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Abstract 
Protein-protein interactions (PPIs) in plants plays a significant role in plant biology and functional 
organization of cells. Although, a large amount of plant PPIs data have been generated by 
high-throughput techniques, but due to the complexity of plant cell, the PPIs pairs currently 
obtained by experimental methods cover only a small fraction of the complete plant PPIs network. 
In addition, the experimental approaches for identifying PPIs in plants are laborious, 
time-consuming, and costly. Hence, it is highly desirable to develop more efficient approaches to 
detect PPIs in plants. In this study, we present a novel computational model combining weighted 
sparse representation-based classifier (WSRC) with a novel inverse fast Fourier transform (IFFT) 
representation scheme which was adopted in position specific scoring matrix (PSSM) to extract 
features from plant protein sequence. When performed the proposed method on the plants PPIs 
dataset of Mazie, Rice and Arabidopsis thaliana (Arabidopsis), we achieved excellent results with 
high accuracies of 89.12%, 84.72% and 71.74%, respectively. To further assess the prediction 
performance of the proposed approach, we compared it with the state-of-art support vector machine 
(SVM) classifier. To the best of our knowledge, we are the first to employ protein sequences 
information to predict PPIs in plants. Experimental results demonstrate that the proposed method 
has a great potential to become a powerful tool for exploring the plant cell function.  

1. Introduction 
In plants, the prediction of protein-protein interactions (PPIs) provides important information 

for understanding the molecular mechanisms underlying biological processes. Recently, a large 
number of high-throughput experimental approaches have been developed to identified PPIs, such 
as affinity-purification coupled to mass spectrometry (AP-MS) [1] and yeast two-hybrid (Y2H) [2-5] 
screens methods. Although we have accumulated a large amount of plant PPIs data [6-8], these 
experimental approaches also some inevitable drawbacks, which are not only costly, but also 
laborious and time-consuming. Moreover, these traditional biochemical experiments always suffer 
from high false positive rates and high false negative rates. And due to the complexity of plant 
growth and development systems, large-scale prediction experimental methods could not be 
adopted in plant domain, and now only a small fraction of the whole plant PPIs network can be 
detected. Therefore, it is very significance to develop the efficient computational approaches to 
identify PPIs in plants [9, 10]. 

In recent years, much effort has been made to develop PPIs identification methods based on 
different data types, including literature mining knowledge [11], gene fusion [12] and protein 
structure information [13, 14]. A large amount of PPIs dataset has been built, such as TAIR [15], 
PRIN [16], and MINT [17]. There are also some approaches that combine data and information 
from different sources [18-20] to predict PPIs. However, without prior knowledge of corresponding 
proteins, these methods cannot be implemented. 

Recently, the PPIs prediction methods, which extract information directly from amino acid 
sequences have received much attention [21-24]. Many researchers have worked to provide 
sequences-based methods to detect novel PPIs, and experimental results indicated that PPIs in 
plants can be accurately identified using only sequence information [25-28]. For example, Sun et al. 
[29] presented a method that using a type of deep-learning algorithm called stacked autoencoder 
(SAE) to use sequence-based approaches for predicting PPIs in human datasets. This model 
obtained the best results on 10-fold cross-validation which was based on protein sequence 
autocovariance coding. One of the excellent works that utilizing the protein sequence information to 



predict PPIs is presented by Shen et al. [30]. This method is based on a SVM model that combine 
with a conjoint triad feature and a kernel function for describing amino acids. Specifically, 
according to the volumes and dipoles, the 20 amino acid sequence will be clustered into seven 
classes. Then the conjoint triad method will abstract the features of protein pairs. Wang et al. [31] 
proposed a novel computational method for detecting PPIs adopting sequence information, and 
combining Zernike moments descriptor with stacked autoencoder. First, they employed Zernike 
moment feature representation on a position specific scoring matrix. Secondly, a stacked 
autoencoder was used for noise reduction. Finally, a powerful model, the probabilistic classification 
vector machines model (PCVM) was used to handle the classification problem. You et al. [32] also 
developed a novel computational approach called PCA-EELM to predict PPIs. The main 
improvement of this study is that they adopted the PCA method to construct the most discriminative 
new feature set. In addition, many methods based on amino acid sequences have been developed in 
the literature [33, 34]. While these studies have achieved some progress, there is still room for 
improvement in terms of the efficiency and accuracy of the models.  

In the present work, we provided a novel computational method to detect the PPIs in plants 
from protein sequence information, which employing a novel position specific scoring matrix 
(PSSM) and combining the weighted sparse representation-based classifier (WSRC) with inverse 
fast Fourier transform (IFFT). This feature representation approach combined with the WSRC has 
remarkably performed in the prediction of the PPIs in plants. Furthermore, the main idea of our 
proposed model includes three steps. First, the plant protein sequence could be represented as a 
position specific scoring matrix so that we can obtain the biological evolutionary information 
between different types of amino acids. Second, utilizing the inverse Fast Fourier transform (IFFT) 
method to extracted a 400-dimensional vector from each plant proteins PSSM matrix. As a result, 
each protein pairs will be described as an 800-dimensional feature vector. Thirdly, a powerful 
classifier, weighted sparse representation-based classifier, is employed to perform PPIs predictions 
on three plants PPIs datasets, including Maize, Rice and Arabidopsis thaliana (Arabidopsis). We 
also compared the proposed model with the state-of-the-art support vector machine (SVM) 
classifier to further evaluate the prediction performance. The experiments results demonstrated that 
our approach performs significantly well in distinguishing interacting and noninteracting plants 
protein pairs. These experimental results further shows that the proposed approach is promising and 
reliable for the prediction of protein-protein interactions in plants. The source codes and datasets 
explored in this work are available at: https://github.com/jie-pan111/protein_sequence. 

2. Results  
2.1. Evaluation Criteria. 

To demonstrate the prediction performance of the proposed approach, four evaluation criteria 
was used in this work, including accuracy (Acc.), sensitivity (Sen.), precision (Prec.), and 
Matthews correlation coefficient (MCC) [35-37]. Their corresponding calculating formulas are 
defined as follows: 
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where true positive (TP) denotes the number of plants protein-protein pairs classified as 
interacting correctly while true negative (TN) stands for the number of non-interacting PPIs pairs 
predicted correctly; false positive (FP) denotes the number of samples classified as interacting 
incorrectly, and false negative (FN) denotes the count of interacting plants PPIs pairs that predict 
to have no interaction. In addition, we also adopted the receiver operating characteristic (ROC) 
curves to assess the prediction performance of the proposed approach, and the area under the 



Receiver Operating Characteristic curve (AUC) is calculated used for demonstrating the quality of 
prediction model. 

2.2. Assessment of Prediction Ability. 
In this article, we used 5-fold cross-validation to evaluate the predictive ability of our model 

in three plant data sets involving Maize, Rice and Arabidopsis. In this way, we can prevent 
overfitting and test the stability of the proposed method. More specifically, the whole data set is 
partitioned into five roughly equal parts, four of them were used to construct a training set and the 
rest one was adopted as a testing set. Thus, five models can be generated for the five sets of data. 
The cross validation has the advantages that it can minimize the impact of data dependency and 
improved the reliability of the results. 

The five-fold cross validation results of the proposed approach on the three plants datasets are 
listed in Table 1-3. Form Table 1, we can observe that when applying the proposed method to the 
Mazie data set, we obtained best prediction results of average accuracy, precision, sensitivity, and 
MCC were 89.12%, 87.49%, 91.32%, and 80.59%, with corresponding standard deviations 0.59%, 
1.38%, 0.64%, and 0.94%, respectively. When exploring the proposed method on the Rice dataset, 
we yield the good results of average accuracy, precision, sensitivity, MCC of 84.72%, 85.04%, 
84.44% and 84.10%, respectively. The standard deviations of these criteria values are 0.73%, 
0.85%, 0.65% and 1.00% respectively. When predicting PPIs of Arabidopsis dataset, the proposed 
approach obtained good results of average accuracy, precision, sensitivity, MCC of 71.74%, 
69.33%, 77.02% and 58.97% and the standard deviations are 0.48%, 0.58%, 1.15% and 0.38%, 
respectively. Figure. 1-3 shows the ROC curves for the proposed approach on Maize, Rice and 
Arabidopsis. The average AUC values range from 79.19% to 93.76% (Maize: 93.76%, Rice: 88.75% 
and Arabidopsis:79.19%), suggesting that our method is fit well for our purposes to predict PPIs 
in plants from amino acid sequences. 

These good results collectively demonstrate that using the information of protein sequence 
alone to predict PPIs in plants is sufficient enough, and that powerful prediction capability for 
predicting PPIs can be yielded by adopting weighted sparse representation-based classifier 
combined IFFT features. This strong prediction performance derives from the feature extraction 
method for plant protein sequences and the choice of machine learning classifier. The high 
accuracies and low standard deviations of this criterion values indicate that our proposed model is 
feasible and effective for predicting PPIs in plants.  

Test set Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%) 

1 89.16 87.81 90.84 80.66 93.64 

2 88.64 85.94 91.84 79.83 93.64 

3 88.56 87.19 90.89 79.70 93.24 

4 89.20 86.84 92.17 80.71 94.05 

5 90.04 89.65 90.85 82.06 94.21 

Average 89.12  0.59 87.49  1.38 91.32  0.64 80.59  0.94 93.76  0.38 

Table 1. 5-fold cross-validation results achieved on the Maize dataset using the proposed method. 

Test set Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%) 

1 84.22 84.66 83.70 73.42 88.96 

2 85.63 84.76 84.95 75.32 89.16 

3 84.74 85.51 84.73 74.12 89.37 

4 85.21 86.24 85.03 74.77 88.43 

5 83.80 84.04 83.78 72.85 87.82 

Average 84.72  0.73 85.04  0.85 84.44  0.65 84.10  1.00 88.75  0.62 

Table 2. 5-fold cross-validation results achieved on the Rice dataset using the proposed method. 

Test set Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%) 

1 71.31 69.00 76.58 58.88 77.95 

2 71.55 68.59 77.65 59.03 80.56 

3 71.15 69.94 76.72 58.61 78.71 

4 71.07 69.22 75.56 58.72 78.74 

5 72.28 69.89 78.59 59.59 80.02 

Average 71.74  0.48 69.33  0.58 77.02  1.15 58.97  0.38 79.19  1.06 

Table 3. 5-fold cross-validation results achieved on the Arabidopsis dataset using the proposed method. 



2.3. Comparison of the proposed model with different classifiers. 
Although the WSRC model obtained better performance in predicting PPIs of plants, we also 

need to further verify the prediction ability of the proposed method. We compared the prediction 
accuracy of the WSRC model with that of the state-of-art SVM model via the same feature 
extraction approach based on the Maize, Rice and Arabidopsis datasets, respectively. We applied 
the same feature extraction approach on the Maize, Rice and Arabidopsis datasets and compared 
the prediction accuracy of the WSRC model with the state-of-the-art SVM. We employed the 
LIBSVM tool to run this classification, and 5-fold cross-validation was also adopted in these 
experiments. In order to obtain better performance of SVM classifier, we should optimize several 
parameters of SVM classifier. In this study, the penalty parameter C and the kernel parameter g of 
SVM model was optimized by the gird search method. In the experiments of Maize and Rice 
dataset, we set c=5, g=0.5 and c=6, g=0.5. when applying on Arabidopsis dataset, we set c=7, 
g=0.03. 

As shown in Table 4, it is clearly seen that when applied the SVM model to predict PPIs of 
Maize dataset, we yield good results with average accuracy, precision, sensitivity, MCC and AUC 
of 81.77%, 83.10%, 79.78%, 70.16% and 88.04%, respectively. When identifying PPIs of Rice 
dataset, the SVM classifier yield good results with average accuracy, precision, sensitivity, MCC 
and AUC of 79.13%, 78.27%, 80.91%, 66.93% and 86.62%, respectively. When exploring the 
Arabidopsis dataset, the average accuracy, precision, sensitivity, MCC and AUC come to be 
62.55%, 63.49%, 58.97%, 53.03% and 66.87%, respectively. For the three plant datasets, the 
classification results yield by the SVM-based models are lower than those by the proposed approach. 
In summary, it is obvious that the overall prediction results of WSRC model is better than that of 
SVM-based approach. 

Dataset Classifier Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%) 

Mazie WSRC 89.12 ± 0.59 87.49 ± 1.38 91.32 ± 0.64 80.59 ± 0.94 93.76 ± 0.38 

SVM 81.77 ± 0.57 83.10 ± 1.30 79.78 ± 0.92 70.16 ± 0.71 88.04 ± 0.48 

Rice WSRC 84.72 ± 0.73 85.04 ± 0.85 84.44 ± 0.65 84.10 ± 1.00 88.75 ± 0.62 

SVM 79.13 ± 0.81 78.27 ± 2.13 80.91 ± 0.55 66.93 ± 0.94 86.62 ± 0.91 

Arabidopsis WSRC 71.74 ± 0.48 69.33 ± 0.58 77.02 ± 1.15 58.97 ± 0.38 79.19 ± 1.06 

SVM 62.55 ± 1.44 63.49 ± 1.68 58.97 ± 2.85 53.03 ± 0.81 66.87 ± 1.52 

Table 4: The comparison of the WSRC method with the SVM-based method on three plant datasets. 

Meanwhile, the ROC curves of these experiments are also shown in Figs 1-3. From Figure 1, it is 
obvious to see that the AUC value of SVM model on the Maize dataset is 0.8804 and that of the 
WSRC is 0.8912. From Figure 2, we can see that the average AUC of SVM classifier is 0.8662 
and that of WSRC method is 0.8875. From Figure 3 we can see that when predicting PPIs of 
Arabidopsis dataset, the SVM-based method can obtain good results with average AUC of 0.6687 
and that of WSRC method is 0.7919. All these experiments indicates that the average AUC value 
of WSRC method is so large than that of the SVM-based method. From all of these experiments 
results, we can draw the following conclusion that the weighted sparse representation-based 
classifier is an effective and robust model for PPIs prediction in plants. 

 
              (a). ROC of SVM method                            (b). ROC of WSRC method 

Figure 1. Comparison of the ROC curves obtained by WSRC and SVM-based method on Maize dataset (5-fold 



cross validation). (a) shows the ROC curves performed by SVM method on Mazie PPIs dataset. (b) shows the ROC 
curves performed by WSRC method on Maize dataset. 

 
   (a). ROC of SVM method                             (b). ROC of WSRC method 

Figure 2. Comparison of the ROC curves obtained by WSRC and SVM-based method on Rice dataset (5-fold cross 
validation). (a) shows the ROC curves performed by SVM method on Rice PPIs dataset. (b) shows the ROC curves 
performed by WSRC method on Rice dataset. 

 
            (a). ROC of SVM method                             (b). ROC of WSRC method 

Figure 3. Comparison of the ROC curves obtained by WSRC and SVM-based method on Arabidopsis dataset 
(5-fold cross validation). (a) shows the ROC curves performed by SVM method on Arabidopsis PPIs dataset. (b) 
shows the ROC curves performed by WSRC method on Arabidopsis dataset. 

3. Methods 
3.1. Data collection and data set construction. 

We verify the proposed model on three plants PPIs dataset. The first dataset is Maize. Maize 
is one of the most important food, feed and industrial crops in the world and also an excellent 
model for plant genetics. In order to better demonstrate the prediction performance of the 
proposed model and understand the molecular mechanisms underlying various traits of Maize, we 
select the maize as the third plant data set in this study. We collected the Maize dataset from 
agriGO [38] and Protein-Protein Interaction Database for Maize (PPIM) [39], which covers 
2,762,560 interactions among 14,000 proteins. After the strict inclusion and exclusion screening, 
we select 6250 protein pairs from 6497 maize proteins. As a result, the whole Maize dataset is 
constructed by 12500 maize protein pairs. 

Rice is one of the most important staple foods for more than half of the world’s population. 
To validate the generality of the proposed method, we also performed our method on the Rice PPIs 
dataset. We collected the Rice dataset from the protein reference database agriGO [38] and PRIN 
[16]. In order to construct the negative dataset, we selected 4800 additional protein pairs which 
work in different subcellular and assumed that they will not interact with each other. As a result, 
the whole Rice data set is constructed by 9600 protein pairs from 3760 Rice proteins. 

Arabidopsis thaliana (Arabidopsis) is a well-known model plant and we chose it as the third 



dataset in this study, which we collected from public PPIs databases TAIR [15], IntAct [40] and 
BioGRID [41]. After removing redundant PPIs, we yield the remaining 4120 protein pairs to build 
the positive data set, which containing 6013 Arabidopsis proteins [42]. For constructing the 
negative data set, we randomly selected the same number of non-interacting protein pairs. On this 
foundation, the entire Arabidopsis dataset is constructed by 8240 protein pairs. 

3.2. Position-Specific Scoring Matrix (PSSM). 
Through the Position-Specific Scoring Matrix (PSSM) which is reported by Gribskov [43] 

and it achieved great success in protein binding site prediction, protein secondary structure 
prediction and prediction of disordered regions [44-46]. The structure of PSSM can be represented 
as a matrix of N rows and 20 columns. Each protein sequence can be transformed as follows: 

 , , 1, , ,    1, ,20M M N     K K                      (5) 

where N denotes the length of a given plant protein sequence and column 20 represents the 
number of 20 amino acid. For each query sequence, the value 

,M  , which could be described as 
β-th amino acid, will be set up by PSSM at the position of  . Thus, 

,M   can be calculated as: 

20

,

1

( , ) ( , )
k

M p k q k   


  ,                                (6) 

Thus, the value of Dayhoff’s mutation matrix between the β-th and k-th amino acids can be 
described as ( , )q k , and the occurrence frequency score of the k-th amino acid in the position of 
  with the probe can be represented by ( , )p k . Hence, a high value means a strongly 
conservative position; otherwise, it will imply a weakly conservative position. 

In this study, we employed the Position-Specific Iterated BLAST (PSI-BLAST) tool [47] to 
generate the PSSM for each protein sequence. we assigned the e-value to 0.001 and selected 3 
iterations in the process. In addition, all other parameters were set to default values to obtain 
highly and widely homologous sequences. 

3.3. Inverse Fast Fourier transform. 
In the fields of computational science and engineering, the Fast Fourier Transform (FFT) [48] 

is one of the most important algorithms. It is an indispensable algorithm in the field of Digital 
Signal Processing. However, FFT algorithm is not suitable in many practical applications when 
the data are not uniformly sampled. For this reason, we adopted the inverse fast Fourier Transform 
(IFFT) [49] method to obtain the transient response in time domain. 

In the FFT, the irregularities of the twiddle factors can be solved by the Sine and Cosine 
transform of the signal. The Cosine and Sine transformations of the input signal are added together 
to obtain the FFT of the two-dimensional signal. As shown in Equation (7) and Equation (8), the 
required Sine matrix and Cosine matrix for FFT and IFFT can be defined as: 

( 1, 1) cos(( / 4) ( ))C u x pi u x
                          (7) 

( 1, 1) sin(( / 4) ( ))S u x pi u x
                           (8) 

Hence, by the rules, the 2-D FFT can be yield by adding the Sine and Cosine transform as shown 
in Equation (9): 

1 1
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for 0,1,2 , 1k N K . 
So, the IFFT for 2-D image can be described as follows: 
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for 0,1,2 , 1n N K . 



In our study, each protein sequence in the three plant datasets, will be converted into a 
400-dimensional vector by means of an inverse fast Fourier transform. 

3.4. Weighted sparse representation-based classifier. 
Recently, with the improvement of linear representation methods (LRBM) and compressed 

sensing (CS) theory, sparse representation-based classification (SRC) [50, 51] algorithm has been 
proven to widely applied in signal processing, pattern recognition and computer vision. The SRC 
assumes that there is a training sample matrix d n

X R
 , which denotes n training set and 

d-dimensional feature vectors, and it also assumes that there are sufficient training samples 
belonging to the kth class and set up 

1[ , ]
kk k kn

X l l L , where k
n  denotes the sample number of 

kth class and i
l  represents the label of ith sample. Thus, the sample matrix X could be defined as 

 1 K
X X X K . The SRC algorithm can described the test sample d

y R  with the linear 
combination of kth-class training samples as: 

,1 ,1 ,2 ,2 , ,k k k k k nk k nky l l l     L                      (11) 

when the whole training set representation are taking into account, it can be further symbolized as 
follows: 

0y X                                  (12) 

where 
0 .1 ,2 ,0, ,0, , ,0, ,0

T

k k k nk
      L L L . It is well known that the nonzero entries in 0  are 

only relevant to the kth class, so if the samples size is too large, 0  will become sparse. 
For SRC algorithm, the key of it is to search the   vector that formula (12) can satisfy and 

can minimize the 0l -norm of itself. It can be represented as: 

0 0
arg min 



  subject to y X                     (13) 

Since problem (13) is a NP-hard problem and it is difficult to be solved accurately. According to 
the CS theory, if the   is sparse enough, we can solve the related convex 1l -minimization 
problem instead of dealing with the solution of 0l -minimization problem directly: 

1 1
arg min 



  subject to y X                      (14) 

To deal with the occlusion, the Eq (14) can be extended to the stable 1l -minimization problem: 

1 1
arg min 



  subject to y X                    (15) 

where 0   represents the tolerance for reconstruction error. We can solve the Eq. (15) by using 
the standard linear programming methods. 

After achieving the sparsest solution 
1


, SRC can assign the test sample y to class k via the 
following rule: 

1min ( ) ,   1
k

k
k

r y y X k K


   K                        (16) 

where 1

k

X


 is the reconstruction which is built by training samples of class k and the class 
number of the whole samples can be defined as K. Then the SRC set a test sample as a sparse 
combination of training sample. Finally, we assigned it to the class which can minimizes the 

residual between itself and 1

k
X 



. 

However, some studies [52-54] have reported that in some cases, locality structure of data is 
more important than sparsity. Moreover, the traditional SRC could not be guaranteed to be local. 



To solve this problem, Lu et al. [55] developed a novel variant of SRC called weighted sparse 
representation-based classifier (WSRC). The main improvement of this method is that it combines 
the locality structure of data with sparse representation. Through mapping the training data into a 
higher-dimensional kernel include feature space, it can yield a better performance of classification. 
Gaussian kernel-based distance was used in WSRC to calculate the weights: 

 
2 2

1 2 / 2

1 2,
s s

G
d S S e

                            (17) 

where 
1 2, d

s s R  denotes two samples;   is the Gaussian kernel width. In this way, WSRC can 
preserve the locality structure of data and it can address the following questions: 

1 1
arg min W 



  subject to y X                    (18) 

and specifically, 

1
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k

T
k

G G n
diag W d y x d y x   K                     (19) 

where k
n  is the sample number of training set in class k and W represents a block diagonal 

matrix about locality adaptor. Dealing with occlusion, we would finally solve the following stable 
1l -minimization problem: 

1 1
arg min W 



  subject to y X                   (20) 

where 0   denotes the tolerance value. 
To summarize, the WSRC algorithm can be stated as follows: 

Algorithm. Weighted Sparse Representation-based Classifier (WSRC) 
1. Input: the matrix of training samples nd

X R
  and a test sample d

y R .  

2. Normalize the columns of X to have unit 2l -norm. 
3. Calculate the Gaussian distances between y and each sample in X and employ them to 

adjust the training samples matrix X to '
X . 

4. Solving the stable 1l -minimization problem defined in Eq. (19). 

5. Compute the residuals 1( ) ( 1,2, , )
k

k
r y y X k K



   K . 

6. Output: the prediction label of y as ( ) arg min( ( ))
k

identify y r y . 

3.5. Support Vector Machine. 
There are various methodologies for machine learning models to predict PPIs and support 

vector machine is one of the most popular classifiers. In 1995, SVM was first developed by Cortes 
and Vapnik et al. [56] and it is a generalized linear model usually used for classification and 
regression tasks. The ideal of SVM algorithm is to find the optimal hyperplane that maximally 
separates training data from the two classes. Hence, we can convert it to a convex quadratic 
programming problem. The formal definition of SVM can be expressed as: 

 

2

1

1
           

2

.  : ( ) 1 ,   1, ,

                     , , 0 

n

i

i

T

i i i

i

Minimize w C S

s t y w x b S i n

w b S





    




K                         (21) 

where w represents the normal vector which defined the hyperplane and the classifier parameter 
can be defined as C; n denotes the number of vectors in the training dataset; i

x  are the training 
vectors with m features; i

S  are the slack variables; i
y  is either 1 or -1 and it is the classification 

of each i
x ; and b denotes the coefficient which determines the axis intercepts. 



The maximization of the margin can be expressed as the first part of the objective function in 
equation (21). The 2

1/ w  represents the margin, which is determined by the distance between 

the nearest vectors and hyperplane. Thus, the maximization of 2
w  is the minimization of 

2
1/ w . The goal of objective function is to maximize the margin. Because as the margin increases, 
so too will the variability between the classes, which ensure a cleaner separation. However, if the 
margins are increased, the probability of misclassification will also be increased. The rate of 
misclassification is estimated by the slack variable i

S , which is set it to be 0 for well-classified 
vectors, between 0 and 1 for vectors located in the separation region, and above 1 for misclassified 
vectors. The training examples which defined the separating hyperplane are called support vectors. 
The parameter C denotes the weight vector: if the value of C is too high, it will lead to an increase 
of the penalties for misclassification and so that the area of margin will be reduced. The flow chart 
of our method is shown as Figure 4. 

 

Figure 4. Flow chart of the proposed method 

Conclusions 
In this study, we present an effective and accurate computational method that utilize the 

information of amino acid sequence for predicting PPIs in plants. This method is based on a 
weighted sparse representation-based classifier combining with inverse fast Fourier transform and 
a position-specific-scoring-matrix. The main point of this approach is to employ the unique of 
WSRC method including better generalization, simply and considering the sparsity and continuity 
of plants protein sequence data. The whole prediction model is composed of the following steps. 
Firstly, all the plant protein sequences were converted as the PSSM so that the evolutionary 
information from each sequence can be obtained. Secondly, we employed the inverse fast Fourier 
transform to extract feature vector from PSSM. Finally, weighted sparse representation-based 
classifier would be used as machine learning classifier. The proposed approach performs 
significantly well on three plants PPIs datasets, including Maize, Rice and Arabidopsis. In order to 
prove the efficient and reliability efficient of the proposed model, we also compare it prediction 
performance with the state-of-the-art SVM model. All of these experiments results indicates that 
our method can improve the accuracy of the PPIs prediction in plants. In conclusion, the proposed 
method is a reliable, efficient and powerful prediction model for future proteomics research. To be 
the best of our knowledge, this is the first time to use computational methods to predict PPIs in 
plants. 

Data availability 
The source codes and datasets explored in this work are available at: 



https://github.com/jie-pan111/protein_sequence. 
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Figures

Figure 1

Comparison of the ROC curves obtained by WSRC and SVM-based method on Maize dataset (5-fold
cross validation). (a) shows the ROC curves performed by SVM method on Mazie PPIs dataset. (b) shows
the ROC curves performed by WSRC method on Maize dataset.

Figure 2

Comparison of the ROC curves obtained by WSRC and SVM-based method on Rice dataset (5-fold cross
validation). (a) shows the ROC curves performed by SVM method on Rice PPIs dataset. (b) shows the
ROC curves performed by WSRC method on Rice dataset.



Figure 3

Comparison of the ROC curves obtained by WSRC and SVM-based method on Arabidopsis dataset (5-fold
cross validation). (a) shows the ROC curves performed by SVM method on Arabidopsis PPIs dataset. (b)
shows the ROC curves performed by WSRC method on Arabidopsis dataset.

Figure 4

Flow chart of the proposed method


