Skip to main content

Uncertainty-Guided Pixel-Level Contrastive Learning for Biomarker Segmentation in OCT Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12837))

Abstract

Optical coherence tomography (OCT) has been widely leveraged to assist doctors in clinical ophthalmic diagnosis, since it can show the hierarchical structure of the retina. The type and size of biomarkers are crucial in the classification and grading of diseases. Hence, automatic segmentation of biomarkers is important to quantitative analysis, which can reduce a heavy workload. In this paper, we propose a novel deep learning-based method for biomarker segmentation on OCT images. The contrastive learning is introduced to enhance the contextual relationship between pixels in the dataset instead of just in an image. In addition, uncertainty is used to weight the segmentation loss to prompt the network focus on the learning of hard pixels. At the same time, uncertainty is utilized to select hard pixels for guiding network to perform contrastive learning, which makes the segmentation result more accurate. The experiment results evaluated on a local dataset, demonstrate the effectiveness of the proposed biomarker segmentation framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178-1181 (1991)

    Google Scholar 

  2. Chen, Q., et al.: Automated drusen segmentation and quantification in SD-OCT images. Med. Image Anal. 17(8), 1058–1072 (2013)

    Article  Google Scholar 

  3. Chen, Q., de Sisternes, L., Leng, T., Zheng, L., Kutzscher, L., Rubin, D.L.: Semi-automatic geographic atrophy segmentation for SD-OCT images. Biomed. Opt. Express 4, 2729–2750 (2013)

    Google Scholar 

  4. Venhuizen, F.G., et al.: Automated staging of age-related macular degeneration using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 58(4), 2318 (2017)

    Article  Google Scholar 

  5. Liu, X., Wang, S., Zhang, Y., Liu, D., Hu, W.: Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning. Neurocomputing 452, 576–591 (2021)

    Google Scholar 

  6. Cao, G., Tang, Q., Jo, K.-H.: Aggregated deep saliency prediction by self-attention network. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020. LNCS (LNAI), vol. 12465, pp. 87–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_8

    Chapter  Google Scholar 

  7. Uddin, M.K., Lam, A., Fukuda, H., Kobayashi, Y., Kuno, Y.: Depth guided attention for person re-identification. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020. LNCS (LNAI), vol. 12465, pp. 110–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_10

    Chapter  Google Scholar 

  8. Liu, X., Yu, A., Wei, X., Pan, Z., Tang, J.: Multimodal MR image synthesis using gradient prior and adversarial learning. IEEE J. Sel. Top. Sign. Proces. 14(6), 1176–1188 (2020)

    Article  Google Scholar 

  9. Liu, X., et al.: Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 7, 3046–3061 (2019)

    Article  Google Scholar 

  10. Altini, N., et al.: A Tversky loss-based convolutional neural network for liver vessels segmentation. In: Huang, D.-S., Bevilacqua, V., Hussain, A. (eds.) ICIC 2020. LNCS, vol. 12463, pp. 342–354. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-60799-9_30

  11. Fauw, J.D., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Ronneberger, O.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Google Scholar 

  12. Hu, J., Chen, Y., Yi, Z.: Automated segmentation of macular edema in OCT using deep neural networks. Med. Image Anal. 55, 216 (2019)

    Article  Google Scholar 

  13. Fang, L., Wang, C., Li, S., Rabbani, H., Chen, X., Liu, Z.: Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans. Med. Imaging 38(8), 1959–1970 (2019)

    Article  Google Scholar 

  14. Wang, W., Zhou, T., Yu, F., Dai, J., Gool, L.V.: Exploring cross-image pixel contrast for semantic segmentation (2021)

    Google Scholar 

  15. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020)

    Google Scholar 

  16. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  17. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  18. Tennakoon, R., Gostar, A.K., Hoseinnezhad, R., Babhadiashar, A.: Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In: International Symposium on Biomedical Imaging, pp. 1436–1440 (2018)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ying Zhang, Man Wang and their groups for WAEH datasets.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y., Liu, X., Li, B., Zhou, K. (2021). Uncertainty-Guided Pixel-Level Contrastive Learning for Biomarker Segmentation in OCT Images. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics