
Inside the Binary Reflected Gray Code:
Flip-Swap Languages in 2-Gray Code Order

Joe Sawada Aaron Williams Dennis Wong

Abstract. A flip-swap language is a set S of binary strings of length n such that
S∪{0n} is closed under two operations (when applicable): (1) Flip the leftmost 1;
and (2) Swap the leftmost 1 with the bit to its right. Flip-swap languages model
many combinatorial objects including necklaces, Lyndon words, prefix normal
words, left factors of k-ary Dyck words, and feasible solutions to 0-1 knapsack
problems. We prove that any flip-swap language forms a cyclic 2-Gray code when
listed in binary reflected Gray code (BRGC) order. Furthermore, a generic succes-
sor rule computes the next string when provided with a membership tester. The
rule generates each string in the aforementioned flip-swap languages in O(n)-
amortized per string, except for prefix normal words of length n which require
O(n1.864)-amortized per string. Our work generalizes results on necklaces and
Lyndon words by Vajnovski [Inf. Process. Lett. 106(3):96−99, 2008].

1 Introduction

Combinatorial generation studies the efficient generation of each instance of a combi-
natorial object, such as the n! permutations of {1, 2, . . . , n} or the 1

n+1

(
2n
n

)
binary trees

with n nodes. The research area is fundamental to computer science and it has been cov-
ered by textbooks such as Combinatorial Algorithms for Computers and Calculators by
Nijenhuis and Wilf [27], Concrete Mathematics: A Foundation for Computer Science
by Graham, Knuth, and Patashnik [9], and The Art of Computer Programming, Volume
4A, Combinatorial Algorithms by Knuth [12]. In fact, Knuth’s section on Generating
Basic Combinatorial Patterns is over 450 pages. The subject is important to every day
programmers, and Arndt’s Matters Computational: Ideas, Algorithms, Source Code is
an excellent practical resource [1]. A primary consideration is listing the instances of a
combinatorial object so that consecutive instances differ by a specified closeness condi-
tion. Lists of this type are called Gray codes. This terminology is due to the eponymous
binary reflected Gray code (BRGC) by Frank Gray, which orders the 2n binary strings
of length n so that consecutive strings differ in one bit. The BRGC was patented for a
pulse code communication system in 1953 [10]. For example, the order for n = 4 is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,

0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.
(1)

Variations that reverse the entire order or the individual strings are also commonly used
in practice and in the literature. We note that the order in (1) is cyclic because the last
and first strings also differ by the closeness condition, and this property holds for all n.

ar
X

iv
:2

10
5.

03
55

6v
1

 [
m

at
h.

C
O

]
 8

 M
ay

 2
02

1

2 Joe Sawada Aaron Williams Dennis Wong

One challenge facing combinatorial generation is its relative surplus of breadth and
lack of depth1. For example, [1], [12], and [27] have separate subsections for different
combinatorial objects, and the majority of the Gray codes are developed from first prin-
ciples. Thus, it is important to encourage simple frameworks that can be applied to a
variety of combinatorial objects. Previous work in this direction includes the following:

1. the ECO framework developed by Bacchelli, Barcucci, Grazzini, and Pergola [2]
that generates Gray codes for a variety of combinatorial objects such as Dyck words
in constant amortized time per instance;

2. the twisted lexico computation tree by Takaoka [22] that generates Gray codes for
multiple combinatorial objects in constant amortized time per instance;

3. loopless algorithms developed by Walsh [25] to generate Gray codes for multiple
combinatorial objects, which extend algorithms initially given by Ehrlich in [8];

4. greedy algorithms observed by Williams [28] that provide a uniform understanding
for many previous published results;

5. the reflectable language framework by Li and Sawada [13] for generating Gray
codes of k-ary strings, restricted growth strings, and k-ary trees with n nodes;

6. the bubble language framework developed by Ruskey, Sawada and Williams [17]
that provides algorithms to generate shift Gray codes for fixed-weight necklaces
and Lyndon words, k-ary Dyck words, and representations of interval graphs;

7. the permutation language framework developed by Hartung, Hoang, Mütze and
Williams [11] that provides algorithms to generate Gray codes for a variety of com-
binatorial objects based on encoding them as permutations.

We focus on an approach that is arguably simpler than all of the above: Start with a
known Gray code and then filter or induce the list based on a subset of interest. In other
words, the subset is listed in the relative order given by a larger Gray code, and the
resulting order is a sublist (Gray code) with respect to it. Historically, the first sublist
Gray code appears to be the revolving door Gray code for combinations [26]. A combi-
nation is a length n binary string with weight (i.e. number of ones) k. The Gray code is
created by filtering the BRGC, as shown below for n = 4 and k = 2 (cf. (1))

���0000,���1000, 1100,���0100, 0110,���1110, 1010,���0010,

0011,���1011,���1111,���0111, 0101,���1101, 1001,���0001.
(2)

This order is a transposition Gray code as consecutive strings differ by transposing two
bits2. It can be generated directly (i.e. without filtering) by an efficient algorithm [26].
Transposition Gray codes are a special case of 2-Gray codes where consecutive strings
differ by flipping (i.e. complementing) at most two bits. Vajnovszki [23] proved that
necklaces and Lyndon words form a cyclic 2-Gray code in BRGC order, and efficient
algorithms can generate these sublist Gray codes directly [21]. Our goal is to expand
upon the known languages that are 2-Gray codes in BRGC order, and which can be
efficiently generated. To do this, we introduce a new class of languages.

1 This is not to say that combinatorial generation is always easy. For example, the ‘middle levels‘
conjecture was confirmed by Mütze [14] after 30 years and effort by hundreds of researchers.

2 When each string is viewed as the incidence vector of a k-subset of {1, 2, . . . , n}, then con-
secutive k-subsets change via a “revolving door” (i.e. one value enters and one value exits).

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 3

A flip-swap language (with respect to 1) is a set S of length n binary strings such that
S∪ {0n} is closed under two operations (when applicable): (1) Flip the leftmost 1; and
(2) Swap the leftmost 1 with the bit to its right. A flip-swap language with respect to 0 is
defined similarly. Flip-swap languages encode a wide variety of combinatorial objects.

Theorem 1. The following sets of length n binary strings are flip-swap languages:
Flip-Swap languages (with respect to 1)

i. all strings
ii. strings with weight ≤ k

iii. strings ≤ γ
iv. strings with ≤ k inversions re: 0∗1∗

v. strings with ≤ k transpositions re: 0∗1∗

vi. strings < their reversal
vii. strings ≤ their reversal (neckties)

viii. strings < their complemented reversal
ix. strings ≤ their complemented reversal
x. strings with forbidden 10t

xi. strings with forbidden prefix 1γ
xii. 0-prefix normal words

xiii. necklaces (smallest rotation)
xiv. Lyndon words
xv. prenecklaces (smallest rotation)

xvi. pseudo-necklaces with respect to 0∗1∗

xvii. left factors of k-ary Dyck words
xviii. feasible solutions to 0-1 knapsack problems

Flip-Swap languages (with respect to 0)
. all strings
. strings with weight ≥ k
. strings ≥ γ
. strings with ≤ k inversions re: 1∗0∗

. strings with ≤ k transpositions re: 1∗0∗

. strings > their reversal

. strings ≥ their reversal

. strings > their complemented reversal

. strings ≥ their complemented reversal

. strings with forbidden 01t

. strings with forbidden prefix 0γ

. 1-prefix normal words

. necklaces (largest rotation)

. aperiodic necklaces (largest rotation)

. prenecklaces (largest rotation)

. pseudo-necklaces with respect to 1∗0∗

Our second result is that every flip-swap language forms a cyclic 2-Gray code when
listed in BRGC order. This generalizes the previous sublist BRGC results [21,23].

Theorem 2. When a flip-swap language S is listed in BRGC order the resulting listing
is a 2-Gray code. If S includes 0n then the listing is cyclic.

Our third result is a generic successor rule, which efficiently computes the next string
in the 2-Gray code of a flip-swap language, so long as a fast membership test is given.

Theorem 3. The languages in Theorem 1 can be generated in O(n)-amortized time
per string, with the exception of prefix normal words which require O(n1.864)-time.

In Section 2, we formally define our version of the BRGC. In Section 3, we prove The-
orem 1, and define the flip-swap partially ordered set. In Section 4, we give our generic
successor rule and prove Theorem 2. In Section 5, we present a generic generation
algorithm that list out each string of a flip-swap language, and we prove Theorem 3.

2 The Binary Reflected Gray Code

Let B(n) denote the set of length n binary strings. Let BRGC(n) denote the listing
of B(n) in BRGC order. Let BRGC(n) denote the listing BRGC(n) in reverse order.

4 Joe Sawada Aaron Williams Dennis Wong

n = 4 all necklaces 0-PNW ≤ 1001 k ≤ 2 neckties
BRGC i. xiii. xii. iii. ii. vii.
0000 X X X X X X
1000 X X X
1100 X X
0100 X X X
0110 X X X X X
1110 X
1010 X X
0010 X X X X X
0011 X X X X X X
1011 X X
1111 X X X
0111 X X X X X
0101 X X X X X X
1101 X
1001 X X X X
0001 X X X X X X

(a) String membership in 6 flip-swap languages.

i. xiii. xii. iii. ii. vii.

(b) Visualizating the 2-Gray codes in (a).

Table 1: Flip-swap languages ordered as sublists of the binary reflected Gray code. The-
orem 1 covers each language, so the resulting orders are 2-Gray codes.

Then BRGC(n) can be defined recursively as follows, where L · x denotes the listing
L with the character x appended to the end of each string:

BRGC(n) =

{
0, 1 if n = 1;

BRGC(n− 1) · 0, BRGC(n− 1) · 1 if n > 1.

For example, BRGC(2) = 00, 10, 11, 01 and BRGC(2) = 01, 11, 10, 00, thus

BRGC(3) = 000, 100, 110, 010, 011, 111, 101, 001.

This definition of BRGC order is the same as the one used by Vajnovzski [23]. When the
strings are read from right-to-left, we obtain the classic definition of BRGC order [10].
For flip-swap languages with respect to 0, we interchange the roles of the 0s and 1s;
however, for our discussions we will focus on flip-swap languages with respect to 1.
Table 1 illustrates BRGC(4) and six flip-swap languages listed in Theorem 1.

3 Flip-swap languages

In this section, we formalize some of the non-obvious flip-swap languages stated in
Theorem 1. Then we prove Theorem 1 for a subset of the listed languages including
necklaces, prefix normal words, and feasible solutions to the 0-1 knapsack problems.
The remainder of the languages are proved in the Appendix.
Consider a binary string α = b1b2 · · · bn. The weight of α is the number of 1s it con-
tains. An inversion in α with respect to 0∗1∗ is an index pair (i, j) such that i < j
and bi = 1 and bj = 0. The number of transpositions of α with respect to another

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 5

binary string β of length n is the minimum number of adjacent transpositions required
to transform α to β.
A necklace is the lexicographically smallest (largest) string in an equivalence class un-
der rotation. An aperiodic necklace is a necklace that cannot be written in the form
βj for some j < n. A Lyndon word is an aperiodic necklace when using the lexico-
graphically smallest string as the representative. A prenecklace is a prefix of a neck-
lace. A block with respect to 0∗1∗ is a maximal substring of the form 0∗1∗. A string
α = b1b2 · · · bn = BbBb−1 · · ·B1 is a pseudo-necklace with respect to 0∗1∗ ifBb ≤ Bi
for all 1 ≤ i < b.
A k-ary Dyck word is a binary string of length n = tk with t copies of 1 and t(k − 1)
copies of 0 such that every prefix has at most k − 1 copies of 0 for every 1. The set of
length n prefixes of k-ary Dyck words is called left factors of k-ary Dyck words.
Let flipα(i) be the string obtained by complementing bi. Let swapα(i, j) be the string
obtained by swapping bi and bj . When the context is clear we use flip(i) and swap(i, j)
instead of flipα(i) and swapα(i, j). Also, let `0(α) denote the position of the leftmost
0 of α or n+1 if no such position exists. Similarly, let `1(α) denote the position of the
leftmost 1 of α or n + 1 if no such position exists. We now prove that binary strings,
necklaces, prefix normal words, and feasible solutions to the 0-1 knapsack problems are
flip-swap languages with respect to 1.
Binary strings: Obviously the set B(n) satisfies the two closure properties of a flip-
swap language and thus is a flip-swap language. In fact, the BRGC order induces a
cyclic 1-Gray code for B(n) [12,15].
Necklaces: Let N(n) be the set of necklaces of length n and α = 0j1bj+2bj+3 · · · bn
be a necklace in N(n). By the definition of necklace, it is easy to see that flipα(`α) =
0j+1bj+2bj+3 · · · bn ∈ N(n) and thus N(n) satisfies the flip-first property. For the
swap-first operation, observe that if α 6= 0n−11 and bj+2 = 1, then the swap-first
operation produces the same necklace. Otherwise if α 6= 0n−11 and bj+2 = 0, then
the swap-first operation produces the string 0j+11bj+3bj+4 · · · bn which is clearly a
necklace. Thus, the set of necklaces is a flip-swap language.
Prefix normal words: A binary string α is prefix normal with respect to 0 (also known
as 0-prefix normal word) if no substring of α has more 0s than its prefix of the same
length. For example, the string 001010010111011 is a 0-prefix normal word but the
string 001010010011011 is not because it has a substring of length 5 with four 0s while
the prefix of length 5 has only three 0s.
Observe that the set of 0-prefix normal words of length n satisfies the two closure prop-
erties of a flip-swap language as the flip-first and swap-first operations either increases
or maintain the number of 0s in its prefix. Thus, the set of 0-prefix normal words of
length n is a flip-swap language.
Feasible solutions to 0-1 knapsack problems: The input to a 0-1 knapsack problem is
a knapsack capacity W , and a set of n items each of which has a non-negative weight
wi ≥ 0 and a value vi. A subset of items is feasible if the total weight of the items in
the subset is less than or equal to the capacity W . Typically, the goal of the problem is
to find a feasible subset with the maximum value, or to decide if a feasible subset exists
with value ≥ c.

6 Joe Sawada Aaron Williams Dennis Wong

Given the input to a 0-1 knapsack problem, we reorder the items by non-decreasing
weight. That is, wi ≥ wi+1 for 1 ≤ i ≤ n − 1. Notice that the incidence vectors of
feasible subsets are now a flip-swap language. More specifically, flipping any 1 to 0
causes the subset sum to decrease, and so does swapping any 1 with the bit to its right.
Hence, the language satisfies the flip-first and the swap-first closure properties and is a
flip-swap language.

3.1 Flip-Swap poset

In this section we introduce a poset whose ideals correspond to a flip-swap language
which includes the string 0n.
Let α = b1b2 · · · bn be a length n binary string. We define τ(α) as follows:

τ(α) =


α if α = 0n,
flipα(`α) if α 6= 0n and (`α = n or b`α+1 = 1) (flip-first),
swapα(`α, `α + 1) otherwise (swap-first).

Let τ t(α) denote the string that results from applying the τ operation t times to α. We
define the binary relation <R on B(n) to be the transitive closure of the cover relation
τ , that is β <R α if β 6= α and β = τ t(α) for some t > 0. It is easy to see that
the binary relation <R is irreflexive, anti-symmetric and transitive. Thus <R is a strict
partial order. The relation <R on binary strings defines our flip-swap poset.

Definition 1. The flip-swap poset P(n) is a strict poset with B(n) as the ground set
and <R as the strict partial order.

Figure 1 shows the Hasse diagram of P(4) with the ideal for binary strings of length 4
that are lexicographically smaller or equal to 1001 in bold. Observe that P(n) is always
a tree with 0n as the unique minimum element, and that its ideals are the subtrees that
contain this minimum.

Lemma 1. A set S over B(n) that includes 0n is a flip-swap language if and only if S
is an ideal of P(n).

Proof. Let S be a flip-swap language over B(n) and α be a string in S. Since S is a
flip-swap language, S satisfies the flip-first and swap-first properties and thus τ(α) is a
string in S. Therefore every string γ <R α is in S and hence S is an ideal of P(n). The
other direction is similar.

If S is a set of binary strings and γ is a binary string, then the quotient of S and γ is
S/γ = {α | αγ ∈ S}.

Lemma 2. If S1 and S2 are flip-swap languages and γ is a binary string, then S1∩S2,
S1 ∪ S2 and S1/γ are flip-swap languages.

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 7

1000 1100 1010 1110 1001 1101 1011 1111

0100 0110 0101 0111

0010 0011

0001

0000

(a) The flip-swap poset P(4).

1000 1001

0100 0110 0101 0111

0010 0011

0001

0000

(b) An ideal of P(4).

Fig. 1: Flip-swap languages are the ideals of the flip-swap poset. The ideal in (b) con-
tains the 4-bit binary strings that are ≤ 1001 with respect to lexicographic order.

Proof. Let S1 and S2 be two flip-swap languages and let γ be a binary string. The
intersection and union of ideals of any poset are also ideals of that poset, so S1 ∩ S2

and S1 ∪ S2 are flip-swap languages. Now consider α ∈ S1/γ.
Suppose α ∈ S1/γ for some non-empty γ where j = |α|. This means that αγ ∈ S1.
Consider three cases depending `αγ . If `αγ < j, then clearly τ(αγ) = τ(α)γ. From
Lemma 1, τ(α)γ ∈ S1 and thus τ(α) ∈ S1/γ. If `αγ = j, then α = 0j−11 and τ(α) =
0j . Since S1 is a flip-swap language 0jγ ∈ S1. Again this implies that τ(α) ∈ S1/γ.
If `αγ > j then α = 0j and τ(α) = α in this case. For each case we have shown that
τ(α) ∈ S1/γ and thus S1/γ is a flip-swap language by Lemma 1.

Corollary 1. Flip-swap languages are closed under union, intersection, and quotient.

Proof. Let SA and SB be flip-swap languages and γ be a binary string. Since SA
and SB can be represented by ideals of the flip-swap poset, possibly excluding 0n,
by Lemma 2 the sets SA ∩ SB , SA ∪ SB and SA/γ are flip-swap languages.

Lemma 3. If αγ is a binary string in a flip-swap language S, then 0|α|γ ∈ S.

Proof. This result follows from the flip-first property of flip-swap languages.

4 A generic successor rule for flip-swap languages

Consider any flip-swap language S that includes the string 0n. Let BRGC(S) denote
the listing of S in BRGC order. Given a string α ∈ S, we define a generic successor
rule that computes the string following α in the cyclic listing BRGC(S).
Letα = b1b2 · · · bn be a string in S. Let tα be the leftmost position such that flipα(tα) ∈
S when |S| > 1, such a tα exists since S satisfies the flip-first property and |S| > 1.
Recall that `α is defined to be the position of the leftmost 1 of α (or |α|+ 1 if no such
position exists). Notice that tα ≤ `α when |S| > 1 since S is a flip-swap language.
Let flip2α(i, j) be the string obtained by complementing both bi and bj . When the
context is clear we use flip2(i, j) instead of flip2α(i, j). Also, let w(α) denote the

8 Joe Sawada Aaron Williams Dennis Wong

Necklaces Parity of w(α) tα `α Successor Case
000000 even 6 flip2(5, 6) (4c)
000011 even 3 flip2(2, 3) (4c)
011011 even 2 flip(2) (4b)
001011 odd 3 flip(4) (4e)
001111 even 2 flip2(1, 2) (4c)
111111 even 1 flip(1) (4b)
011111 odd 2 flip(3) (4e)
010111 even 3 flip(2) (4b)
000111 odd 4 flip(5) (4e)
000101 even 2 flip(2) (4b)
010101 odd 2 flip2(2, 3) (4d)
001101 odd 3 flip(4) (4e)
001001 even 3 flip(3) (4b)
000001 odd flip(6) (4a)

Table 2: The necklaces of length 6 induced by successive applications the function f
starting from 000000. The sixth column of the table lists out the corresponding
rules in f that apply to each necklace to obtain the next necklace.

number of 1s of α. We claim that the following function f computes the next string in
the cyclic ordering BRGC(S):

f(α) =



0n if α = 0n−11; (4a)

flipα(tα) if w(α) is even and (tα = 1 or flip2α(tα − 1, tα) /∈ S); (4b)

flip2α(tα − 1, tα) if w(α) is even and flip2α(tα − 1, tα) ∈ S; (4c)

flip2α(`α, `α + 1) if w(α) is odd and flipα(`α + 1) /∈ S; (4d)

flipα(`α + 1) if w(α) is odd and flipα(`α + 1) ∈ S. (4e)

Thus, successive applications of the function f on a flip-swap language S, starting with
the string 0n, list out each string in S in BRGC order. As an illustration of the function
f , successive applications of this rule for the set of necklaces of length 6 starting with
the necklace 000000 produce the listing in Table 2.

Theorem 4. If S is a flip-swap language including the string 0n and |S| > 1, then f(α)
is the string immediately following the string α in S in the cyclic ordering BRGC(S).

We will provide a detailed proof of this theorem in the next subsection. Observe that
each rule in f complements at most two bits and thus successive strings in S differ by
at most two bit positions. Observe that when 0n is excluded from S, then BRGC(S) is
still a 2-Gray code (although not necessarily cyclic). This proves Theorem 2.

4.1 Proof of Theorem 4

This section proves Theorem 4. We begin with a lemma by Vajnovszki [23], and a
remark that is due to the fact that 0n−11 is in a flip-swap language S when |S| > 1.

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 9

Lemma 4. Let α = b1b2 · · · bn and β be length n binary strings such that α 6= β. Let
r be the rightmost position in which α and β differ. Then α comes before β in BRGC
order (denoted by α ≺ β) if and only if w(brbr+1 · · · bn) is even.

Remark 1. A flip-swap language S in BRGC order ends with 0n−11 when |S| > 1.

Let succ(S, α) be the successor of α in S in BRGC order (i.e. the string after α in the
cyclic ordering BRGC(S)). Next we provide two lemmas, and then prove Theorem 4.

Lemma 5. Let S be a flip-swap language with |S| > 1 and α be a string in S. Let tα be
the leftmost position such that flipα(tα) ∈ S. If w(α) is even, then tα is the rightmost
position in which α and succ(S, α) differ.

Proof. By contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r be the right-
most position in which α and β differ with r 6= tα. If tα > r, then β has the suffix
1br+1br+2 · · · bn since br = 0 because r < tα ≤ `α. Thus by the flip-first property,
0r−11br+1br+2 = flipα(r) ∈ S and r < tα, a contradiction.
Otherwise if tα < r, then let γ = flipα(tα). Clearly γ 6= α. Now observe that
w(btbt+1 · · · bn) is even because tα ≤ `α and w(α) is even, and thus by Lemma 4,
α ≺ γ. Also, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β
and r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = tα.

Lemma 6. Let S be a flip-swap language with |S| > 1 and α 6= 0n−11 be a string in
S. If w(α) is odd, then `α+1 is the rightmost position in which α and succ(S, α) differ.

Proof. Since α 6= 0n−11 and w(α) is odd, `α < n − 1. We now prove the lemma by
contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r 6= `α+1 be the rightmost
position in which α and β differ. If r < `α+1, then w(brbr+1 · · · bn) is odd but α ≺ β,
a contradiction by Lemma 4. Otherwise if r > `α+1, then let γ = flip2α(`α, `α+1).
Clearly γ 6= α, and by the flip-first and swap-first properties, γ ∈ S. Also, observe
that w(b`α+1b`α+2 · · · bn) is even because w(α) is odd, and thus by Lemma 4, α ≺ γ.
Further, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β and
r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = `α + 1.

Proof of Theorem 4. Let α = a1a2 · · · an and β = succ(S, α) = b1b2 · · · bn. Let tα
be the leftmost position such that flipα(tα) ∈ S. First we consider the case when
α = 0n−11. Recall that the first string in B(n) in BRGC order is 0n [15] and 0n is a
string in S by Lemma 3. Also, the last string in S in BRGC order is 0n−11 by Remark 1
when |S| > 1. Thus the string that appears immediately after α in the cyclic ordering
BRGC(S) is f(α) when α = 0n−11. In the remainder of the proof, α 6= 0n−11 and we
consider the following two cases.

Case 1: w(α) is even: If tα = 1, then clearly β = flipα(tα) = f(α). For the remain-
der of the proof, tα > 1.

10 Joe Sawada Aaron Williams Dennis Wong

Since tα ≤ `α, flip2α(tα − 1, tα) has the prefix 0tα−21. We now consider the
following two cases. If flip2α(tα − 1, tα) /∈ S, then flipα(tα) is the only string
in S that has tα as the rightmost position that differ with α and has the prefix 0t−2.
Therefore, β = flipα(tα) = f(α). Otherwise, flip2α(tα − 1, tα) and flipα(tα)
are the only strings in S that have tα as the rightmost position that differ with α
and have the prefix 0tα−2. By Lemma 4, flip2α(tα − 1, tα) ≺ flipα(tα) since
w(1atαatα+1atα+2 · · · an) is even. Thus, β = flip2α(tα − 1, tα) = f(α).

Case 2: w(α) is odd: By Lemma 6, β has the suffix a`α+1a`α+2a`α+3 · · · an. If flipα(`α+
1) /∈ S, then by the flip-first and swap-first properties, flip2α(`α, `α + 1) is the
only string in S that has `α + 1 as the rightmost position that differ with β. Thus,
β = flip2α(`α, `α + 1) = f(α). Otherwise by Lemma 4, any string γ ∈ S with
the suffix a`α+1a`α+2a`α+3 · · · an and γ 6= flipα(`α + 1) has flipα(`α + 1) ≺ γ
because w(1a`α+1a`α+2a`α+3 · · · an) is even. Thus, β = flipα(`α + 1) = f(α).

Therefore, the string immediately after α in the cyclic ordering BRGC(S) is f(α).

5 Generation algorithm for flip-swap languages

In this section we present a generic algorithm to generate 2-Gray codes for flip-swap
languages via the function f .
A naı̈ve approach to implement f is to find tα by test flipping each bit in α to see if
the result is also in the set when w(α) is even; or test flipping the (`α + 1)-th bit of α
to see if the result is also in the set when w(α) is odd. Since tα ≤ `α, we only need
to examine the length `α − 1 prefix of α to find tα. Such a test can be done in O(nm)
time, whereO(m) is the time required to complete the membership test of the set under
consideration. Pseudocode of the function f is given in Algorithm 1.
To list out each string of a flip-swap language S in BRGC order, we can repeatedly
apply the function f until it reaches the starting string. We also maintain w(α) and `α
which can be easily maintained in O(n) time for each string generated. We also add a
condition to avoid printing the string 0n if 0n is not a string in S. Pseudocode for this
algorithm, starting with the string 0n, is given in Algorithm 2. The algorithm can easily
be modified to generate the corresponding counterpart of S with respect to 0.
A simple analysis shows that the algorithm generates S in O(nm)-time per string. A
more thorough analysis improves this to O(n+m)-amortized time per string.

Theorem 5. If S is a flip-swap language, then the algorithm BRGC producesBRGC(S)
in O(n +m)-amortized time per string, where O(m) is the time required to complete
the membership tester for S.

Proof. Let α = a1a2 · · · an be a string in S. Clearly f can be computed in O(n)
time when w(α) is odd. Otherwise when w(α) is even, the while loop in line 5 of
Algorithm 1 performs a membership tester on each string β = b1b2 · · · bn in S with
b`αb`α+1 · · · bn = a`αa`α+1 · · · an and w(b1b2 · · · b`α−1) = 1. Observe that each of
these strings can only be examined by the membership tester once, or otherwise the

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 11

Algorithm 1 Pseudocode of the implementation of the function f .
1: function f (α)
2: if α = 0n−11 then flipα(n)
3: else if w(α) is even then
4: tα ← `α
5: while tα > 1 and flipα(tα − 1) ∈ S do tα ← tα − 1

6: if tα 6= 1 and flip2α(tα − 1, tα) ∈ S then α← flip2α(tα − 1, tα)
7: else α← flipα(tα)

8: else
9: if flipα(`α + 1) /∈ S then α← flip2α(`α, `α + 1)

10: else α← flipα(`α + 1)

Algorithm 2 Algorithm to list out each string of a flip-swap language S in BRGC order.
1: procedure BRGC
2: α = b1b2 · · · bn ← 0n

3: do
4: if α 6= 0n or 0n ∈ S then Print(α)
5: f(α)
6: w(α)← 0
7: for i from n down to 1 do
8: if bi = 1 then w(α)← w(α) + 1

9: if bi = 1 then `α ← i

10: while α 6= 0n

while loop in line 5 of Algorithm 1 produces the same tα which results in a duplicated
string, a contradiction. Thus, the total number of membership testers performed by the
algorithm is bound by |S|, and therefore f runs in O(m)-amortized time per string. Fi-
nally, since the other part of the algorithm runs in O(n) time per string, the algorithm
BRGC runs in O(n+m)-amortized time per string.

The membership tests in this paper can be implemented in O(n) time and O(n) space;
see [3,7,20] for necklaces, Lyndon words, prenecklaces and pseudo-necklaces of length
n. One exception is the test for prefix normal words of length n, which requiresO(n1.864)
time and O(n) space [5]. Together with the above theorem, this proves Theorem 3.
Visit the Combinatorial Object Server [6] for a C implmentation of our algorithms.

References

1. J. Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer, 2011.
2. S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive generation of combinato-

rial objects by ECO. Acta Informatica, 40(8):585–602, 2004.
3. K. S. Booth. Lexicographically least circular substrings. Inf. Process. Lett., 10(4/5):240–242,

1980.
4. B. Bultena and F. Ruskey. An Eades-McKay algorithm for well-formed parenthesis strings.

Inf. Process. Lett., 68(5):255–259, 1998.

12 Joe Sawada Aaron Williams Dennis Wong

5. T. M. Chan and M. Lewenstein. Clustered integer 3SUM via additive combinatorics. In
Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC
15, pages 31–40, New York, NY, USA, 2015.

6. COS++. The Combinatorial Object Server. http://combos.org/brgc.
7. J. P. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381, 1983.
8. G. Ehrlich. Loopless algorithms for generating permutations, combinations, and other com-

binatorial configurations. J. ACM, 20(3):500–513, 1973.
9. R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer

Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.
10. F. Gray. Pulse code communication, 1953. US Patent 2,632,058.
11. E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via per-

mutation languages. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’20, page 1214–1225, USA, 2020.

12. D. Knuth. The Art of Computer Programming. Volume 4, fascicule 2., Generating all tuples
and permutations. The Art of Computer Programming. Addison-Wesley, Upper Saddle River
(N.J.), 2005. Autre tirage : 2010.

13. Y. Li and J. Sawada. Gray codes for reflectable languages. Inf. Process. Lett., 109(5):296 –
300, 2009.

14. T. Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical
Society, 112:677—-713, 2016.

15. F. Ruskey. Combinatorial Generation. Working version (1j-CSC 425/520) edition, 2003.
16. F. Ruskey and A. Proskurowski. Generating binary trees by transpositions. J. Algorithms,

11(1):68 – 84, 1990.
17. F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex order. J.

Comb. Theory Ser. A, 119(1):155 – 169, 2012.
18. F. Ruskey and A. Williams. Generating balanced parentheses and binary trees by prefix

shifts. In Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory
- Volume 77, CATS ’08, pages 107–115, Darlinghurst, Australia, 2008.

19. C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
20. J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in

constant amortized time. Theor. Comput. Sci., 502:46 – 54, 2013.
21. J. Sawada, A. Williams, and D. Wong. Necklaces and Lyndon words in colexicographic and

reflected Gray code order. J. Discrete Algorithms, 46-47:25–35, 2017.
22. T. Takaoka. An O(1) time algorithm for generating multiset permutations. In Algorithms

and Computation, 10th International Symposium, ISAAC ’99, Chennai, India, December 16-
18, 1999, Proceedings, volume 1741 of Lecture Notes in Computer Science, pages 237–246.
Springer, 1999.

23. V. Vajnovszki. More restrictive Gray codes for necklaces and Lyndon words. Inf. Process.
Lett., 106(3):96–99, 2008.

24. V. Vajnovszki and T. Walsh. A loop-free two-close Gray-code algorithm for listing k-ary
Dyck words. J. Discrete Algorithms, 4(4):633–648, 2006.

25. T. Walsh. Generating Gray codes in O(1) worst-case time per word. In Discrete Mathemat-
ics and Theoretical Computer Science, 4th International Conference, DMTCS 2003, Dijon,
France, July 7-12, 2003. Proceedings, volume 2731 of LNCS, pages 73–88. Springer, 2003.

26. H. S. Wilf. A unified setting for sequencing, ranking, and selection algorithms for combina-
torial objects. Adv. Math., 24:281–291, 1977.

27. H. S. Wilf and A. Nijenhuis. Combinatorial Algorithms: For Computers and Calculators.
Academic Press, 2nd edition, 1978.

28. A. Williams. The greedy Gray code algorithm. In 13th International Symposium, WADS
2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 525–536, 2013.

http://combos.org/brgc

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 13

Appendix: Proofs for flip-swap languages

This section provides the proofs for the remainder of the languages in Theorem 1. Un-
less otherwise stated, the discussion of flip-swap languages are with respect to 1.

Binary strings with weight ≤ k

Recall the weight of a binary string is the number of 1s it contains. Let S be the set of
binary strings of length n having weight less than or equal to some k. Observe that S
satisfies the two closure properties of a flip-swap language as the flip-first and swap-first
operations either decrease or maintain the weight. Thus, S is a flip-swap language.

Binary strings ≤ γ

Let S be the set of binary strings of length n with each string lexicographically smaller
or equal to some string γ. Observe that S satisfies the two closure properties of a flip-
swap language as the flip-first and swap-first operations either make the resulting string
lexicographically smaller or produce the same string. Thus, S is a flip-swap language.

Binary strings with ≤ k inversions

Recall that an inversion with respect to 0∗1∗ in a binary string α = b1b2 · · · bn is any
bi = 1 and bj = 0 such that i < j. For example when α = 100101, it has 4 inversions:
(b1, b2), (b1, b3), (b1, b5), (b4, b5). Let S be the set of binary strings of length n with
less than or equal to k inversions with respect to 0∗1∗. Observe that S satisfies the
two closure properties of a flip-swap language as the flip-first and swap-first operations
either decrease or maintain the number of inversions. Thus, S is a flip-swap language.

Binary strings with ≤ k transpositions

Recall that the number of transpositions of a binary string α = b1b1 · · · bn with respect
to 0∗1∗ is the minimum number of swap(i, j) operations required to change α into the
form 0∗1∗. For example, the number of transpositions of the string 100101 is 1. Let S
be the set of binary strings of length n with less than or equal to k transpositions with
respect to 0∗1∗. Observe that S satisfies the two closure properties of a flip-swap lan-
guage as the flip-first and swap-first operations either decrease or maintain the number
of transpositions. Thus, S is a flip-swap language.

Binary strings< or ≤ their reversal

Let S be the set of binary strings of length n with each string lexicographically smaller
than their reversal. Observe that S satisfies the swap-first property as the swap-first
operation either produces the same string, or makes the resulting sting lexicographically

14 Joe Sawada Aaron Williams Dennis Wong

smaller while its reversal lexicographically larger. Furthermore, S ∪ {0n} satisfies the
flip-first property as the flip-first operation complements the most significant bit of α
but the least significant bit of its reversal when w(α) > 1; or otherwise produces the
string 0n when w(α) = 1. Thus, S is a flip-swap language. The proof for the set of
binary strings of length n with each string lexicographically smaller than or equal to
their reversal is similar to the proof for S.
Equivalence class of strings under reversal has also been called neckties [19].

Binary strings< or ≤ their complemented reversal

Let S be the set of binary strings of length n with each string lexicographically smaller
than (or equal to) its complemented reversal. Observe that S satisfies the flip-first prop-
erty as the flip-first operation makes the resulting string lexicographically smaller while
its complemented reversal lexicographically larger. Furthermore, S satisfies the swap-
first property as the swap-first operation either produces the same string, or comple-
ments the most significant bit of α and also a 1 of its complemented reversal. Thus, the
resulting string must also be less than its complemented reversal. Thus, S is a flip-swap
language.

Binary strings with forbidden 10t

Let S be the set of binary strings of length n without the substring 10t. Observe that S
satisfies the two closure properties of a flip-swap language as the flip-first and swap-first
operations do not create the substring 10t. Thus, S is a flip-swap language.

Binary strings with forbidden prefix 1γ

Let S be the set of binary strings of length n without the prefix 1γ. Observe that S
satisfies the two closure properties of a flip-swap language as the flip-first and swap-
first operations either create a string with the prefix 0 or produce the same string. Thus,
S is a flip-swap language.

Lyndon words

Let L(n) denote the set of Lyndon words of length n. Since N(n) is a flip-swap lan-
guage and L(n) ∪ {0n} ⊆ N(n), it suffices to show that applying the flip-first or the
swap-first operation on a Lyndon word either yields an aperiodic string or the string 0n.
Clearly L(n) ∪ {0n} satisfies the two closure properties of a flip-swap language when
α ∈ {0n, 0n−11}. Thus in the remaining of the proof, α /∈ {0n, 0n−11}. We first
prove by contradiction that L(n)∪{0n} satisfies the flip-first closure property. Let α =
0j1bj+2bj+3 · · · bn be a string in L(n)∪{0n}. Suppose that L(n)∪{0n} does not satisfy
the flip-first closure property and flipα(`α) is periodic. Thus flipα(`α) = (0j+1β)t

for some string β and t ≥ 2. Observe that α = 0j1β(0j+1β)t−1 which is clearly not

Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order 15

a Lyndon word, a contradiction. Therefore L(n) ∪ {0n} satisfies the flip-first closure
property.
Then similarly we prove by contradiction that L(n)∪{0n} satisfies the swap-first prop-
erty. If bj+2 = 1, then applying the swap-first operation on α produces the same Lyndon
word. Thus in the remaining of the proof, bj+2 = 0. Suppose that L(n)∪{0n} does not
satisfy the swap-first closure property such that α ∈ L(n)∪{0n} but swapα(`α, `α+1)
is periodic. Thus swapα(`α, `α +1) = (0j+11β)t for some string β and t ≥ 2. Thus α
contains the prefix 0j1 but also the substring 0j+11 in its suffix which is clearly not a
Lyndon word, a contradiction. Thus, L(n) is a flip-swap language.
In [23], Vajnovszki proved that the BRGC order induces a cyclic 2-Gray code for the
set of Lyndon words of length n.

Prenecklaces

Recall that a string α is a prenecklace if it is a prefix of some necklace. In Section 3
we prove that applying the flip-first or the swap-first operation on a necklace yields a
necklace. Thus by the definition of prenecklace, applying the flip-first or the swap-first
operation on a prenecklace also creates a string that is a prefix of a necklace. Thus, the
set of prenecklaces of length n is a flip-swap language.

Pseudo-necklaces

Recall that a block with respect to 0∗1∗ is a maximal substring of the form 0∗1∗. Each
block Bi with respect to 0∗1∗ can be represented by two integers (si, ti) corresponding
to the number of 0s and 1s respectively. For example, the string α = 000110100011001
can be represented by B4B3B2B1 = (3, 2)(1, 1)(3, 2)(2, 1). A block Bi = (si, ti) is
said to be lexicographically smaller than a block Bj = (sj , tj) (denoted by Bi < Bj)
if si < sj or si = sj with ti < tj .
A string α = b1b2 · · · bn = BbBb−1 · · ·B1 is a pseudo-necklace with respect to 0∗1∗ if
Bb ≤ Bi for all 1 ≤ i < b. Observe that the set of pseudo-necklaces of length n sat-
isfies the two closure properties of a flip-swap language as the flip-first and swap-first
operations do not make the first block Bb lexicographically larger, while the remain-
ing blocks either remain the same or become lexicographically larger. Thus, the set of
pseudo-necklaces of length n is a flip-swap language.
In [21], the authors proved that the BRGC order induces a cyclic 2-Gray code for the
set of pseudo-necklaces of length n.

Left factors of k-ary Dyck words

Recall that a k-ary Dyck word is a binary string of length n = tk with t copies of 1 and
t(k−1) copies of 0 such that every prefix has at most k−1 copies of 0 for every 1. It is
well-known that k-ary Dyck words are in one-to-one correspondence with k-ary trees
with t internal nodes. When k = 2, Dyck words are counted by the Catalan numbers

16 Joe Sawada Aaron Williams Dennis Wong

and are equivalent to balanced parentheses. As an example, 110100 is a 2-ary Dyck
word and is also a balanced parentheses string while 100110 is not a 2-ary Dyck word
nor a balanced parentheses because its prefix of length three contains more 0s than 1s.
k-ary Dyck words and balanced parentheses strings are well studied and have lots of
applications including trees and stack-sortable permutations [4,16,18,24].
The set of k-ary Dyck words of length n is not a flip-swap language with respect to 0
since 110100 is a 2-ary Dyck word but 111100 is not. The set of length n prefixes of
k-ary Dyck words is, however, a flip-swap language with respect to 0. This set is also
called left factors of k-ary Dyck words. Let S be the set of left factors of k-ary Dyck
words. Observe that S satisfies the two closure properties of a flip-swap language with
respect to 0 as the flip-first and swap-first operations do not increase the number 0s in
the prefix. Thus, S is a flip-swap language with respect to 0.

	Inside the Binary Reflected Gray Code: Flip-Swap Languages in 2-Gray Code Order

