
Towards Testing ACID Compliance
in the LDBC Social Network Benchmark

Jack Waudby1, Benjamin A. Steer2, Karim Karimov3, József Marton4,
Peter Boncz5, and Gábor Szárnyas3,6

1 Newcastle University, School of Computing, j.waudby2@newcastle.ac.uk
2 Queen Mary University of London, b.a.steer@qmul.ac.uk

3 Budapest University of Technology and Economics
Department of Measurement and Information Systems
4 Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics
5 CWI, Amsterdam, boncz@cwi.nl

6 MTA-BME Lendület Cyber-Physical Systems Research Group
szarnyas@mit.bme.hu

Abstract. Verifying ACID compliance is an essential part of database
benchmarking, because the integrity of performance results can be un-
dermined as the performance benefits of operating with weaker safety
guarantees (at the potential cost of correctness) are well known. Tradi-
tionally, benchmarks have specified a number of tests to validate ACID
compliance. However, these tests have been formulated in the context of
relational database systems and SQL, whereas our scope of benchmarking
are systems for graph data, many of which are non-relational. This paper
presents a set of data model-agnostic ACID compliance tests for the
LDBC (Linked Data Benchmark Council) Social Network Benchmark
suite’s Interactive (SNB-I) workload, a transaction processing benchmark
for graph databases. We test all ACID properties with a particular em-
phasis on isolation, covering 10 transaction anomalies in total. We present
results from implementing the test suite on 5 database systems.

1 Introduction

Context. Organizations often complement their existing data processing
pipelines with systems dedicated to analyzing graphs such as graph databases [7],
graph analytical frameworks [6], and graph streaming engines [8]. The category
of graph databases broadly refers to transactional systems that use the property
graph data model, where nodes and edges can be annotated with key-value pairs
of attributes. Such systems typically use a schema-free data model and pro-
vide operators with stronger expressive power than relational algebra, including
transitive reachability, shortest path and regular path queries [2].

To stimulate competition between graph database vendors and allow fair
comparison of their systems, several benchmarks have been proposed to capture
realistic workloads, including those of the Linked Data Benchmark Council

(LDBC) [3]. In particular, the LDBC’s Social Network Benchmark Interactive
workload (SNB-I) was designed to target transactional graph databases [10]. To
provide protection against violations of correctness arising from the concurrent
execution of transactions and system failures, such transactional databases provide
Atomicity, Consistency, Isolation, and Durability (ACID) guarantees.
Problem. Verifying ACID compliance is an important step in the benchmarking
process for enabling fair comparison between systems. The performance benefits of
operating with weaker safety guarantees are well established [13] but this can come
at the cost of application correctness. To enable apples vs. apples performance
comparisons between systems it is expected they uphold the ACID properties.
Currently, LDBC provides no mechanism for validating ACID compliance within
the SNB-I workflow. A simple solution would be to outsource the responsibility of
demonstrating ACID compliance to benchmark implementors. However, the safety
properties claimed by a system often do not match observable behaviour [14].
To mitigate this problem, benchmarks such as TPC-C [20] include a number of
ACID tests to be executed as part of the benchmarking auditing process. However,
we found these tests cannot readily be applied to our context, as they assume
lock-based concurrency control and an interactive query API that provides clients
with explicit control over a transaction’s lifecyle. Modern data systems often use
optimistic concurrency control mechanisms [17] and offer a restricted query API,
such as only executing transactions as stored procedures [19]. Further, tests that
trigger and test row-level locking phenomena, for instance, do not readily map
on graph database systems. Lastly, we found these tests are limited in the range
of isolation anomalies they cover.
Contribution. This paper presents the design of an implementation agnostic
ACID compliance test suite for LDBC SNB-I7. Our guiding design principle was
to be agnostic of system-level implementation details, relying solely on client
observations to determine the occurrence of non-transactional behaviour. Thus
all systems can be subjected to the same tests and fair comparisons between
SNB-I performance results can be drawn. Tests are described in the context
of a graph database employing the property graph data model [2]. Reference
implementations are given in Cypher [12], the de facto standard graph query
language. Particular emphasis is given to testing isolation, covering 10 known
anomalies including recently discovered anomalies such as Observed Transaction
Vanishes [4] and Fractured Reads [5]. The test suite has been implemented for
5 database systems.8 A conscious decision was made to keep tests relatively
lightweight, as to not add significant overhead to the benchmarking process.
Structure. The remainder of the paper is structured as follows: Section 2 provides
an overview of the SNB-I workload. Sections 3 and 4, describe the Atomicity, and
Isolation tests, respectively. In Section 5 we present results from running our tests

7 We acknowledge verifying ACID-compliance with a finite set of tests is not possible.
However, the goal is not an exhaustive quality assurance test of a system’s safety
properties but rather to demonstrate that ACID guarantees are supported.

8 Available at https://github.com/ldbc/ldbc_acid.

https://github.com/ldbc/ldbc_acid

on real-world systems. We discuss related work in Section 6 and briefly touch on
consistency and durability test in Section 7 before concluding in Section 8.

2 SNB Interactive Workload

The goal behind LDBC’s Social Network Benchmark Interactive workload was to
motivate the maturing of transactional graph processing systems. SNB-I defines
a schema to represent a network of Persons who communicate through Posts
in Forums. SNB-I consists of 14 complex read and 7 short read queries. There
are 8 transactional update operations that insert vertices and edges to the graph.
Whilst it is expected a system provides ACID transactions, from a transaction
processing perspective, there is little contention in SNB-I’s transactions. This
makes the occurrence of non-transactional behaviour rare and unfortunately
makes the already defined update operations unsuitable for testing most of the
ACID properties. To address this limitation, this paper presents a test suite of
new transactions. These tests are defined on a small core of LDBC SNB schema
(extended with properties for versioning) given in Figure 1.

Fig. 1: Graph schema.

Read Uncommitted
G0

Read Committed
+ G1{a-c}

Item Cut Isolation
IMP

Predicate Cut Isolation
+ PMP

Monotonic
Atomic View

+ OTV

Cursor Stability
+ G-Cursor(x), LU

Read Atomic
+ FR

Snapshot Isolation
+ LU

Repeatable Read
+ WS (G2-Item)

Serializability

Fig. 2: Hierarchy of isolation levels as described in [5].
All anomalies are covered except G-Cursor(x).

3 Atomicity

Atomicity ensures that either all of a transaction’s actions are performed, or
none are. Two atomicity tests have been developed. Atomicity-C checks for
every successful commit message a client receives that any data items inserted
or modified are subsequently visible. Atomicity-RB checks for every aborted
transaction that all its modifications are not visible. Tests are executed as follows:
(i) load a graph of Person nodes (Listing 1.1) each with a unique id and a set

of emails; (ii) a client executes a full graph scan counting the number of nodes,
edges and emails (Listing 1.4) using the result to initialize a counter committed;
(iii) N transaction instances (Listing 1.2, Listing 1.3) of the required test are
then executed, committed is incremented for each successful commit; (iii) repeat
the full graph scan, storing the result in the variable finalState; (iv) perform
the anomaly check: committed=finalState.

The Atomicity-C transaction (Listing 1.2) randomly selects a Person, cre-
ates a new Person, inserts a KNOWS edge and appends an email. The Atomicity-
RB transaction (Listing 1.3) randomly selects a Person, appends an email and
attempts to insert a Person only if it does not exist. Note, for Atomicity-RB
if the query API does not offer a ROLLBACK statement constraints such as node
uniqueness can be utilized to trigger an abort.

CREATE (:Person {id: 1, name: 'Alice', emails: ['alice@aol.com']}),
(:Person {id: 2, name: 'Bob', emails: ['bob@hotmail.com', 'bobby@yahoo.com']})

Listing 1.1: Cypher query for creating initial data for the Atomicity transactions.

«BEGIN»
MATCH (p1:Person {id: $person1Id})
CREATE (p1)-[k:KNOWS]->(p2:Person)
SET

p1.emails = p1.emails + [$newEmail],
p2.id = $person2Id,
k.creationDate = $creationDate

«COMMIT»

Listing 1.2: Atomicity-C Tx.

«BEGIN»
MATCH (p1:Person {id: $person1Id})
SET p1.emails = p1.emails + [$newEmail]
«IF» MATCH (p2:Person {id: $person2Id}) exists
«THEN» «ABORT» «ELSE»
CREATE (p2:Person {id: $person2Id, emails: []})
«END»
«COMMIT»

Listing 1.3: Atomicity-RB Tx.

MATCH (p:Person)
RETURN count(p) AS numPersons, count(p.name) AS numNames, sum(size(p.emails)) AS numEmails

Listing 1.4: Atomicity-C/Atomicity-RB: counting entities in the graph.

4 Isolation

The gold standard isolation level is Serializability, which offers protection against all
possible anomalies that can occur from the concurrent execution of transactions.
Anomalies are occurrences of non-serializable behaviour. Providing Serializability
can be detrimental to performance [13]. Thus systems offer numerous weak
isolation levels such as Read Committed and Snapshot Isolation that allow a higher
degree of concurrency at the cost of potential non-serializable behaviour. As such,
isolation levels are defined in terms of the anomalies they prevent [13,4]. Figure 2
relates isolation levels to the anomalies they proscribe.

SNB-I does not require systems to provide Serializability [3]. However, to allow
fair comparison systems must disclose the isolation level used during benchmark
execution. The purpose of these isolation tests is to verify that the claimed

isolation level matches the expected behaviour. To this end, tests have been
developed for each anomaly presented in [5]. Formal definitions for each anomaly
are reproduced from [1,5] using their system model which is described below.
General design considerations are discussed before each test is described.

4.1 System Model

Transactions consist of an ordered sequence of read and write operations to an
arbitrary set of data items, book-ended by a BEGIN operation and a COMMIT
or an ABORT operation. In a graph database data items are nodes, edges and
properties. The set of items a transaction reads from and writes to is termed its
item read set and item write set. Each write creates a version of an item, which
is assigned a unique timestamp taken from a totally ordered set (e.g. natural
numbers) version i of item x is denoted xi. All data items have an initial unborn
version ⊥ produced by an initial transaction T⊥. The unborn version is located at
the start of each item’s version order. An execution of transactions on a database
is represented by a history, H, consisting of (i) each transaction’s read and write
operations, (ii) data item versions read and written and (iii) commit or abort
operations.

There are three types of dependencies between transactions, which capture
the ways in which transactions can directly conflict. Read dependencies capture
the scenario where a transaction reads another transaction’s write. Antidepen-
dencies capture the scenario where a transaction overwrites the version another
transaction reads. Write dependencies capture the scenario where a transaction
overwrites the version another transaction writes. Their definitions are as follows:

Read-Depends Transaction Tj directly read-depends (wr) on Ti if Ti writes
some version xk and Tj reads xk.

Anti-Depends Transaction Tj directly anti-depends (rw) on Ti if Ti reads some
version xk and Tj writes x’s next version after xk in the version order.

Write-Depends Transaction Tj directly write-depends (ww) on Ti if Ti writes
some version xk and Tj writes x’s next version after xk in the version order.

Using these definitions, from a history H a direct serialization graph DSG(H)
is constructed. Each node in the DSG corresponds to a committed transaction and
edges correspond to the types of direct conflicts between transactions. Anomalies
can then be defined by stating properties about the DSG.

The above item-based model can be extended to handle predicate-based
operations [1]. Database operations are frequently performed on set of items
provided a certain condition called the predicate, P holds. When a transaction
executes a read or write based on a predicate P , the database selects a version for
each item to which P applies, this is called the version set of the predicate-based
denoted as Vset(P). A transaction Tj changes the matches of a predicate-based
read ri(Pi) if Ti overwrites a version in Vset(Pi).

4.2 General Design

Isolation tests begin by loading a test graph into the database. Configurable
numbers of write clients and read clients then execute a sequence of transactions
on the database for some configurable time period. After execution, results from
read clients are collected and an anomaly check is performed. In some tests an
additional full graph scan is performed after the execution period in order to
collect information required for the anomaly check.

The guiding principle behind test design was the preservation of data item’s
version history – the key ingredient needed in the system model formalization
which is often not readily available to clients, if preserved at all. Several anomalies
are closely related, tests therefore had to be constructed such that other anomalies
could not interfere with or mask the detection of the targeted anomaly. Test
descriptions provide (i) informal and formal anomaly definitions, (ii) the required
test graph, (iii) description of transaction profiles write and read clients execute,
and (iv) reasoning for why the test works.

4.3 Dirty Write

Informally, a Dirty Write (Adya’s G0 [1]) occurs when updates by conflicting
transactions are interleaved. For example, say Ti and Tj both modify items {x, y}.
If version xi precedes version xj and yj precedes version yi a G0 anomaly has
occurred. Preventing G0 is especially important in a graph database in to order
to maintain Reciprocal Consistency [21].
Definition. A history H exhibits phenomenon G0 if DSG(H) contains a directed
cycle consisting entirely of write-dependency edges.
Test. Load a test graph containing pairs of Person nodes connected by a KNOWS
edge. Assign each Person a unique id and each Person and KNOWS edge a
versionHistory property of type list (initially empty). During the execution
period, write clients execute a sequence of G0 TW instances, Listing 1.5. This
transaction appends its ID to the versionHistory property for each entity in
the Person pair it matches. Note, transaction IDs are assumed to be globally
unique. After execution, a read client issues a G0 TR for each Person pair in the
graph, Listing 1.6. Retrieving the versionHistory for each entity (2 Persons
and 1 KNOWS edge) in a Person pair.
Anomaly check. For each Person pair in the test graph: (i) prune each
versionHistory list to remove any version numbers that do not appear in
all lists; needed to account for interference from Lost Update anomalies (Sec-
tion 4.8), (ii) perform an element-wise comparison between versionHistory lists
for each entity, (iii) if lists do not agree a G0 anomaly has occurred.
Why it works. Each G0 TW effectively creates a new version of a Person pair.
Appending the transaction ID preserves the version history of each entity in
the Person pair. In a system that prevents G0, each entity of the Person pair
should experience the same updates, in the same order. Hence, each position in
the versionHistory lists should be equivalent. The additional pruning step is
needed as Lost Updates overwrite a version, effectively erasing it from the history
of a data item.

MATCH
(p1:Person {id: $person1Id})
-[k:KNOWS]->(p2:Person {id: $person2Id})

SET p1.versionHistory = p1.versionHistory + [$tId]
SET p2.versionHistory = p2.versionHistory + [$tId]
SET k.versionHistory = k.versionHistory + [$tId]

Listing 1.5: Dirty Write (G0) TW.

MATCH (p1:Person {id: $person1Id})
-[k:KNOWS]->(p2:Person {id: $person2Id})
RETURN

p1.versionHistory AS p1VersionHistory,
k.versionHistory AS kVersionHistory,
p2.versionHistory AS p2VersionHistory

Listing 1.6: Dirty Write (G0) TR.

4.4 Dirty Reads

Aborted Reads

Informally, an Aborted Read (G1a) anomaly occurs when a transaction reads the
updates of a transaction that later aborts.
Definition. A history H exhibits phenomenon G1a if H contains an aborted
transaction Ti and a committed transaction Tj such that Tj reads a version
written by Ti.
Test. Load a test graph containing only Person nodes into the database. Assign
each Person a unique id and version initialized to 1; any odd number will suffice.
During execution, write clients execute a sequence of G1a TW instances, Listing 1.7.
Selecting a random Person id to populate each instance. This transaction
attempts to set version=2 (any even number will suffice) but always aborts.
Concurrently, read clients execute a sequence of G1a TR instances, Listing 1.8.
This transaction retrieves the version property of a Person. Read clients store
results, which are pooled after execution has finished.
Anomaly check. Each read should return version=1 (or any odd number).
Otherwise, a G1a anomaly has occurred.
Why it works. Each transaction that attempts to set version to an even
number always aborts. Therefore, if a transaction reads version to be an even
number, it must have read the write of an aborted transaction.

MATCH (p:Person {id: $personId})
SET p.version = 2
«SLEEP($sleepTime)»
«ABORT»

Listing 1.7: Aborted Read (G1a) TW.

MATCH (p:Person {id: $personId})
RETURN p.version

Listing 1.8: Aborted Read (G1a) TR.

MATCH (p:Person {id: $personId})
SET p.version = $even
«SLEEP($sleepTime)»
SET p.version = $odd

Listing 1.9: Interm. Read (G1b) TW.

MATCH (p:Person {id: $personId})
RETURN p.version

Listing 1.10: Interm. Read (G1b) TR.

Intermediate Reads

Informally, an Intermediate Read (Adya’s G1b [1]) anomaly occurs when a
transaction reads the intermediate modifications of other transactions.

Definition. A history H exhibits phenomenon G1b if H contains a committed
transaction Ti that reads a version of an object xm written by transaction Tj ,
and Tj also wrote a version xn such that m < n in x’s version order.
Test. Load a test graph containing only Person nodes into the database. Assign
each Person a unique id and version initialized to 1; any odd number will
suffice. During execution, write clients execute a sequence of G1b TW instances,
Listing 1.9. This transaction sets version to an even number, then an odd
number before committing. Concurrently read-clients execute a sequence of G1b
TR instances, Listing 1.10. Selecting a Person by id and retrieving its version
property. Read clients store results which are collected after execution has finished.
Anomaly check. Each read of version should be an odd number. Otherwise,
a G1b anomaly has occurred.
Why it works. The final version installed by an G1b TW instance is never an
even number. Therefore, if a transaction reads version to be an even number it
must have read an intermediate version.

Circular Information Flow

Informally, a Circular Information Flow (Adya’s G1c [1]) anomaly occurs when
two transactions affect each other; i.e. both transactions write information the
other reads. For example, transaction Ti reads a write by transaction Tj and
transaction Tj reads a write by Ti.
Definition. A historyH exhibits phenomenon G1c if DSG(H) contains a directed
cycle that consists entirely of read-dependency and write-dependency edges.
Test. Load a test graph containing only Person nodes into the database. Assign
each Person a unique id and version initialized to 0. Read-write clients are
required for this test, executing a sequence of G1c TRW, Listing 1.11. This
transaction selects two different Person nodes, setting the version of one Person
to the transaction ID and retrieving the version from the other. Note, transaction
IDs are assumed to be globally unique. Transaction results are stored in format
(txn.id, versionRead) and collected after execution.

MATCH (p1:Person {id: $person1Id}) SET p1.version = $transactionId
MATCH (p2:Person {id: $person2Id}) RETURN p2.version

Listing 1.11: G1c TRW.

Anomaly check. For each result, check the result of the transaction the
versionRead corresponds to, did not read the transaction of that result. If
so a G1c anomaly has occurred.
Why it works. Consider the result set: {(T1, T2), (T2, T3), (T3, T2)}. T1

reads the version written by T2 and T2 reads the version written by T3. Here
information flow is unidirectional from T1 to T2. However, T2 reads the version
written by T3 and T2 reads the version written by T3. Here information flow is
circular from T2 to T3 and T3 to T2. Thus a G1c anomaly has been detected.

4.5 Cut Anomalies

Item-Many-Preceders

Informally, an Item-Many-Preceders (IMP) anomaly [4] occurs if a transaction
observes multiple versions of the same item (e.g. transaction Ti reads versions x1

and x2). In a graph database this can be multiple reads of a node, edge, property
or label. Local transactions (involving a single data item) occur frequently in
graph databases, e.g. in “Retrieve content of a message” (SNB-I Short Read
4 [3]).
Definition. A history H exhibits IMP if DSG(H) contains a transaction Ti such
that Ti directly item-read-depends on x by more than one other transaction.
Test. Load a test graph containing Person nodes. Assign each Person a unique id
and version initialized to 1. During execution write clients execute a sequence
of IMP TW instances, Listing 1.12. Selecting a random id and installing a
new version of the Person. Concurrently read clients execute a sequence of
IMP TR instances, Listing 1.13. Performing multiple reads of the same Person;
successive reads can be separated by some artificially injected wait time to make
conditions more favourable for detecting an anomaly. Both reads within an IMP
TR transaction are returned, stored and collected after execution.
Anomaly check. Each IMP TR result set (firstRead, secondRead) should
contain the same Person version. Otherwise, an IMP anomaly has occurred.
Why it works. By performing successive reads within the same transaction this
test checks that a system ensures consistent reads of the same data item. If the
version changes then a concurrent transaction has modified the data item and
the reading transaction is not protected from this change.

MATCH (p:Person {id: $personId})
SET p.version = p.version + 1

Listing 1.12: IMP TW.

MATCH (p1:Person {id: $personId})
WITH p1.version AS firstRead
«SLEEP($sleepTime)»
MATCH (p2:Person {id: $personId})
RETURN firstRead,

p2.version AS secondRead

Listing 1.13: IMP TR.

MATCH (pe:Person {id: $personId}), (po:Post {id: $postId)
CREATE (pe)-[:LIKES]->(po)

Listing 1.14: PMP TW.

MATCH (po1:Post {id: $postId})<-[:LIKES]-(pe1:Person)
WITH count(pe1) AS firstRead
«SLEEP($sleepTime)»
MATCH (po2:Post {id: $postId})<-[:LIKES]-(pe2:Person)
RETURN firstRead,
count(pe2) AS secondRead

Listing 1.15: PMP TR.

Predicate-Many-Preceders

Informally, a Predicate-Many-Preceders (PMP) anomaly [4] occurs if a transaction
observes different versions resulting from the same predicate read (e.g. Ti reads
Vset(Pi) = {x1} and Vset(Pi) = {x1, y2}). Pattern matching is a common

predicate read operation in a graph database, e.g. query “Find friends and friends
of friends that have been to given countries” (SNB-I Complex Read 3 [3]).
Definition. A history H exhibits the phenomenon PMP if, for all predicate-based
reads ri(Pi : Vset(Pi)) and rj(Pj : Vset(Pj)) in Tk such that the logical ranges
of Pi and Pj overlap (call it Po), the set of transactions that change the matches
of Po for ri and rj differ.
Test. Load a test graph containing Person and Post nodes. Within each node
type assign unique ids. During execution write clients execute a sequence of
PMP TW instances, inserting a LIKES edge between a randomly selected Person
and Post, shown in Listing 1.14. Concurrently read clients execute a sequence
of PMP TR instances, Listing 1.15. Performing multiple reads of the pattern
(po:Post)<-[:LIKES]-(p:Person) and counting the number of LIKES edges;
successive reads can be separated by some artificially injected wait time to make
conditions more favourable for detecting an anomaly. Both predicate reads within
a PMP TR transaction are returned, stored and collected after test execution.
Anomaly check. For each PMP TR transaction result set (firstRead,
secondRead), the firstRead should be equal to secondRead. Otherwise, a PMP
anomaly has occurred.
Why it works. By performing successive predicate reads and counting the
number of LIKES edges within the same transaction this test checks that a
system ensures consistent reads of the same predicate. If the number of LIKES
edges changes then a concurrent transaction has inserted a new LIKES edge and
the reading transaction is not protected from this change.

4.6 Observed Transaction Vanishes

Informally, an Observed Transaction Vanishes (OTV) anomaly [4] occurs when a
transaction observes part of another transaction’s updates but not all of them
(e.g. T1 writes x1 and y1 and T2 reads x1 and y⊥). Before formally defining OTV
the Unfolded Serialization Graph (USG) must be introduced [1]. The USG is
specified for an individual transaction, Ti and a history, H and is denoted by
USG(H,Ti). In a USG the Ti node is split into multiple nodes, one for each action
read ri(·) or write wi(·) within the transaction. The dependency edges are now
incident on the relevant event of Ti. Additionally, actions within Ti are connected
by an order edge e.g. if Ti reads object yj then immediately writes on object x
an order edge exists from wi(xi) to ri(yj).
Definition. A history H exhibits phenomenon OTV if USG(H,Ti) contains a
directed cycle consisting of (i) exactly one read dependency edge induced by data
item x from Tj to Ti and (ii) a set of edges induced by data item y containing
at least one anti dependency edge from Ti to Tj . Additionally, Ti’s read from y
precedes its read from x.
Test. Load a test graph containing a set of cycles of length 4 of Persons with
same name connected by Knows edges. Assign each Person an id, name and
version property (initialized to 1). Note, id must be unique across nodes and
name must be unique across cycles. During execution write clients select a name,
id and executes a sequence of OTV TW instances, Listing 1.16. This transaction

effectively creates a new version of a given cycle. Concurrently read-clients
execute a sequence of OTV TR instances, Listing 1.17. Matching a given cycle
and performing multiple reads. Both reads within an OTV TR are returned,
stored and collected after execution.
Anomaly check. For each OTV TR result set (firstRead,secondRead), the
maximum version in the firstRead should be less than or equal to the minimum
version in the secondRead. Otherwise, an OTV anomaly has occurred.
Why it works. OTV TW installs a new version of a cycle by updating the
version property of each Person. Therefore when matching a cycle once a
transaction has observed some version it should at least observe this version for
every remaining entity in the cycle. Unfortunately, this cannot be deduced from
a single read of the cycle as results from matching cycles often does not preserve
the order in which graph entities were read. This is solved by making multiple
reads of the cycle. The maximum version of the firstRead determines the
minimum version of secondRead. If this condition is violated then a transaction
has observed the effects of a transaction in the firstRead then subsequently
failed to observe it in the secondRead – the observed transaction has vanished!

MATCH path =
(n:Person {id: $personId})
-[:KNOWS*..4]->(n)

UNWIND nodes(path)[0..4] AS p
SET p.version = p.version + 1

Listing 1.16: OTV/FR TW.

MATCH p1=(n1:Person {id: $personId})-[:KNOWS*..4]->(n1)
RETURN extract(p IN nodes(p1) | p.version) AS firstRead
«SLEEP($sleepTime)»
MATCH p2=(n2:Person {id: $personId})-[:KNOWS*..4]->(n2)
RETURN extract(p IN nodes(p2) | p.version) AS secondRead

Listing 1.17: OTV/FR TR.

4.7 Fractured Read

Informally, a Fractured Read (FR) anomaly [5] occurs when a transaction reads
across transaction boundaries. For example, if T1 writes x1 and y1 and T3 writes
x3. If T2 reads x1 and y1, then repeats its read of x and reads x3 a fractured
read has occurred.
Definition. A transaction Tj exhibits phenomenon FR if transaction Ti writes
versions xa and yb (in any order, where x and y may or may not be distinct
items), Tj reads version xa and version yc, and c < b.
Test. Same as the OTV test.
Anomaly check. For each FR TR (Listing 1.17) result set (firstRead,
secondRead), all versions across both version sets should be equal. Other-
wise, an FR anomaly has occurred.
Why it works. FR TW installs a new version of a cycle by updating the version
properties on each Person. When FR TR observes a version every subsequent
read in that cycle should read the same version as FR TW (Listing 1.16) installs
the same version for all Person nodes in the cycle. Thus, if it observes a different
version it has observed the effect of a different transaction and has read across
transaction boundaries.

4.8 Lost Update

Informally, a Lost Update (LU) anomaly [5] occurs when two transactions con-
currently attempt to make conditional modifications to the same data item(s).
Definition. A history H exhibits phenomenon LU if DSG(H) contains a directed
cycle having one or more antidependency edges and all edges are induced by the
same data item x.
Test. Load a test graph containing Person nodes. Assign each Person a unique
id and a property numFriends (initialized to 0). During execution write clients
execute a sequence of LU TW instances, Listing 1.18. Choosing a random
Person and incrementing its numFriends property. Clients store local coun-
ters (expNumFriends) for each Person, which is incremented each time a Person
is selected and the LU TW instance successfully commits. After the execution
period the numFriends is retrieved for each Person using LU TR in Listing 1.19
and expNumFriends are pooled from write clients for each Person.
Anomaly check. For each Person its numFriends property should be equal to
the (global) expNumFriends for that Person.
Why it works. Clients know how many successful LU TW instances were issued
for a given Person. The observable numFriends should reflect this ground truth,
otherwise, an LU anomaly must have occurred.

MATCH (p:Person {id: $personId})
SET p.numFriends = p.numFriends + 1

Listing 1.18: Lost Update TW.

MATCH (p:Person {id: $personId})
RETURN p.numFriends AS numFriends

Listing 1.19: Lost Update TR.

4.9 Write Skew

Informally, Write Skew (WS) occurs when two transactions simultaneously at-
tempted to make disjoint conditional modifications to the same data item(s). It
is referred to as G2-Item in [1,11].
Definition. A history H exhibits WS if DSG(H) contains a directed cycle having
one or more antidependency edges.
Test. Load a test graph containing n pairs of Person nodes (p1, p2) for
k = 0, . . . , n−1, where the kth pair gets ids p1.id = 2*k+1 and p2.id = 2*k+2,
and values p1.value = 70 and p2.value = 80. There is a constraint: p1.value
+ p2.value > 0. During execution write clients execute a sequence of WS TW

instances, Listing 1.20. Selecting a random Person pair and decrementing the
value property of one Person provided doing so would not violate the constraint.
After execution the database is scanned using WS TR, Listing 1.21.
Anomaly check. For each Person pair the constraint should hold true, other-
wise, a WS anomaly has occurred.
Why it works. Under no Serializable execution of WS TW instances would the
constraint p1.value + p2.value > 0 be violated. Therefore, if WS TR returns
a violation of this constraint it is clear a WS anomaly has occurred.

MATCH (p1:Person {id: $person1Id}),
(p2:Person {id: $person2Id})

«IF (p1.value+p2.value < 100)» «THEN» «ABORT» «END»
«SLEEP($sleepTime)»
pId = «pick randomly between personId1, personId2»
MATCH (p:Person {id: $pId})
SET p.value = p.value - 100
«COMMIT»

Listing 1.20: WS TW.

MATCH (p1:Person),
(p2:Person {id: p1.id+1})

WHERE p1.value + p2.value <= 0
RETURN

p1.id AS p1id,
p1.value AS p1value,
p2.id AS p2id,
p2.value AS p2value

Listing 1.21: WS TR.

5 Results

Experiment setup. The ACID-compliance test suite was implemented in a
Java application as JUnit tests with all experiments executed on Ubuntu 18.04
running AdoptOpenJDK 11.0.4.hs. All tests were conducted on 4 graph database
systems and 1 relational database, consisting of: Neo4j 3.5.20 and 4.1.1, Mem-
graph 1.0, Dgraph 20.03.3, JanusGraph 0.5.2 (BerkeleyDB 7.5.11 and Cassandra
3.11.0 backends) and PostgreSQL 9.6. For all systems, we used their declarative
query languages and the officially recommended Java drivers. For Neo4j 3.5 and
Memgraph, queries were defined in Cypher and the neo4j-java-driver package
version 1.7.0 was used. For Neo4j 4.0, we used the same queries and v4.0.1 of
the driver. For the rest of the systems: dgraph4j driver v20.03.0 with GraphQL+-
queries, janusgraph-driver v0.5.2 with Gremlin queries, and the postgresql
driver v42.2.14 with SQL queries, were used respectively.
Analysis. The results for all tests are shown in Table 1. As can be seen here,
many of the systems under test met and appeared to exceed their claimed isolation
levels. Neo4j promises Read Committed but in fact seems to provide the stronger
isolation level Monotonic Atomic View due to proscribing OTV [4]. Interestingly,
however, Neo4j 4.0 fails the LU test, which could not be triggered in Neo4j 3.5
even though the two versions claim the same isolation level.9 We suspect that
LU could be triggered in Neo4j 3.5 with a more comprehensive test suite.
Memgraph promises Snapshot Isolation and is successful in this regard, only failing
the WS test. Similarly, Dgraph passed all tests without issue, even though it
only claims Snapshot Isolation. JanusGraph with the Cassandra backend, whilst
offers no isolation due to the lack of arbitrary multi-object transactions, passed
a number of tests where this should have caused an issue. Unfortunately, upon
investigation, this appears to be due to very stale reads. In a similar vein, the
BerkeleyDB implementation was successful across its varying isolation levels,
however, exhibited heavy lock contention with as much as 95% of the transactions
aborting. PostgreSQL was successful for all of the specified isolation levels,
however, had notable issues with the LU tests, aborting 60% of transactions at
Repeatable Read and timing out with Serializable isolation.

9 Neo4j can guarantee Serializable isolation to avoid these anomalies, however, this
requires explicit locks.

Database C RB Isolation Level G0 G1a G1b G1c OTV FR IMP PMP LU WS

Neo4j 3.5 � � Read Committed � � � � � �
Neo4j 4.1 � � Read Committed � � � � �

Memgraph � � Snapshot Isolation � � � � � � � � �

Dgraph � � Snapshot Isolation � � � � � � � � � �

JG/BerkeleyDB � � Read Uncommitted � � � � � �
JG/BerkeleyDB � � Read Committed � � � � � � � �
JG/BerkeleyDB � � Repeatable Read � � � � � � � � � �
JG/BerkeleyDB � � Serializable � � � � � � � � � �
JG/Cassandra � � Read Uncommitted � � � � �

PostgreSQL � � Read Committed � � � � � � � � �
PostgreSQL � � Repeatable Read � � � � � � � � � �
PostgreSQL � � Serializable � � � � � � � � � �

Table 1: Atomicity (Atomicity-C, Atomicity-RB) and Isolation Tests, indicates
anomaly occurred and � indicates it did not occur. Notation – JG: JanusGraph.
�: G1b only passes due to JanusGraph’s reads being very stale. �: JanusGraph
passed this test, but done so by aborting > 95% of transactions. �: PostgreSQL
passed this test but with 60% aborts. �: Execution timed out after 5 minutes.

6 Related Work

The challenge of verifying ACID-compliance has been addressed before by trans-
actional benchmarks. For example, TPC-C [20] provides a suite of ACID tests.
However, the isolation tests are reliant on lock-based concurrency control, hence
are not generalizable across systems. Also, the transactional anomaly test cover-
age is limited to only four anomalies. The authors of [9] augment the popular
YCSB framework for benchmarking transactional NewSQL systems, including
a validation phase that detects and quantifies consistency anomalies. They per-
mit the definition of arbitrary integrity constraints, checking they hold before
and after a benchmark run. Such an approach is not possible within SNB-I
due to the restrictive nature of transactional updates and the distinct lack of
application-level constraints.

The Hermitage project [16] with the goal of improving understanding of weak
isolation, developed a range of hand-crafted isolation tests. This test suite has
much higher anomaly coverage but suffers from a problem similar to TPC-C.
Test execution is performed by hand, opening multiple terminals to step through
the tests.10 The Jepsen project [14] is not a benchmark rather it addresses
correctness testing, traditionally focusing on distributed systems under various
failure modes. Most of Jepsen’s transactional tests adopt a similar approach to us,
executing a suite of transactions with hand-proven invariants. However recently,
the project has spawned Elle [15] a black-box transactional anomaly checker. Elle
does not rely on hand-crafted tests and can detect every anomaly in [1] (except
for predicate-based anomalies) from an arbitrary transaction history.

10 We initially experimented with Hermitage but found it difficult to induce anomalies
that relied on fast timings due to some graph databases offering limited client-side
control over transactions, with all statements submitted in one batch.

7 Consistency and Durability Tests

While this paper mainly focused on atomicity and isolation from the ACID
properties, we provide a short overview of the other two aspects. Durability
tests are already part of the benchmark specification [3], while adding complex
consistency checks is left for future work.

Durability is a hard requirement for SNB-I and checking it is part of the
auditing process. The durability test requires the execution of the SNB-I workload
and uses the LDBC workload driver. Note, the database and the driver must
be configured in the same way as would be used in the performance run. First,
the database is subject to a warm-up period. Then after 2 hours of simulation
execution, the database processes will be terminated, possibly by disconnecting
the entire machine or by a hard process kill. Note that turning the machine off
may not be possible in cloud tests. The database system is then restarted and
each client issues a read for the value of the last entity (node or edge) it received
a successful commit message for, that should produce a correct response.

Consistency is defined in terms of constraints: the database remains consis-
tent under updates; i.e. no constraint is violated. Relational database systems
usually support primary- and foreign-key constraints, as well as domain con-
straints on column values and sometimes also support simple within-row con-
straints. Graph database systems have a diversity of interfaces and generally do
not support constraints, beyond sometimes domain and primary key constraints
(in case indexes are supported). As such, we leave them out of scope for LDBC
SNB. However, we do note that we anticipate that graph database systems will
evolve to support constraints in the future. Beyond equivalents of the relational
ones, property graph systems might introduce graph-specific constraints, such as
(partial) compliance to a schema formulated on top of property graphs, rules that
guide the presence of labels or structural graph constraints such as connectedness
of the graph, absence of cycles, or arbitrary well-formedness constraints [18].

8 Conclusion and Future Work

In this paper, we discussed the challenges of testing ACID properties on graph
databases systems and compiled a test suite of 2 atomicity and 10 isolation
tests. We have implemented the proposed tests on 5 database systems, consisting
of 3400 lines of code in total.Our findings show that Neo4j, Memgraph, and
Dgraph satisfy their claimed isolation levels, and, in some cases, they even seem
to provide stronger guarantees. We found that JanusGraph is unfit to be used
in transactional workloads. PostgreSQL satisfies the selected isolation levels but
in the LU tests this came at a cost of aborting the majority of the transactions
(Repeatable Read) or causing a timeout (Serializable).

Looking ahead, in the short term, we will include these tests in the LDBC
SNB specification [3] and use them for auditing the ACID-compliance of SUTs.
In the long term, we plan to extend the tests to incorporate complex consistency
constraints and add tests specifically designed for distributed databases [21].

Acknowledgements
J. Waudby was supported by the Engineering and Physical Sciences Research Coun-
cil, Centre for Doctoral Training in Cloud Computing for Big Data [grant number
EP/L015358/1]. B. Steer was supported by the Engineering and Physical Sciences
Research Council and Alan Turing Institute [grant number EP/T001569/1]. P. Boncz
was partially supported by the SQIREL-GRAPHS NWO project. G. Szárnyas was
partially supported by the MTA-BME Lendület Cyber-Physical Systems Research
Group.

References

1. A. Adya. Weak consistency: A generalized theory and optimistic implementations
for distributed transactions. Ph.D. dissertation, MIT, 1999.

2. R. Angles et al. Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50(5):68:1–68:40, 2017.

3. R. Angles et al. The LDBC Social Network Benchmark. CoRR, abs/2001.02299,
2020.

4. P. Bailis et al. Highly available transactions: Virtues and limitations. VLDB, 2013.
5. P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Scalable atomic

visibility with RAMP transactions. ACM Trans. Database Syst., 2016.
6. O. Batarfi et al. Large scale graph processing systems: Survey and an experimental

evaluation. Cluster Computing, 18(3):1189–1213, 2015.
7. M. Besta et al. Demystifying graph databases: Analysis and taxonomy of data

organization, system designs, and graph queries. CoRR, abs/1910.09017, 2019.
8. M. Besta et al. Practice of streaming and dynamic graphs: Concepts, models,

systems, and parallelism. CoRR, abs/1912.12740, 2019.
9. A. Dey, A. Fekete, R. Nambiar, and U. Röhm. YCSB+T: Benchmarking web-scale

transactional databases. In ICDE, pages 223–230. IEEE Computer Society, 2014.
10. O. Erling et al. The LDBC Social Network Benchmark: Interactive workload. In

SIGMOD, pages 619–630. ACM, 2015.
11. A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil, and D. E. Shasha. Making

snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.
12. N. Francis et al. Cypher: An evolving query language for property graphs. In

SIGMOD, pages 1433–1445. ACM, 2018.
13. J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and

degrees of consistency in a shared data base. pages 365–394, 1976.
14. K. Kingsbury. Jepsen analyses, 2020. http://jepsen.io/analyses.
15. K. Kingsbury and P. Alvaro. Elle: Inferring isolation anomalies from experimental

observations. CoRR, abs/2003.10554, 2020.
16. M. Kleppmann. Hermitage: Testing transaction isolation levels, 2020. https:

//github.com/ept/hermitage.
17. A. Pavlo and M. Aslett. What’s really new with NewSQL? SIGMOD Rec., 2016.
18. O. Semeráth et al. Formal validation of domain-specific languages with derived

features and well-formedness constraints. Softw. Syst. Model., 16(2):357–392, 2017.
19. M. Stonebraker et al. The end of an architectural era (It’s time for a complete

rewrite). In VLDB, pages 1150–1160. ACM, 2007.
20. TPC. TPC Benchmark C, revision 5.11. Technical report, 2010. http://www.tpc.

org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.
21. J. Waudby, P. Ezhilchelvan, J. Webber, and I. Mitrani. Preserving reciprocal

consistency in distributed graph databases. In PaPoC at EuroSys. ACM, 2020.

http://jepsen.io/analyses
https://github.com/ept/hermitage
https://github.com/ept/hermitage
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

	Towards Testing ACID Compliance in the LDBC Social Network Benchmark

