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Abstract. When we fine-tune a well-trained deep learning model for a
new set of classes, the network learns new concepts but gradually forgets
the knowledge of old training. In some real-life applications, we may be
interested in learning new classes without forgetting the capability of
previous experience. Such learning without forgetting problem is often
investigated using 2D image recognition tasks. In this paper, considering
the growth of depth camera technology, we address the same problem for
the 3D point cloud object data. This problem becomes more challenging
in the 3D domain than 2D because of the unavailability of large datasets
and powerful pretrained backbone models. We investigate knowledge dis-
tillation techniques on 3D data to reduce catastrophic forgetting of the
previous training. Moreover, we improve the distillation process by using
semantic word vectors of object classes. We observe that exploring the
interrelation of old and new knowledge during training helps to learn new
concepts without forgetting old ones. Experimenting on three 3D point
cloud recognition backbones (PointNet, DGCNN, and PointConv) and
synthetic (ModelNet40, ModelNet10) and real scanned (ScanObjectNN)
datasets, we establish new baseline results on learning without forgetting
for 3D data. This research will instigate many future works in this area.

Keywords: 3D Point Cloud · Knowledge distillation · Word vector.

1 Introduction

The advent of deep learning models achieves impressive performance in the image
recognition task [30,19,37]. In a real-life application, a trained system that can
classify a given object instance within a fixed number of classes may need to
readjust itself to classify a new set of classes in addition to old classes without
retraining from scratch. For example, a self-driving car already recognizes street
objects (vehicles, traffic lights, etc.). Now, the car manufacturer wants to increase
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(a) Without using  semantics            (b) With using semantic information     

Fig. 1: Effect of semantic representation while learning without forgetting. (a)
Without class semantics, the network tries to form clusters of old and new class
instances in feature space. Sometimes clusters overlap with each other because
of the lack of class semantics. (b) After using class semantics, old and new class
features cluster them around their corresponding class semantics. It helps the
cluster separate enough for each other which helps to achieve better performance.

the car’s capability in recognizing roadside objects (buildings, trees, etc.) by
retraining only on instances of new classes of interest. The main issue of the
retraining is the catastrophic forgetting of old class knowledge. Since this setup
does not allow old class instances, the model learns new classes but forgets
old ones. Researchers proposed Learning without Forgetting (LwF) methods
[12,26,9,41,23] to address this problem. Traditionally, this problem has been
investigated using 2D image data. This paper explores LwF on 3D point cloud
object data.

Modern 3D camera technology allows us to capture 3D point cloud data
more accessible than ever [7]. Now, it is time to adapt 3D point cloud recogni-
tion models with LwF capabilities. We identify some key difficulties to address
this problem. Firstly, in comparison to image datasets like ImageNet, very large-
scale 3D point cloud datasets are not available. 3D datasets usually contain a
handful number of classes and instances [38,32]. Secondly, a typical pre-trained
model for a 3D recognition system is not as robust as 2D models because of not
being trained on a large dataset [5]. Thirdly, 3D point cloud data (especially real
scanned objects) contains more noise than 2D image data [32]. This paper inves-
tigates how far a 3D point cloud recognition model can obtain LwF capabilities
considering all difficulties mentioned above.

We first train a 3D point cloud model with instances belonging to a set
of pre-defined old classes. Then, we update the trained model using a popular
knowledge distillation technique [8] to address the forgetting problem. Because of
the difficulties of 3D data, this approach exhibits a large amount of forgetting of
old classes. To minimize forgetting, we employ semantic word vectors of classes
inside the network pipeline [24,4,42]. During both new and old task training,
the network tries to align point cloud features to their corresponding semantics.
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The class semantics encodes similarities and dissimilarities of different objects
from the natural language domain. The network learns to project new instance
features around the previously obtained and fixed semantic vectors while learning
new classes. By performing feature-semantic alignment in both old and new
tasks, the network forgets less than the traditional semantic embedding less
method. For example, during the old model training, the model learns to classify
‘bed’ via its semantic (like isFurniture, isIndoor) representation. Later, during
the new model training, the model could not see ‘bed’, but it observes similar
classes (like sofa, chair, table with shared ‘bed’ semantics) that helps not to forget
about ‘bed’ knowledge. Experimenting on ModelNet40 [38], ScanObjectNN [32],
MIT Scenes [22], and CUB [33] datasets, we show that our proposed method
outperforms traditional knowledge distillation methods in both 3D and 2D data
cases. The contributions of this paper are summarized below:

– To the best of our knowledge, we are the first to experiment learning without
forgetting on 3D point object cloud data.

– Our method applies knowledge distillation to restore previously gained ex-
perience of the old mode and minimize catastrophic forgetting while learning
a set of new classes. In addition, we investigate the advantage of semantic
word vectors in the network distillation process.

– We experiment on both 3D synthetic (ModelNet10, ModelNet40 [38]) and
real scanned (ScanObjectNN [32]) point cloud objects and 2D image datasets
(MIT Scenes [22], CUB [33]), establishing the robustness of the method.

2 Related Works

3D Point Cloud Architecture: There are two streams of works for 3D point
cloud classification: feature-based and end-to-end approaches. Feature-based meth-
ods mostly use Multi-view representation and Volumetric CNNs. Multi-view
representation methods [31,20,40] convert 3D point cloud into 2D images, which
are then classified using 2D convolutional networks. Volumetric CNNs [14,34]
project point cloud objects on a volumetric grid or a set of octrees. Then, they
apply a computationally expensive 3D convolutional neural network. The main
drawback of feature-based methods is that they do not work directly on the
raw point cloud. End-to-end approaches like PointNet [19], PointNet++[21] use
raw point cloud data as input to multi-layer perceptron networks followed by
maxpooling layers. Several other works [37,10,11] apply improved convolution
operation on point cloud objects. Moreover, [29,35] use Graph neural networks
to extract features from 3D point clouds. In this paper, we build our model on
several end-to-end architectures.
Learning Without Forgetting: Many methods have been proposed to solve
the catastrophic forgetting problem [15,6,2]. Exemplar-free methods [12,1,41]
do not require any samples from base/old task. Li et.al. [12] proposed to use
Hinton’s [8] knowledge distillation loss to preserve old task’s knowledge in 2D
images, but the domain shift between tasks makes this method weak. Rehearsal
methods [26,3,9] keep a small number of exemplars from the old task. Rebuffi
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et.al. [26] first introduced replay-based method with bounded memory, but it fails
to represent the main distribution of old task when there is a lot of variations.
The Pseudo-rehearsal process used in [28,36,17] learns to produce examples from
the old task. Some methods [1,13] minimizes additional parameters to solve
the problem of model expansion. All of the approaches mentioned above have
proposed solutions to the catastrophic forgetting of 2D image data. Our method
is the first to use knowledge distillation to address LwF of 3D data.

Word embedding for catastrophic forgetting: The use of semantic rep-
resentation to prevent catastrophic forgetting is relatively new [24,4,42]. Such
approaches explore the semantic relation between old and new classes to reduce
the forgetting of old classes while training new classes. Zhu et.al. [42] suggested
using semantic representation to train the object detection model by projecting
the feature vector into the semantic space. Similarly, Rahman et.al. [24] pro-
posed to use semantic representations of class labels as anchors in the prediction
space for not forgetting the acquired knowledge of old classes. Cheraghian et.al.
[4] proposed a knowledge distillation strategy by using semantic representation
as an auxiliary knowledge. Even though semantic representation has yielded
promising results, the experiments are limited to 2D data. In this paper, we use
word vectors in knowledge distillation for 3D point clouds object classification.

3 Method

Problem Formulation: Assume, we have a set of old, Yo, and a set of new,
Yn, classes, where, Yo ∩ Yn = ∅, |Yo| = O and |Yn| = N . The 3D point
cloud recognition model initially observes Yo classes and gets trained to classify
only old classes. Later, Yn classes are added to the model to update previous
training. Suppose, a 3D point cloud input sets, X = {xi}ni=1 for xi ∈ R3, can
get a label from either old Yo or new Yn classes. Additionally, there is a set of
d-dimensional semantic class embeddings for each of the old and new classes,
denoted as Eo ∈ Rd×O and En ∈ Rd×N , respectively. We define the old set as
Do = {X oi , yoi , eoi }

No

i=1, where, X oi is the i-th point cloud object belonging to old
set with the class label yoi , and the class embedding eoi , and No is the number of

old class instances. Similarly, there is a set for new classes Dn = {Xni , yni , eni }
Nn

i=1,
where, Xni is the i-th point cloud object having the class label yni , and the class
embedding eni , and Nn is the number of new class instances. We build a 3D point
cloud object recognition model (termed as old model) using Do set. Then, we
aim to update the same model (termed as new model) using only newly available
Dn data that can predict a class label for a test sample belonging to either old
or new sets, i.e., X ∈ Do∪Dn. We assume the model has prior knowledge about
the test sample during inference, whether it belongs to old or new classes.

Main challenges: While updating the model with new data, Dn, the model
gradually forgets the old training (done on Do) because of the restriction of not
using old class instances. Previous works address this problem with 2D image
data. In this paper, we address the same problem on 3D point cloud objects. Due
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Fig. 2: Our proposed architecture. We train the old model using the cross-entropy
loss LCE . Then, we build a new model by modifying a copy of the trained old
model. Both cross-entropy, LCE and knowledge distillation, LKD losses are used
to train the new model. The new model can classify both old and new classes.

to the unavailability of large-scale datasets and pre-trained models, the problem
becomes more complex in the 3D than 2D domain.

3.1 Model Overview

Our proposed method is shown in Fig 2, which includes old and new models. The
new model is the updated variant of the old model to accommodate new classes.
Both old and new models are presented together because, during the training
of the new model, we use the output of the old model. For both models, the
point cloud input X is fed into the backbone M , which can be any point cloud
architecture (PointNet, DGCNN, PointConv etc.), to extract feature input,i.e.,
g ∈ Rm. Additionally, a semantic representation unit is employed to generate
class embedding,i.e., e ∈ Rd, given class label. While training the old model
using old classes, the feature input g and the class embedding eo are mapped
into a common k-dimensional space using projection functions F o and Ho, re-
spectively. The new feature representations for the point cloud feature and the
class embedding are fo ∈ Rk and ho ∈ Rk, respectively. Finally, dot multiplica-
tion between fo and ho form the output ŷo for the old classes. A cross-entropy
loss, LCE , is adopted to train the model for the old classes. While updating the
same model with the new classes, we add a parallel pipeline from the output of
backbone M . Two projection modules Fn and Hn are added to map features
of new classes M(Xn) and class embedding en into the common k-dimensional
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space. The new representations of feature and class semantics are fn and hn,
respectively. At the end, fn is dot-multiplied with hn to generate output, ŷn for
the new classes. In order to prevent forgetting of the old classes, a knowledge
distillation loss, function, LKD, [8] is employed between output of the old and
new models.

3.2 Training and Inference

We train the proposed architecture with two stages: old and new model training.
Unlike traditional approaches for learning without forgetting (LwF) [12], both
stages use semantic word vectors of classes to remember past knowledge.
Training old model: At the first stage of training, we learn the old model using
the training data of Do = {X oi , yoi , eoi }

No

i=1 employing a cross-entropy loss. Unlike
2D image cases, we perform this training from scratch because no pre-trained
model is available to initialize the weights of the backbone, M . The output of
the old model for the ith 3D point cloud instance is

ŷo∗i = F o(gi; θ1) . Ho(ei; θ2)T (1)

where, θ1 and θ2 are learnable weights associate with F o and Ho layers, re-
spectively. After finishing the training, the old model can classify the old set of
classes, Yo. This old model remains frozen during the second stage training.
Training new model: We build a new model during the second training stage
by updating a copy of the old model, which is trained in the previous stage.
This new model gives predictions for both old and new classes. But, we are not
allowed to cannot any old class instances during training the new model. We add
Fn and Hn layers to F o and Ho layers. Only the training data of new classes
Dn = {Xni , yni , eni }

Nn

i=1 is used to train the new model. Similar to Eq. 1, both
pipeline of the new model can produce output for old ŷoi and new ŷni classes.

ŷoi = F o(gi; θ1) . Ho(e; θ2)T , ŷni = Fn(gi; θ3) . Hn(e; θ4)T (2)

where, θ3 and θ4 are weights associated with Fn and Hn layers, respectively.
Among all trainable weights of new model, θ1 and θ2 are initialized from the old
model but θ3 and θ4 are trained from the scratch. While forwarding an input 3D
point cloud object xi ∈ X , old model outputs ŷo∗i for old classes and new model
outputs ŷoi and ŷni for old and new classes, respectively.

We calculate a traditional cross-entropy loss LCE between ŷni and ground-
truth yni . This loss is used to learn new classes. Additionally, using old class
outputs from old ŷo∗i and new ŷoi model, we calculate a knowledge distillation
[8] loss LKD. This loss is employed to prevent the forgetting of the old classes.
Unlike the traditional LKD, we consider class semantics in the pipeline, which
further helps the LwF process. The entire loss (L) to train this model is

L = LCE + λLKD (3)

where, hyperparameter λ controls the contribution of LKD. To calculate LCE ,
we use negative log likelihood loss common in 3D backbones. To calculate LKD,
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Dataset Settings Task # Classes # Train # Test

3D
ModelNet40 → ModelNet10

old 30 5852 1560
new 10 3991 908

ModelNet40 → ScanObjectNN
old 26 4999 1496
new 11 1496 475

2D
Scenes → CUB

old 67 5360 1340
new 200 5994 5794

CUB
old 150 4495 4326
new 50 1499 1468

Table 1: Statistics of training and testing instances used in different experiments.

we record the output ŷo∗ from old model for new class dataset’s 3D point clouds
Xn. The equations for LCE and LKD are:

LCE = − 1

N

N∑
i=1

yni log(ŷni ), LKD = − 1

N

N∑
i=1

ω(ŷo∗i ; τ)log(ω(ŷoi ; τ)) (4)

where, τ is the temperature and ω(yi; τ) = exp(yi/τ)∑
j exp(yj/τ)

is the softmax function.

Inference: For any test instance, a forward pass to the new model calculates
old ŷoi and new ŷni class scores. We classify old and new classes by selecting the
maximum score from ŷoi and ŷni , respectively.

4 Experiment

Dataset: We evaluate our method on 3D datasets, ModelNet10, ModelNet40
[38], ScanObjectNN [32] and two 2D datasets, MIT Scenes [22], CUB [33]. For
the 3D experiment, we use two different settings related to synthetic and real
scanned point cloud data. The synthetic experiment, ModelNet40 → Model-
Net10 setting use 30 classes of ModelNet40 as old and non-overlapped 10 classes
of ModelNet10 as new classes. The real scanned object experiment, ModelNet40
→ ScanObjectNN use 26 classes of ModelNet40 as old and 11 classes of ScanOb-
jectNN as new classes. Both of these setups were previously introduced in [5].
For the 2D experiment, Scenes → CUB considers 67 classes of MIT Scenes as
old and 200 classes of CUB as new. In another setup, 150 and 50 classes of
CUB dataset are used as old and new, respectively. These setups are proposed
in [12,39]. The statistics of train test instances are summarized in Table 1.
Semantic embedding: For semantic representation of classes, we use 300 di-
mensional word2vec (w2v) [16] and GloVe (glo) [18] word vectors. The word
vector models are usually trained on unannotated text corpus. Unless explicitly
mentioned all performance in this paper are with word2vec vectors.
Evaluation protocol: We evaluate our method using top-1 accuracy. We calcu-
late the old model’s accuracy as Acc∗o. Similarly, we calculate Acco and Accn to
represent performance of old and new classes, respectively using the final model.

To measure the extent of forgetting, we calculate, ∆ =
Acc∗o−Acco

Acc∗o
× 100%. A

lower ∆ indicates less forgetting of the new model.
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ModelNet40 → ModelNet10
Method Acc∗o ↑ Acco ↑ Accn ↑ ∆ ↓

Baseline-1 89.2 41.5 90.2 53.5
LwF [12] 89.2 83.6 89.3 6.2
Baseline-2 89.4 - 22.8 -

Ours 89.4 84.4 90.4 5.5

ModelNet40 → ScanObjectNN
Method Acc∗o ↑ Acco ↑ Accn ↑ ∆ ↓

Baseline-1 89.8 51.0 76.9 43.3
LwF [12] 89.8 81.3 73.7 9.5
Baseline-2 89.9 - 21.5 -

Ours 89.9 86.2 74.6 4.1

Table 2: 3D data experiment using PointNet. ↑ (↓) means higher (lower) is better.

Backbone
ModelNet40 → ModelNet10 ModelNet40 → ScanObjectNN

Acc∗o ↑ Acco ↑ Accn ↑ ∆ ↓ Acc∗o ↑ Acco ↑ Accn ↑ ∆ ↓
PointNet [19] 89.4 84.4 90.4 5.5 89.9 86.2 74.6 4.1

PointConv [37] 90.5 86.2 87.8 4.8 90.2 73.4 66.6 18.6
DGCNN [35] 91.5 87.1 93.4 4.9 91.6 71.8 75.0 21.6

Table 3: Ablation study on varying 3D point cloud backbone.

Validation strategy: We further randomly divide the set of old classes into
val-old and val-new classes for validation experiment. In the ModelNet40 →
ModelNet10 and ModelNet40 → ScanObjectNN experiments, we choose 24 and
20 classes from old classes, respectively as val-old and the rest of the classes as
val-new to find values for hyperparameters. We choose λ = 3 and τ = 3 for our
3D experiments by performing a grid search within the range (0, 3].

Implementation details4: We use PointNet [19], PointConv [37], DGCNN [35]
as 3D point cloud backbone and VGG16 [30] (pretrained on Imagenet [27]) as 2D
image backbone to obtain feature vector. For feature vector projection layers, we
use two fully connected layers (512, 256) and (1024, 512) with ReLU activations
in 3D and 2D experiments, respectively. For 3D and 2D experiments, we use one
fully connected layer of size 256 and 512 with ReLU in the projection layer of
semantic representation. In all experiments, we use the Adam optimizer with a
learning rate of 0.0001 and batch sizes of 32 during training. We implement our
work using the PyTorch framework.

Compared methods: In this paper, we compare the results of the following
methods. (a) Baseline-1: A backbone model is trained using the instances of
old classes. Then, the trained backbone is further fine-tuned using new class
instances only. (b) LwF [12]: The backbone training is same as Baseline-1. Then,
the fine-tuning on new class samples uses a knowledge distillation loss [8] not to
forget the old class knowledge. (c) Baseline-2: This method is an intermediate
stage of our proposed approach. We first train the old model of Fig. 2 using
semantic word vector information inside the architecture. But, it does not have
any fine-tuning stage. This performance can be considered zero-shot learning
[5,25] results because it treats new classes as unseen. This method can classify
new (unseen) classes without having trained on new instances. (d) Ours: This is
our final recommendation as described in Sec. 3.1 and 3.2. On top of Baseline-2
training, it contains fine-tuning on new class instances.

4 Codes are available at: https://github.com/townim-faisal/lwf-3D

https://github.com/townim-faisal/lwf-3D
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(a) Using PointNet backbone
Settings Word Acc∗o ↑Acco ↑Accn ↑∆ ↓

ModelNet40 glo 88.2 78.8 90.6 10.6
→ModelNet10 w2v 89.4 84.4 90.4 5.5

ModelNet40 glo 89.7 85.2 70.9 5.0
→ScanObjectNN w2v 89.9 86.2 74.6 4.1

(b) Using VGG16 backbone
Settings Method Acc∗o ↑Acco ↑Accn ↑∆ ↓
Scenes LwF [12] 71.0 69.9 52.3 1.7
→ CUB Ours 70.7 69.9 53.0 1.1

CUB (150) LwF [12] 58.2 57.1 66.2 1.8
→ CUB (50) Ours 60.0 59.0 69.4 1.7

Table 4: Experiment with (a) varying semantic representation and (b) 2D images.

1 2 3 4 5
70

75

80

85
(0,3]; = 3

1 2 3 4 5

75

80

85

(0,3]; = 3

Acco
Accn

Fig. 3: Hyperparameter sensitivity on ModelNet40 → ModelNet10 settings.
Varying (left) λ of Eq. 3 and (right) τ of LKD loss in Eq. 4.

4.1 3D point cloud experiments

Overall results: Table 2 shows the overall results using two settings, Model-
Net40→ ModelNet10 and ModelNet40→ ScanObjectNN. Our observations are
as follows. (1) Baseline-1 gets the worst results in forgetting issue showing high
∆ values because the fine-tuning for the new model does not consider about
old classes. High and low value in Accn and Acco, respectively tells that this
method learns new classes but forgets the old classes significantly. (2) LwF [12]
obtains better results on forgetting issue (lower ∆ values) than Baseline-1 be-
cause this method apply a knowledge distillation loss not to forget old classes.
(3) Baseline-2 shows the performance after old class training using our method.
Without receiving training on new classes, this model can still classify new classes
considering those as unseen class. Although no forgetting occurred in this case,
there is no balance of old and new class performance. (4) Ours result makes a
nice balance of old and new accuracy with maintaining minimal forgetting. (5)
Although both settings achieve similar results (Acco) in old classes across meth-
ods, ModelNet40→ ScanObjectNN gets less accuracy on new classes (Accn) than
ModelNet40→ModelNet10. The reason is that ScanObjectNN classes (new) are
real-scanned 3D objects with higher noise than synthetic data.

Ablation studies: In Table 3, we perform ablation study while varying different
3D point cloud backbone. Among all backbones, PointNet performs consistently
well in both 3D experiment settings. PointConv and DGCNN have some success
in forgetting issue with synthetic data of ModelNet10 but fails to generalize it for
real scanned ScanObjectNN classes. The global features extracted by PointNet
may be more helpful than local features from PointConv and DGCNN backbones.
Table 4(a) also compares two different word vector models (word2vec and GloVe)
as semantics. In most cases, word2vec achieves better accuracy and less forgetting
in comparison to GloVe.
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Fig. 4: tSNE visualization of features and semantics for (a) 2D image and (b)
3D point cloud objects. Ten old and four new classes are shown for better visu-
alization. 2D image features are clustered better than 3D point cloud features.

Hyperparameter sensitivity: We experiment with varying λ and τ in Fig. 3.
By fixing one hyperparameter and adjusting another, we observe hyperparameter
sensitivity within the range λ, τ ∈ (0, 3]. We notice that increasing λ and τ from 0
to 3 improves the old (Acco) and new (Accn) class performance. From λ = τ = 3
to higher, Acco results do not deflect much, but Accn values decrease gradually.
We achieve best results using λ = τ = 3.

4.2 2D experiments

In addition to 3D point cloud experiments, we conduct 2D image experiments.
We report our results in Table 4(b) using MIT Scenes [22], CUB [33]. For two
different experiment setups, Scenes → CUB and CUB (150) → CUB (50), our
method achieves better performance than LwF [12] in terms of less forgetting
(∆). Moreover, we observe that the result of the 2D experiments is better than
the 3D experiments (Tables 2 and 3). The amount of forgetting (∆) is higher in
3D cases than in 2D cases (5-6% vs. 1-2%). The main reason is the 2D backbone
(VGG16 [30]) has been pre-trained on a large dataset Imagenet [27], which has
million training instances and thousands of classes. In contrast, the 3D backbone
(PointNet, DGCNN, PointConv) used in the 3D experiments is not pre-trained
on a huge dataset. Therefore, the feature vector obtained from the 2D backbone
is richer and more clustered than the feature vector obtained from the 3D back-
bone. We notice that the feature-semantic alignment in the 2D experiment is
more aligned than the 3D experiment, as shown in Fig. 4.
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5 Conclusion

In this paper, we investigate LwF on 3D point cloud objects. Because of the lack
of large-scale 3D datasets and powerful pre-trained models, popular knowledge
distillation on prediction scores poorly performs on 3D data. To improve the
performance further, we use semantic word vectors in the network pipeline. It
helps to improve the traditional knowledge distillation performance. We also
report performance on different 3D recognition backbones and word embeddings.
We notice that the extent of forgetting in 3D is still inferior to the 2D image
case. Future research in this area may investigate this issue further.
Acknowledgment: This work was supported by NSU CTRG 2020–2021 grant
#CTRG-20/SEPS/04.
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