., Troncoso, L., Lund, P.D., Cuevas, C., Fissore, A., Garcia, R.: Potential of distributed photovoltaics in urban Chile. Sol. Energy 135, 43–49 (2016)

    Article  Google Scholar 

  4. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004). https://doi.org/10.1021/ci0342472

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 770–778 (2016)

    Google Scholar 

  6. Hecht-Nielsen, R.: Theory of the backpropagation neural network, based on “nonindent” by Robert Hecht-Nielsen, which appeared in Proceedings of the International Joint Conference on Neural Networks, June 1989, vol. 1, pp. 593–611. Academic Press, Inc. (1992)

    Google Scholar 

  7. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Article  Google Scholar 

  8. International Energy Agency: Energy Technology Perspectives 2016: towards sustainable urban energy systems (2016)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, ICML 2015, vol. 1, pp. 448–456 (2015)

    Google Scholar 

  10. Izquierdo, S., Rodrigues, M., Fueyo, N.: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energypotential evaluations. Sol. Energy 82(10), 929–939 (2008)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  12. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Sig. Process. 151, 107398 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

    Article  Google Scholar 

  13. Krizhevsky, A.: Imagenet classification with deep convolutional neural networks alex. In: Handbook of Approximation Algorithms and Metaheuristics, pp. 1–1432 (2007)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Ha, P.: LeNet. In: Proceedings of the IEEE, November, pp. 1–46 (1998)

    Google Scholar 

  15. Mainzer, K., Killinger, S., McKenna, R., Fichtner, W.: Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Sol. Energy 155, 561–573 (2017)

    Article  Google Scholar 

  16. Molina, A., Falvey, M., Rondanelli, R.: A solar radiation database for Chile. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  17. Servicio de Impuestos Internos: Avalúos y contribuciones de bienes raíces. https://www4.sii.cl/mapasui/internet/#/contenido/index.html. Accessed Jan 2021

  18. Sharma, S.: Activation functions in neural networks - towards data science, vol. 6 (2017)

    Google Scholar 

  19. Simsek, Y., Lorca, Á., Urmee, T., Bahri, P.A., Escobar, R.: Review and assessment of energy policy developments in Chile. Energy Policy 127, 87–101 (2019). https://doi.org/10.1016/j.enpol.2018.11.058

    Article  Google Scholar 

  20. US EIA: International Energy Outlook 2013 - DOE/EIA-0484 (2013). Outlook 2013, p. 312 (2013)

    Google Scholar 

  21. Wiginton, L.K., Nguyen, H.T., Pearce, J.M.: Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 34(4), 345–357 (2010)

    Article  Google Scholar 

  22. Zeiler, M.D.: Visualizing and understanding convolutional networks. Anal. Chem. Res. 12, 40–46 (2017). https://doi.org/10.1016/j.ancr.2017.02.001

    Article  Google Scholar 

  23. Zhang, C., Recht, B., Bengio, S., Hardt, M., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Valderrama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valderrama, A., Valle, C., Ibarra, M., Allende, H. (2021). A Heterogeneous 1D Convolutional Architecture for Urban Photovoltaic Estimation. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics