Skip to main content

Prognostic Prediction for Non-small-Cell Lung Cancer Based on Deep Neural Network and Multimodal Data

  • Conference paper
  • First Online:
  • 1429 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Abstract

Non-small-cell lung cancer (NSCLC) is the most common lung cancer with poor prognosis. Prognostic prediction is significant in improving the prognosis of NSCLC patients. Clinical information and multi-omics data including gene expression, miRNA, copy number variations, and DNA methylation are closely related to NSCLC prognosis. In this study, we propose a deep neural network to conduct prognostic prediction for NSCLC patients based on all five types of data. Given the high dimensional features of the omics data, past works reduce the feature dimension by regression analysis or correlation sorting algorithms. A shortcoming of these methods is that only a small number of features are considered. To overcome it, we propose a convolution neural network-based feature transformation method, which considers all features and extracts the abstract representations of the omics data. Based on the representations, we predict the five-year survival status of NSCLC patients. The results show that our method achieves a more precise prediction than previous work, with the areas under the curve improved from 0.8163 to 0.8508 and the accuracy improved from 0.7544 to 0.8096.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  2. Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F., Wong, K.K.: Non-small-cell lung cancers: a heterogeneous set of diseases. Nat. Rev. Cancer 14(8), 535–546 (2014)

    Article  Google Scholar 

  3. Taugner, J., et al.: Survival score to characterize prognosis in inoperable stage III NSCLC after chemoradiotherapy. Transl. Lung Cancer Res. 8(5), 593 (2019)

    Article  Google Scholar 

  4. Woodard, G.A., Jones, K.D., Jablons, D.M.: Lung cancer staging and prognosis. Lung Cancer 170, 47–75 (2016)

    Article  Google Scholar 

  5. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  6. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Beer, D.G., et al.: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8), 816–824 (2002)

    Article  Google Scholar 

  8. Sandoval, J., et al.: A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J. Clin. Oncol. 31, 4140–4147 (2013)

    Article  Google Scholar 

  9. Yanaihara, N., et al.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198 (2006)

    Article  Google Scholar 

  10. Okuda, K., Sasaki, H., Yukiue, H., Yano, M., Fujii, Y.: Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 99(11), 2280–2285 (2008)

    Article  Google Scholar 

  11. Yin, J., et al.: Copy-number variation of MCL1 predicts overall survival of non-small-cell lung cancer in a Southern Chinese population. Cancer Med. 5(9), 2171–2179 (2016)

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1, no. 2. MIT press, Cambridge (2016)

    Google Scholar 

  13. Chen, Y.C., Ke, W.C., Chiu, H.W.: Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Comput. Biol. Med. 48, 1–7 (2014)

    Article  Google Scholar 

  14. Sun, D., Wang, M., Li, A.: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(3), 841–850 (2018)

    Article  Google Scholar 

  15. Lai, Y.H., Chen, W.N., Hsu, T.C., Lin, C., Tsao, Y., Wu, S.: Overall survival prediction of non-small-cell lung cancer by integrating microarray and clinical data with deep learning. Sci. Rep. 10, 1–11 (2020)

    Article  Google Scholar 

  16. Yang, K., Wu, Y.: A prognosis-related molecular subtype for early-stage non-small-cell lung cell carcinoma by multinomics integration analysis. BMC Cancer 21(1), 1–8 (2021)

    Article  Google Scholar 

  17. Categorical Encoding Using Label-Encoding and One-Hot-Encoder. https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd, Accessed 21 Mar 2021

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 770–778 (2016)

    Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, pp. 7132–7141 (2018)

    Google Scholar 

  20. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: Proceedings of International Conference on Machine Learning, Long Beach, pp. 6105–6114 (2019)

    Google Scholar 

  21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 1492–1500 (2017)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning, Haifa (2010).

    Google Scholar 

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR, Lille (2015)

    Google Scholar 

  24. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2017). arXiv preprint arXiv:1711.05101

  25. Nicora, G., Vitali, F., Dagliati, A., Geifman, N., Bellazzi, R.: Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front. Oncol. 10, 1030 (2020)

    Article  Google Scholar 

  26. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Neurocomputing, pp. 227–236. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-76153-9_28

  27. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  28. Luo, X., et al.: Comprehensive computational pathological image analysis predicts lung cancer prognosis. J. Thorac. Oncol. 12(3), 501–509 (2017)

    Article  Google Scholar 

  29. Wang, H., Xing, F., Su, H., Stromberg, A., Yang, L.: Novel image markers for non-small-cell lung cancer classification and survival prediction. BMC Bioinf. 15(1), 1–12 (2014)

    Article  Google Scholar 

  30. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jing Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, ZS., Xu, F., Jiang, HJ., Chen, ZH. (2021). Prognostic Prediction for Non-small-Cell Lung Cancer Based on Deep Neural Network and Multimodal Data. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics