Skip to main content

A Hybrid Deep Neural Network for the Prediction of In-Vivo Protein-DNA Binding by Combining Multiple-Instance Learning

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

Abstract

Not only is modeling in-vivo protein-DNA binding basic to a deeper comprehension of regulatory mechanisms, but a complicated job in computational biology. Although current deep-learning based methods have achieved some success in-vivo protein-DNA binding, on the one hand, they tend to ignore the weakly supervised information genome sequences, that is, the bound DNA sequence has a high probability of containing more than one TFBS. On the other hand, One-hot encoding requires each category to be independent of each other, and the dependence between nucleotides is ignored when it is used to encode DNA sequences. In order to solve this problem, we developed a framework based on weakly-supervised. The structure proposed in this paper combines multi-instance learning with hybrid deep neural networks and uses K-mer encoding instead of one-hot encoding to process DNA sequences, this operation simulates in-vivo protein-DNA binding. First of all, we use the concepts of MIL to segments the input sequence into many overlapping instances, and then use K-mer encoding to convert these instances into high-order dependent inputs of the image-like. Then hybrid deep neural network that integrates convolutional and recurrent neural networks is used to calculate the score of all the instances contained in the same bag. Finally, it uses the “Noisy-and” method to integrate the predicted values for all instances into the final predicted values for the bag. This paper discusses the effect of K-mer encoding on the function of the framework and verifies the function of “Noisy-and” compared with other fusion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elnitski, L., Jin, V.X., Farnham, P.J., Jones, S.J.M.: Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res. 16, 1455–1464 (2006)

    Article  Google Scholar 

  2. Orenstein, Y., Shamir, R.: A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data. Nucleic Acids Res. 42, e63–e63 (2014)

    Article  Google Scholar 

  3. Furey, T.S.: ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012)

    Article  Google Scholar 

  4. Jothi, R., Cuddapah, S., Barski, A., Cui, K., Zhao, K.: Genome-wide identification of in vivo protein–DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231 (2008)

    Article  Google Scholar 

  5. Stormo, G.D.: Consensus patterns in DNA. Methods Enzymol. 183, 211–221 (1990)

    Article  Google Scholar 

  6. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  7. Zhao, X., Huang, H., Speed, T.P.: Finding short DNA motifs using permuted Markov models. J. Comput. Biol. 12, 894–906 (2005)

    Article  Google Scholar 

  8. Badis, G., et al.: Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009)

    Article  Google Scholar 

  9. Ghandi, M., et al.: gkmSVM: an R package for gapped-kmer SVM. Bioinformatics 32, 2205–2207 (2016)

    Article  Google Scholar 

  10. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)

    Article  Google Scholar 

  11. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015)

    Article  Google Scholar 

  12. Quang, D., Xie, X.: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107–e107 (2016)

    Article  Google Scholar 

  13. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 32, i121–i127 (2016)

    Article  Google Scholar 

  14. Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016)

    Article  Google Scholar 

  15. Hassanzadeh, H.R., Wang, M.D.: DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 178–183 (2017)

    Google Scholar 

  16. Shrikumar, A., Greenside, P., Kundaje, A.: Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv, 103663 (2017)

    Google Scholar 

  17. Lo Bosco, G., Di Gangi, M.: Deep learning architectures for DNA sequence classification. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS (LNAI), vol. 10147, pp. 162–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52962-2_14

    Chapter  Google Scholar 

  18. Gao, Z., Ruan, J.: Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning. Bioinformatics 33(14), 2097–2105 (2017)

    Article  Google Scholar 

  19. Annala, M., Laurila, K., Lähdesmäki, H., Nykter, M.: A linear model for transcription factor binding affinity prediction in protein binding microarrays. PloS One 6, e20059 (2011)

    Article  Google Scholar 

  20. Zhang, Q., Zhu, L., Bao, W., Huang, D.S.: Weakly supervised convolutional neural network architecture for predicting protein-DNA binding. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 679–689 (2018)

    Google Scholar 

  21. Keilwagen, J., Grau, J.: Varying levels of complexity in transcription factor binding motifs. Nucleic Acids Res. 43, e119 (2015)

    Article  Google Scholar 

  22. Siebert, M., Söding, J.: Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences. Nucleic Acids Res. 44, 6055–6069 (2016)

    Article  Google Scholar 

  23. Eggeling, R., Roos, T., Myllymäki, P., Grosse, I.: Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data. BMC Bioinformatics 16, 1–15 (2015)

    Article  Google Scholar 

  24. Zhou, T., et al.: Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl. Acad. Sci. 112(15), 4654–4659 (2015)

    Article  Google Scholar 

  25. Zhang, Q., Zhu, L., Huang, D.S.: High-order convolutional neural network architecture for predicting DNA-protein binding sites. IEEE/ACM Trans. Comput. Biol. Bioinf. 1, 1–1 (2018)

    Google Scholar 

  26. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016)

    Article  Google Scholar 

  27. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition, vol. 201. Publishing House of Electronic Industry of China, Beijing (1996)

    Google Scholar 

  28. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13, 1083–1101 (1999)

    Article  Google Scholar 

  29. Huang, D.S., Du, J.X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19, 2099–2115 (2008)

    Article  Google Scholar 

  30. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  31. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  33. Durand, T., Thome, N., Cord, M.: WELDON: weakly supervised learning of deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4743–4752 (2016)

    Google Scholar 

  34. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  35. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML 2006: Proceedings of the International Conference on Machine Learning, New York, NY, USA, pp. 233–240 (2006)

    Google Scholar 

  36. Sasaki, Y.: The truth of the F-measure. Teach. Tutor. Mater. 1(5), 1–5 (2007)

    Google Scholar 

  37. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

    Google Scholar 

  38. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. Computer Science (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University Innovation Team Project of Jinan (2019GXRC015), and in part by Key Science &Technology Innovation Project of Shandong Province (2019JZZY010324), the Natural Science Foundation of China (No. 61902337), Natural Science Fund for Colleges and Universities in Jiangsu Prov-ince (No. 19KJB520016), Jiangsu Provincial Natural Science Foundation (No. SBK2019040953), Young talents of science and technology in Jiangsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Chen, Y., Bao, W., Cao, Y. (2021). A Hybrid Deep Neural Network for the Prediction of In-Vivo Protein-DNA Binding by Combining Multiple-Instance Learning. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics