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Abstract. This paper presents a solution to create synthetic datasets
for deep learning training of convolutional neural networks (CNNs) for
plant-weed classification. We use the Unity game engine to create sim-
ulated procedural fields of sunflowers and weeds images. The visual im-
agery is generated by the photo realistic real time rendering engine in
Unity. Moreover, we include the regular red green and blue (RGB) chan-
nels plus the near infrared (NIR) channel data by including the aligned
textures from both the RGB and the NIR channel separately since Unity
doesn’t simulate NIR illumination.
Our main contribution is the simulation of the sunflower plant including
both the RGB and the NIR data based of an real image dataset with
low quality and quantity to generate improved datasets that can reliably
train CNNs for plant-weed segmentation classification. The results ob-
tained achieve high intersection over union (IoU) performance when we
build a dataset including a small subset of the synthetic images with the
high amount of plant and weed pixel data plus the available real images
for training.
Our best results show an IoU performance of 76.4% training the CNN
only with sunflower synthetic images. This is close to the results from
our previous research where the available real dataset of sugar beets had
ideal conditions of quality and quantity. Therefore, we conclude that
using synthetic imagery including both RGB and NIR data can greatly
improve plant-weed segmentation classification IoU performance when
the real images available have limited quality and quantity.
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1 Introduction

This paper serves as an extension for the paper titled ”Simulation of near in-
frared sensor in Unity for plant-weed segmentation classification” [9] presented
in the SIMULTECH 2020 conference. It presented the novel simulation of the
near infrared sensor in the Unity game engine to generate training datasets for
segmentation classification of sugar beets and weeds. In this paper we present
results for sunflower and weeds using a dataset with lower quality and quantity
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to prove the performance of the presented method with alternative non ideal
conditions while still achieving a high and reliable intersection over union (IoU)
performance.

1.1 Segmentation classification in precision agriculture

The International Society of Precision Agriculture establishes the following defi-
nition: ”Precision Agriculture is a management strategy that gathers, processes
and analyzes temporal, spatial and individual data and combines it with other
information to support management decisions according to estimated variabil-
ity for improved resource use efficiency, productivity, quality, profitability and
sustainability of agricultural production.” [19].

The main objective of precision agriculture practices is to provide more ef-
ficient farming methods for the food demand coming from the increasing earth
population [1]. Moreover, difficulties for farmers increase with the common trend
of workers leaving the country side to pursue more promising opportunities in
modern urban cities [28, 2]. Thus, robotics research for precision agriculture has
been on the rise in the recent years [42, 22, 36, 14, 11, 9].

The robotics solutions provided for precision agriculture require sensor data
to be accurately processed for the farmers to take precise decisions or for other
robots to do any physical activity required in the crop fields. One challenge of in-
terest lies in accurate weed recognition and localization, this provide the required
data to save resources in chemicals and workforce for weed removal to increase
crop yield quality [12]. In particular, convolutional neural networks (CNNs) is
providing promising results as a solution for weed detection through imagery
sensor data [26, 38]. However, these CNNs require to be trained using datasets
of images with high quality and quantity that are properly labeled to achieve reli-
able image segmentation classifications [8, 9, 13, 29]. Thus, in our previous paper
we provided a solution using the photo realistic real time rendering from a video
game engine to quickly generate imagery that serves to build reliable datasets
for CNN deep learning training. We used the Unity game engine to generate
a sugar beet dataset with the addition of the near infrared (NIR) sensor data
which wasn’t done before. This provided an improvement for the intersection
over union (IoU) evaluation of the segmentation classification performance, es-
pecially for the case where training was based exclusively on synthetic generated
images [9].

Our main contribution in this extended paper is the addition of the sun-
flower plant to the Unity environment, including the red-green-blue (RGB) and
NIR channel, based on a dataset that has low quality and quantity to prove the
capability of the solution in limited conditions while still achieving high IoU per-
formance. Thus, the rest of the paper is presented as follows: Section 2 presents
the state of the art mainly for video game engine simulations and the CNN used
for this paper, Section 3 presents the base dataset used for this research, Section
4 presents how the textures were extracted to crate the Unity procedural level,
Section 5 presents the dataset requirements for the selected CNN to be trained



Augmentation of sunflower-weed segmentation classification with Unity 3

and how these datasets were built, Section 6 shows the results and their dis-
cussion, and finally Section 7 presents the conclusions obtained from the result
behaviors.

2 Related work

This section presents the state of the art with related works to our research. First
we present researches for synthetic data generation for machine learning and
CNN research purposes using video games and video game engines approaches
as they have taken a considerable prominence in the recent years. Our solution
in this paper follows and exploit this trend as well. Then we present CNNs
researches within precision agriculture context including the selected CNN for
our tests.

Simulations in video games and video game engines have been considered a
data source for machine learning research purposes [39]. Video games are capable
of producing large amounts of pixel and command data, which is highly valuable
for this type of research [44, 20]. However, video game engines are also taking
prominence in the research field as video games are constrained to the game
hard coded rules, thus creating new environments with custom graphics and
behaviors becomes a key factor to create relevant and innovative researches [23].
Their photo realistic imagery provided by their real time rendering engines makes
them an attractive solution to easily and safely generate data resembling real
world problems [9, 18].

The most used video game engines are Unity3D [43], hereinafter referred to
as ”Unity”, and Unreal Engine 4 [4], hereinafter referred to as ”Unreal”, because
of their promising imagery available for free to the users. Both engines are in
constant development surpassing each other in different metrics, but one trend
that seems to be constant is that Unreal seeks maximum photo realism while
Unity focus on providing a high level of compatibility [7, 35].

The video game engines have taken prominence in the recent years for self
driving car simulations [16, 24, 21, 5]. In [17] a visually and physically realistic
simulation scenario in Unity is proposed to generate the required data to train
a CNN for a self driving shuttle. In [6] a pedestrian-vehicle environment is built
to generate synthetic images to train a neural network through UnrealCV. In
[45] Unity is used for car simulations to study sensor reaction behaviors. In [31]
over 480 000 labeled images were generated from the game Grand Theft Auto
V from highway driving scenes which provided training data to achieve good
estimates from the driver’s perspective to lane marking, distance to cars and
angle of driving. These results were compared to a Unity developed environment
that was able to test certain scenarios that were not possible by the constraint
game environment of Grand Theft Auto V.

In [37] Unreal was used to generate multiple views of the Soyuz spacecraft
to train the GoogLeNet CNN to determine its position and orientation. The
results provided a position accuracy of 92.53 percent with an error of 1.2 m and
an maximum orientation error of 7.6 degrees.
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In [32] Unreal was used to create an image dataset to train a neural network
to recognize deformed objects. The results achieved a correct recognition between
50 and 60 percent.

The synthetic data generation for training of CNNs in the agriculture context
remains considerably unexplored as to the best of our knowledge our presented
paper in [9] was the first to include the NIR data for this type of simulations.
It is worth noting that this data is key in precision agriculture as it is one of
the measurements that directly represents plant health through the normalized
difference vegetation index (NDVI). Additionally, it increases performance of
CNN for segmentation classification [34].

In [13] sugar beets were simulated but only including the RGB channels
using Unreal since the main focus was to achieve a high level of photo realism
for crop-weed classification, achieving 61.1% for the mean IoU evaluation using
only synthetic data [13, 9].

In our previous research in [9], we presented the near infrared simulation
using Unity since we required our tools to be widely available to other users,
including Linux and robotic operating system (ROS) users for which Unreal
presented lesser ease of use. The plant selected for simulation was the sugar beet
and considerable effort went into gathering good quality of real images to extract
the textures for plant simulation. We selected sugar beets because of the large
dataset available from the 2016 Sugar Beets Dataset Recorded at Cam-pus Klein
Altendorf in Bonn [12] which we used for comparison purposes. Additionally, it
served to make a comparison with the performance form the Unreal synthetic
dataset which presented superior traits for the RGB segmentation classification
IoU, however a different CNN was used.

2.1 CNNs in precision agriculture

As mentioned, the main purpose of training CNNs for precision agriculture is
to identify the location of plants and weeds in the field crop required to en-
hance decision making for farmers and robots [29, 10]. One of the main solutions
to collect crop image nowadays is the use of unmanned aerial vehicles (UAV),
which can carry sensors while flying over the crops, thus quickly gathering large
amount of high quality images [25, 10]. Thus, in [40] it was developed a system
for reliable plant-weed classification based on UAV hardware limitations. The
Jetson TX2 was integrated in the UAV system to be able to handle SegNet.
Then, in [41] further efforts were made to include multispectral sensor data in
the UAV CNN training. In [30] a different approach is made to instead decrease
the computational requirements of a CNN for farming robots. They exploit the
repetitive structure of crop fields achieving labeling times of around 1 minute
with an accuracy of more than 95% for sugar beets.

In [29] presents a fully convolutional network with an encoder-decoder struc-
ture. This incorporates spatial information by considering images sequences, thus
the observable crop arrangement is exploited following the research in [30]. The
new system provides an accuracy improvement for crop-weed classification in
unseen fields without the need of retraining the model.
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The main CNN we chose for this research was developed in [33] which was
tested for multiple types images including plant-weed segmentation classification
with sugar beets. It provided, a 80.1% for the mean IoU and 98.5% for the mean
accuracy using the dataset from [12]. More details about its setup are mentioned
in Section 5.

It is important to note that other approaches have been studied to achieve
dataset augmentation without simulation procedures. In [15] the dataset images
were rotated, scaled and mirrored to generate more images variation to extend
the training quality. Then the research was focused on developing an architecture
of two networks, the first classifies connected patches of plant from the soil, then
the second makes the label classification. Furthermore, in [27] an approach to
overcome dense weeds and overlap with plants is presented using ResNet-10
including the Adaptative Affinity Fields method.

3 Sunflower dataset

The main purpose in this research is to study the support that this method can
provide in situations with limited resources. We used a sunflower dataset with
146 images of 1296x964, including the RGB, NIR and labeled versions of each
image. From these, 105 images were taken for classification evaluation, 34 for
a training dataset, and 7 for texture extraction to simulate the sunflower plant
and weeds in Unity. Additionally, no camera calibration matrix was available,
therefore the alignment between RGB, NIR and the labeled version was not
perfect. The brightness exposure in the images was also high, making some of
the leaf features considerably uniform and hard to distinguish, especially in the
NIR channel which can crate confusion with some of the rocks in the ground as
shown in Figure 1.

This creates a difficult scenario to perform good CNN deep learning training.
Therefore, the addition of synthetic images generated with Unity can provide
extra support to achieve higher levels of classification accuracy for the trained
network.

4 Simulated crop

In this research we simulated a sunflower field crop in Unity, including weeds.
Similarly to our previous research, we extracted the textures from the dataset
images taken with a JAI camera sensor that includes the RGB and NIR channels.
However, in this paper the main purpose is to study the support that this method
can provide in situations with limited resources. Thus, only 7 images were used
images to extract the textures for both the sunflower plants and the weeds. With
these few images, multiple random variations were created for both the sunflower
plants and weeds.
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4.1 Unity level

First, the weeds are extracted using the same method from the previous research.
The labeled version of the images were used to isolate the weeds creating 7
weed textures which were included in simple quads during the crop procedural
simulation, Figure 2 shows an example.

The sunflower plant textures where extracted using the gimp image editor
software and the labeled version of the images [3]. However, a few adjustments
by hand were needed since the labeled version of the images included some pix-
els from the ground behind the plants. The sugar beet leaves are homogeneous
enough for the textures to be included in randomly bent virtual leaves in our pre-
vious paper. For this case, the sunflower structure is more sophisticated since the
leaves grow in a repetitive pattern where two leaves grow out of a tiny ”mouth”
that comes from the center of the previous two leaves, each pair is rotated in
approximately 90 degrees as shown in Figure 1. Therefore the procedural code
required the leaf textures to be specific for the plant structure section dividing
the leaves: in the lower ”root” leaves, upper ”head” leaves, and ”Center” leaves.
Figure 3 shows the textures obtained by cropping the leaves from one of the
real images available, including its RGB and NIR version, the masked version
is obtained directly in Unity by using shaders with plain color. The leaves were
not centered inside the texture images to match the 3D leaf UV mapping which
is the system 3D graphics engines use to map texture pixels over 3D meshes.
The center leaves are centered since they were added in quad polygons instead
for simplicity purposes.

The obtained textures were added to the 3D meshes used for the sugar beet
in our previous research since they were simple rectangular meshes that were
further bent. Figure 4 shows how the obtained textures are placed over the 3D
mesh through the shading system of Unity where a the transparency from the
texture is taken into account for the mesh rendering.

The sunflowers from the dataset where at a young state when the weeds
grow, thus the simulated structure needs to be equivalent. The plant stem is
not simulated for simplicity purposes since it is not visible in the images from
the dataset and the leaves were divided into head leaves, root leaves and center
leaves (the small ”mouth” on top of the plant) as mentioned. The variations
included: 6 root leaves variations, 6 head leaves variations and 3 center leaves
variations. Figure 5 shows a comparison between a synthetic generated image
and a real image, comparing both RGB and NIR versions. Then, Figure 6 shows
one procedural field generated for image extraction, including the RGB, NIR and
Masked versions which changes the textures by plain colors to server as labels
for the deep learning training.

The procedural field provides several random variations for as many images
as required, thus 1000 images including each version (RGB, NIR and labeled)
were generated, similarly to our previous research where 1034 sugar beet images
where generated. Next section shows how these were distributed for the CNN
deep learning training.
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5 CNN deep learning training

The CNN used for this research is ”Bonnet: An Open-Source Training and De-
ployment Framework for Semantic Segmentation in Robotics” [33], hereinafter
referred to as ”Bonnet”. This network was designed partially for plant-weed seg-
mentation classification providing very promising results. Bonnet requires the
datasets to be distributed into three subsets named train, validation, and test.

5.1 Dataset distribution

The synthetic and real datasets distribution is summarized in Table 1. The rows
show the dataset image dimensions and the amount of images per subset for
Bonnet. The image dimensions were based on: The JAI camera resolution for
the real images, the common image resolution for a power of two texture in a
game engine for the synthetic images and a smaller image dataset, and a smaller
power of two for the augmented case to combine both type of images into a
common dataset.

The columns show the datasets generated. The Real and Unity dataset were
built using all the real and synthetic images available for training respectively
and the Augmented dataset is the combination of both datasets. Then the Re-
duced dataset is made of a total of 34 Unity synthetic images to match the
amount of images from the real dataset for a direct performance comparison.
Finally the Reduced augmented dataset is the combination of the Real dataset
and the Reduced dataset.

Table 1: Sunflower datasets features.
Feature for RGB and
RGBN input

Real Unity Augmented Reduced
Reduced
augmented

Dimensions (WxH
pixels)

1296x964 1024x1024 512x512 1024x1024 512x512

Train (number of im-
ages)

700 25
700 Unity +
25 real

25
25 Unity +
25 real

Validation (number
of images)

150 5
150 Unity +
5 real

5
5 Unity +
5 real

Test (number of im-
ages)

150 4
150 Unity +
4 real

4
4 Unity +
4 real

Table 2 shows the dataset distribution used in our previous research for the
sugar beet CNN training, where our main focus was to evaluate the addition
of the NIR in ideal conditions, that is, having enough real images for training
and classification. In that case the real and the Unity datasets each had 1034
images and the ”Augmented” case which is the combination of both had the
1034 images plus 300 real images. This left another 820 additional real images
for classification evaluation [9].
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Table 2: Sugar beet datasets features.
Feature for RGB and RGBN input Real Unity Unity + Real

Dimensions (WxH pixels) 1296x966 1024x1024 512x512

Train (number of images) 734 734 734 Unity +100 real

Validation (number of images) 150 150 150 Unity +100 real

Test (number of images) 150 150 150 Unity +100 real

5.2 Evaluation method

The main key performance indicators (KPI) to evaluate the presented method
are the intersection over union (IoU) and the accuracy. These are measurements
for the segmentation classification performance which are applied to each class
label: plants, weeds and ground. Then, a mean is calculated to obtain an overall
evaluation.

The accuracy is calculated using Equation 1, where Tpi is a true positive
for a pixel i, meaning it is classified correctly for a given label (a plant pixel is
classified as a plant pixel). Then, Fpi, Fni and Tni are the false positive, false
negative and true negative respectively. The true negative is the outcome when
a pixel is classified correctly as not a given class, for example, a ground or weed
pixel is not classified as a plant pixel.

The sum of the four types of outcomes gives all the pixels of an image, thus
the accuracy is obtained by summing all the true positives and true negatives
and dividing the result by the sum of all the pixels of the image.

Accuracylabel =
N∑
i=1

Tpi + Tni

Tpi + Tni + Fpi + Fni
(1)

The IoU is calculated using Equation 2, where the main difference with the
accuracy is that the true negatives are not taken into account. Using mainly the
true positives as the main variable to determine if the classification is good. This
means that a plant IoU results will be high only if the plant pixels are correctly
classified as plants, the same being the case for the rest of the class labels.

IoUlabel =
N∑
i=1

Tpi

Tpi + Fpi + Fni
(2)

Usually the IoU takes more prominence within the evaluation of a segmen-
tation classification method since it is directly proportional only to the true
positives while the accuracy results can also increase with the true negatives.
This is a key factor since it is possible to obtain high accuracy because true neg-
atives are not likely to be low, thus, increasing the accuracy result. For example,
is not very likely that the field ground will be classified as a plant, thus even if
the true positives to classify the plant are not good, the final accuracy will still
be very high since there are a lot more background pixels than plant pixels. This
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means that to obtain a high IoU the classification must correctly classify the
pixels for a given class independently of the pixels belonging to other classes.

The results obtained the IoU and accuracy for each class label are multiplied
by 100 to present them in percentage. Then, the mean between the three classes
is calculated for an overall result.

6 Results

This section presents the results for the segmentation classification after the
training Bonnet using the datasets presented in Table 1.

Table 3 shows the mean result over the classification of 105 sunflower real
images for each class and for the mean calculated over the classes in each image.
Additionally we include Table 4 from our previous paper including mean result
for the classification over 820 images using the datasets presented in Table 2,
the IoU graph for these results is presented in Figure 9 [9].

In the presented tables, the results for the classification over each class label
is presented, including results using the RGB data and using the RGB and NIR
data which we address as RGBN. The tables show in the first rows the IoU over
each class and the mean, then it shows the accuracy over each class and the
mean in the second half of the rows.

The columns represent the datasets used during the CNN deep learning train-
ing, the Real dataset with all the available real images for training, the Unity
dataset with all the available synthetic images for training. Then, the Augmented
case which we previously called ”Unity + Real” is the combination of both, which
was all the available synthetic images + 300 real images, however for the sun-
flower case we used all of the available ones since the amount available (34) was
low. Then the Reduced and Reduced augmented dataset uses only 34 synthetic
images and 34 synthetic plus 34 real images respectively.

6.1 Discussion

The results presented in Table 3 and Figure 7 show that the best mean per-
formance come from the classification with the CNN trained with the Reduced
Augmented dataset. It is worth mentioning that the images selected for the Re-
duced dataset were carefully hand picked to include good quality images that
contain good amounts of pixel data for plants and weeds. The ground was not
greatly considered for this assessment since the texture has a very low level of
variation because of the focus on plant and weed classification.

In the IoU classification results, the addition of the NIR data to the training
datasets brought an improvement for the mean result for the performance from
each dataset training. However, the individual class classification for the sun-
flower plant was affected negatively by the addition of the NIR channel for some
of the training datasets, this is can be mainly due the high brightness mentioned
for Figure 1 where some of the features get lost by turning fully white similar to
some rocks from the ground.
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Table 3: Classification mean results (in percentage) for classification over 105
sunflower images used for evaluation performance.

Method Real Unity Augmented Reduced Reduced Augmented

Plant IoU RGB 70.34 85.02 78.05 78.96 78.97

Plant IoU RGBN 65.74 83.45 81.77 76.84 80.3

Weed IoU RGB 38.57 44.77 38.36 41.49 47.91

Weed IoU RGBN 43.85 47.43 54.88 53.98 57.92

Ground IoU RGB 98.04 98.13 97.17 98.22 98.01

Ground IoU RGBN 98.53 97.97 98.61 98.37 98.72

mean IoU RGB 68.98 75.97 71.19 72.89 74.96

mean IoU RGBN 69.98 76.29 78.42 76.4 78.98

Plant Accuracy RGB 99.15 99.76 99.69 99.68 99.72

Plant Accuracy RGBN 99.42 99.76 97.83 99.66 99.76

Weed Accuracy RGB 97.92 98.50 97.83 98.42 98.48

Weed Accuracy RGBN 99.59 98.70 98.87 99.99 99.99

Ground Accuracy RGB 99.98 99.99 99.99 99.99 99.99

Ground Accuracy RGBN 99.98 99.99 99.99 99.99 99.99

mean Accuracy RGB 99.02 99.42 99.17 99.37 99.39

mean Accuracy RGBN 98.66 99.49 99.54 99.45 99.57

The most surprising result was the high IoU for the CNN trained with the
Reduced and Reduced Augmented datasets. This can be mainly due the possible
noise that comes with the randomness with the Unity simulation, thus the best
performance for this case comes from manually selecting the best images from
from the Unity dataset to create the Reduced dataset and complementing it with
the real dataset. Still, the high amount of images from the Unity dataset gets
the best mean results using only the RGB channels, this makes evident that
the quality from the NIR data from this dataset is considerably low, but not
negligible for improvement.

Figure 7 and Figure 9 show the IoU results graph for sunflower and sugar
beets respectively. Comparing these, it can be seen that the performance with
the sunflower is generally higher and the Reduced Augmented performance comes
really close to that of the Real one in the sugar beets case [9].

Only the mean accuracy is shown in Figure 8 because most of the variations
are highly random for each class label as it can be seen in Table 3 since they were
very high (between 97 and 99.99 percent). Thus, the IoU represent the most sig-
nificant validation method while the accuracy becomes an standard verification
that the trend is in fact consistent. Adding the NIR channel does increase the
mean result and the best performance comes from using the Reduced Augmented
dataset to train the CNN.



Augmentation of sunflower-weed segmentation classification with Unity 11

Table 4: Classification mean results (in percentage) for classification over 820
sugar beet images used for evaluation performance [9].

Method Real Unity Unity + Real

Plant IoU RGB 83.35 60.83 73.51

Plant IoU RGBN 83.07 71.20 75.61

Weed IoU RGB 50.49 22.54 31.57

Weed IoU RGBN 54.09 29.57 36.82

Ground IoU RGB 98.56 98.14 98.41

Ground IoU RGBN 98.53 97.97 98.73

mean IoU RGB 77.47 60.50 67.83

mean IoU RGBN 78.56 66.25 70.38

Plant Accuracy RGB 99.04 97.23 98.63

Plant Accuracy RGBN 99.18 98.33 98.70

Weed Accuracy RGB 98.93 97.75 98.59

Weed Accuracy RGBN 99.03 98.18 98.70

Ground Accuracy RGB 99.99 99.97 99.99

Ground Accuracy RGBN 99.99 99.97 99.99

mean Accuracy RGB 99.32 98.18 99.07

mean Accuracy RGBN 99.40 98.82 99.16

7 Conclusion

The addition of the NIR channel to the training datasets for the selected CNN
did provide a significant improvement for the sunflower-weed segmentation clas-
sification for both the intersection over union and the accuracy evaluation meth-
ods. This validates the addition of the NIR channel as clear solution to increase
performance for plant-weed classification segmentation for sunflowers for both
real images and synthetic images, including cases were the original dataset has
both qualitative and quantitative limitations.

It is clear that any performance improvement comes directly from the quality
of the images in the dataset, moreover from the quality of the data in each
channel. The mean IoU performance increased considerably when hand-picked
images were selected to build a smaller dataset which included only good quality
images from the synthetic dataset plus the real images available, obtaining the
best result. This provided a mean IoU result of 78.98% which is even higher
than the best mean IoU result from our previous research of 78.56% using a
real dataset of 1034 real images. Another important factor is that the amount of
images for classification evaluation was higher in our previous research for sugar
beets, 820 real images compared to 105 real images in our sunflower case.

The obtained results show that a dataset with a high amount of images
could potentially add noise to the CNN deep learning training which provides
a sub-optimal overall performance and it is advisable to consider creating sub-
sets selecting the best quality images by hand, especially for images that are
synthetically created with high levels of randomness.
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This concludes part of our future work established in our previous paper
where we mentioned we would add more plants to the simulator. It was possible
to reuse the 3D mesh we previously had for the sugar beets and just replace the
textures but the leveled structure of the sunflower plant made it a requirement
that the procedural code followed certain pattern for the leaves to build realistic
sunflowers for image generation.
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(a) Sunflower dataset RGB image sample.

(b) Sunflower dataset NIR image sample.

Fig. 1: Images from the sunflower real dataset. In the NIR image (below) it can
be seen that the brightness makes some of the rocks on the image bottom look
almost fully white as one of the sunflower leaves.
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(a) RGB. (b) Labeled.

(c) Cropped.

Fig. 2: Weed texture extracted from sunflower dataset, original RGB on the left,
labeled version on the right, Green labels are the sunflower plants and red labels
are the weeds. Bottom shows texture showing only the weeds cropped.
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(a) Sunflower RGB. (b) Sunflower NIR.

(c) Root leaf RGB. (d) Root leaf NIR.

(e) Head leaf RGB. (f) Head leaf NIR.

(g) Center leaf RGB. (h) Center leaf NIR.

Fig. 3: Texture extraction from dataset image for Unity crop simulation.
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(a) 3D leaf with shaders. (b) 3D leaf mesh.

Fig. 4: 3D leaf mesh used to procedurally build sunflower plants.

(a) Unity RGB. (b) Unity NIR.

(c) Real RGB. (d) Real NIR.

Fig. 5: Comparison between synthetic sunflower in unity (top) and a real one
(bottom), including RGB (left) and NIR (right) comparison.
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(a) Unity RGB field.

(b) Unity NIR field.

(c) Unity labeled masks field.

Fig. 6: Sunflower field in Unity: RGB (top), NIR (middle) and labeled masks
(bottom).
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Fig. 7: Sunflower intersection over union classification results from Table 3 using
Bonnet trained with different datasets from Table 1.

Fig. 8: Sunflower accuracy classification mean results from Table 3 using Bonnet
trained with different datasets from Table 1.
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Fig. 9: Sugar beets intersection over union classification results from Table 4
using Bonnet CNN trained with different datasets from Table 2 [9].


