Skip to main content

Inference of Gene Regulatory Network from Time Series Expression Data by Combining Local Geometric Similarity and Multivariate Regression

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

  • 1509 Accesses

Abstract

Gene regulatory network (GRN) plays a pivotal role in cells. Existing high-throughput experiments facilitate abundant time-series expression data to reconstruct GRN to gain insight into the mechanisms of diverse biological procedure when organisms response to external changing conditions. However, many proposed approaches do not effectively elucidate local dynamic temporal information and time delay based on time-series expression data. In this paper, we introduce local geometric similarity and multivariate regression (LESME) to infer gene regulatory networks from time-course gene expression data. We simultaneously consider the local shape of time series and global multivariate regression to effectively detect the gene regulation. Moreover, LESME combines adaptive sliding window technique and grey relational analysis to track and capture local geometric similarity for improving the quality of global network inference. We incorporate the local and global contributions to reconstruct the GRN. LESME outperforms eight state-of-the-art methods on DREAM3 and DREAM4 in-silico challenges and achieves a meaningful result on hepatocellular carcinoma gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saint-Antoine, M.M., Singh, A.: Network inference in systems biology: recent developments, challenges, and applications. Curr. Opin. Biotechnol. 63, 89–98 (2020)

    Article  Google Scholar 

  2. Rubiolo, M., Milone, D.H., Stegmayer, G.: Mining gene regulatory networks by neural modeling of expression time-series. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(6), 1365–1373 (2015)

    Article  Google Scholar 

  3. Wang, J.X., et al.: Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information. Nucleic Acids Res. 41(8), e97 (2013)

    Article  Google Scholar 

  4. Yang, B., Yaohui, X., Maxwell, A., Koh, W., Gong, P., Zhang, C.: MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. BMC Syst. Biol. 12(7), 115 (2018)

    Article  Google Scholar 

  5. Bonneau, R., et al.: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Geno. Biol. 7(5), R36 (2006)

    Google Scholar 

  6. Barker, N.A., Myers, C.J., Kuwahara, H.: Learning genetic regulatory network connectivity from time series data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(1), 152–165 (2011)

    Article  Google Scholar 

  7. Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene REgulation using stability selection. BMC Syst. Biol. 6, 145 (2012)

    Article  Google Scholar 

  8. Huynh-Thu, V., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)

    Article  Google Scholar 

  9. Huynh-Thu, V., Sanguinetti, G.: Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10), 1614–1622 (2015)

    Article  Google Scholar 

  10. Finkle, J., Wu, J., Bagheri, N.: Windowed Granger causal inference strategy improves discovery of gene regulatory networks. Proc. Natl. Acad. Sci. 115(9), 2252–2257 (2018)

    Article  Google Scholar 

  11. Park, S., et al.: BTNET: boosted tree based gene regulatory network inference algorithm using time-course measurement data. BMC Syst. Biol. 12, 20 (2018)

    Article  Google Scholar 

  12. Zheng, R., Li, M., Chen, X., Fang-Xiang, W., Pan, Y., Wang, J.: BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks. Bioinformatics 35(11), 1893–1900 (2019)

    Article  Google Scholar 

  13. Papadimitriou, S., Sun, J.M., Yu, P.S.: Local correlation tracking in time series. In: ICDM 2006: Sixth International Conference on Data Mining, Proceedings, pp. 456-465. IEEE, Hong Kong (2006)

    Google Scholar 

  14. Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1, 1–24 (1989)

    Google Scholar 

  15. Huang, Y., Shen, L., Liu, H.: Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. J. Cleaner Prod. 209, 415–423 (2019)

    Article  Google Scholar 

  16. Sallehuddin, R., Shamsuddin, S.M.H., Hashim, S.Z.M.: Application of grey relational analysis for multivariate time series. In: Isda 2008: Eighth International Conference on Intelligent Systems Design and Applications 2, Proceedings, pp. 432–437. IEEE, Taiwan (2008)

    Google Scholar 

  17. Chen, T.Q., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Kdd'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 785–794. ACM, San Francisco (2016)

    Google Scholar 

  18. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  19. Degenhardt, F., Seifert, S., Szymczak, S.: Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinf. 20(2), 492–503 (2019)

    Article  Google Scholar 

  20. Geng, Z., Liu, Y., Liu, C., Miao, W.: Evaluation of causal effects and local structure learning of causal networks. Ann. Rev. Stat. Appl. 6(1), 103–124 (2019)

    Article  MathSciNet  Google Scholar 

  21. Feizi, S., Marbach, D., Medard, M., Kellis, M.: Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol. 31(8), 7 (2013)

    Article  Google Scholar 

  22. Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol 16(2), 229–239 (2009)

    Article  Google Scholar 

  23. Marbach, D.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)

    Google Scholar 

  24. Wurmbach, E., et al.: Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45(4), 938–947 (2007)

    Article  Google Scholar 

  25. Wang, J., et al.: NOA: a novel Network Ontology Analysis method. Nucleic Acids Res. 39(13), e87–e87 (2011)

    Article  Google Scholar 

  26. Farazi, P., DePinho, R.: Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer 6(9), 674–687 (2006)

    Article  Google Scholar 

  27. Denduluri, S.K., et al.: Insulin-like growth factor (IGF) signaling in tumorigenesis the development of cancer drug resistance. Genes Dis. 2(1), 13–25 (2015)

    Article  Google Scholar 

  28. Yang, J., Nakamura, I., Roberts, L.: The tumor microenvironment in hepatocellular carcinoma: Current status and therapeutic targets. Semin. Cancer Biol. 21(1), 35–43 (2011)

    Article  Google Scholar 

  29. Sia, D., Villanueva, A.: signaling pathways in hepatocellular carcinoma. Oncology 81, 18-23 (2011)

    Google Scholar 

  30. Moeini, A., Cornellà, H., Villanueva, A.: Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer 1(2), 83–93 (2012)

    Article  Google Scholar 

  31. Dimri, M., Satyanarayana, A.: Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers 12(2), 491 (2020)

    Article  Google Scholar 

  32. Niehrs, C.: The complex world of WNT receptor signalling. Nat. Rev. Molec. Cell Biol. 13(12), 767–779 (2012)

    Article  Google Scholar 

  33. Waisberg, J.: Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol. 7(26), 2631–2635 (2015)

    Article  Google Scholar 

  34. Ideker, T., Dutkowski, J., Hood, L.: Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144(6), 860–863 (2011)

    Article  Google Scholar 

  35. Liu, Zhi-Ping., Hulin, W., Zhu, J., Miao, H.: Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza a virus infection. BMC Bioinf. 15(1), 336 (2014)

    Article  Google Scholar 

  36. Che, D.D., Guo, S., Jiang, Q.S., Chen, L.F.: PFBNet: a priori-fused boosting method for gene regulatory network inference. BMC Bioinf. 21(1), 308 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Key Research and Development Program of China (No. 2020YFA0712402); National Natural Science Foundation of China (NSFC) (61973190); Natural Science Foundation of Shandong Province of China (ZR2020ZD25) and Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project, 2019JZZY010423); the Program of Qilu Young Scholars of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G., Liu, ZP. (2021). Inference of Gene Regulatory Network from Time Series Expression Data by Combining Local Geometric Similarity and Multivariate Regression. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics