Skip to main content

Variational EM Algorithm for Student-\({\varvec{t}} \) Mixtures of Gaussian Processes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12837))

Abstract

Student-\(t\) mixture of Gaussian processes (TMGP) extends the conventional mixture of Gaussian processes (MGP) by using Student-\(t\) mixture as the input distribution instead of Gaussian mixture for robust regression and the un \(\nu\)-Hardcut EM algorithm has already been established for Student-\(t\) mixtures of Gaussian processes. However, this Hardcut EM algorithm takes an approximation of the \(Q\)-function with the maximum a posteriori estimate of the hidden variables in the E-step, and separately optimizes the degrees of freedom of Student-\(t\) distributions and the hyperparameters of the covariance functions in the M-step. In order to get rid of these problems, we propose a variational EM (VEM) algorithm for Student-\(t\) mixtures of Gaussian processes from the viewpoint of variational inference. It is demonstrated by the experimental results on three datasets that our proposed VEM algorithm is effective and outperforms the un \(\nu\)-Hardcut EM algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Tresp, V.: Mixtures of gaussian processes. Adv. Neural. Inf. Process. Syst. 13, 654–660 (2000)

    Google Scholar 

  3. Chen, Z., Ma, J., Zhou, Y.: A precise hard-cut EM algorithm for mixtures of gaussian processes. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI), vol. 8589, pp. 68–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09339-0_7

    Chapter  Google Scholar 

  4. Luo, C., Sun, S.: Variational mixtures of Gaussian processes for classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, vol. 26, pp. 4603–4609 (2017)

    Google Scholar 

  5. Sun, S., Xu, X.: Variational inference for infinite mixtures of Gaussian processes with applications to traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 12(2), 466–475 (2011)

    Article  Google Scholar 

  6. Wu, D., Chen, Z., Ma, J.: An MCMC based EM algorithm for mixtures of gaussian processes. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds.) ISNN 2015. LNCS, vol. 9377, pp. 327–334. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25393-0_36

    Chapter  Google Scholar 

  7. Wu, D., Ma, J.: A two-layer mixture model of Gaussian processes functional regressions and its MCMC EM algorithm. In: IEEE Transactions on Neural Networks and Learning Systems, vol. 29 (2018)

    Google Scholar 

  8. Yang, Y., Ma, J.: An efficient EM approach to parameter learning of the mixture of Gaussian processes. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011. LNCS, vol. 6676, pp. 165–174. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21090-7_20

    Chapter  Google Scholar 

  9. Yuan, C., Neubauer, C.: Variational mixture of Gaussian process experts. Adv. Neural. Inf. Process. Syst. 21, 1897–1904 (2009)

    Google Scholar 

  10. Qiang, Z., Ma, J.: Automatic model selection of the mixtures of Gaussian processes for regression. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds.) ISNN 2015. LNCS, vol. 9377, pp. 335–344. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25393-0_37

    Chapter  Google Scholar 

  11. Li, X., Li, T., Ma, J.: The un -hardcut EM algorithm for non-central Student- mixtures of Gaussian processes. In: 15th IEEE International Conference on Signal Processing (ICSP), pp. 289–294 (2020)

    Google Scholar 

  12. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  13. Gibbs, M., Mackay, D.J.C.: Efficient implementation of Gaussian processes. Technical report, Cavendish Laboratory, Cambridge, UK (1997)

    Google Scholar 

  14. Smola, A.J., Bartlett, P.: Sparse greedy Gaussian process regression. Adv. Neural Inform. Proc. Syst. 13, 619–625 (2001)

    Google Scholar 

  15. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. Adv. Neural. Inf. Process. Syst. 18, 1257–1264 (2006)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key R & D Program of China (2018YFC0808305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X., Li, X., Ma, J. (2021). Variational EM Algorithm for Student-\({\varvec{t}} \) Mixtures of Gaussian Processes. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics