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Continuants with equal values, a combinatorial approach

G Rambharter, L.Q. Zamboni

Abstract

A regular continuant is the denominator K of a terminating regular continued fraction,
interpreted as a function of the partial quotients. We regard K as a function defined on
the set of all finite words on the alphabet 1 < 2 < 3 < ... with values in the positive
integers. Given a word w = wy -+ w, with w; € N we define its multiplicity p(w) as the
number of times the value K (w) is assumed in the Abelian class X'(w) of all permutations
of the word w. We prove that there is an infinity of different lacunary alphabets of the form
o < <b<l+1<l+2<--- < s} with bj,t,l,s € N and s sufficiently large such
that p takes arbitrarily large values for words on these alphabets. The method of proof relies
in part on a combinatorial characterisation of the word wyp,q, in the class X'(w) where K
assumes its maximum.
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Introduction. Given a sequence w = (wy,...,w,), of positive w;, let K(w) be the continuant
of w, i.e., the denominator of the finite regular continued fraction wh w; ce 11+wi. We shall

regard w as a word of length n over the alphabet {1 <2 <3 < ...} and write w = wy - - - w,,. Since
K(w) = K(w), where w = w, - - -w; denotes the reversal of w, we shall henceforth identify each
word w with its reverse w. Let X'(w) denote the Abelian class of w consisting of all permutations
of w. The following problem has attracted much attention and led to a number of applications
(see e.g. [1L14, B, 7, [8]): Let A= {a; <--- < as} be a finite ordered alphabet with a; € N. Given
a word w = wywsy - - - w, with w; € A, find the arrangements Wy ax, Wiin € X (w) maximizing resp.
minimizing the function K(-) on X (w). The first author [3] gave an explicit description of both
extremal arrangements Wy, and wy,;, and showed that in each case the arrangement is unique (up
to reversal) and independent of the actual values of the positive integers a;. He also investigated
the analogous problem for the semi-regular continuant K’ defined as the denominator of the semi-

regular continued fraction £ = T g with entries w; € {2,3,...}. He gave a fully
combinatorial description of the minimizing arrangement w! . for K’(-) on X (w) and showed that

the arrangement is unique (up to reversal) and independent of the actual values of the positive
integers a;. However, the determination of the maximizing arrangement w/ . for the semi-regular
continuant turned out to be more difficult. He showed that in the special case of a 2-digit alphabet
{(2 <) a1 < as}, the maximizing arrangement w;, . is a Sturmian word and is independent of the
values of the a;. Recently the second author together with M. Edson and A. De Luca [§] developed
an algorithm for constructing w! . over any ternary alphabet {(2 <) a1 < ay < ag}, and showed

that the maximizing arrangement is independent of the choice of the digits. In contrast, they
exhibited examples of words w = wy - - - w,, over a 4-digit alphabet A = {(2 <) a1 < as < a3 < ay}
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for which the maximizing arrangement for K’(-) is not unique and depends on the actual values
of the positive integers a; through a4. In the course of these investigations the following problem
came up: given an alphabet A of positive integers, we say that a word w on A has multiplicity
pu = p(w) if the value K(w) occurs precisely p times in the multi-set {K(x) : z € X'(w)}. The
multiplicity p/(w) is defined analogously for the semi-regular continuant K’(w). Thus each Abelian
class X' (w) is split into subclasses of equally valued words. Question: is it true that u can take
arbitrarily large values for infinitely many alphabets and is there a combinatorial proof of this?
Our aim here is to give a positive answer to this question in the case of regular continued fractions.

Theorem. Fix positive integers 1 <t<[<s, by<...<b; <l and let A be an ordered alphabet of
the form {b; < ... <b <+ 1< .. <s}. Then for all s sufficiently large, there exists an infinite
sequence of words wy, over A with multiplicities pu(wg) — oo as k — oo.

It should be noted that for fixed s one obtains the largest possible alphabet A'={1<2 <--- < s}
by choosing by =t =1 =1 (< s). Our proof makes use of the combinatorial structure of wyax

found by the first author in [3].

Preliminaries. We introduce some notation. Let w = wy ---w, be a word of length n > 2 with

w; € N (j=1,...,n). The regular continuant of w has a matrix representation
wp, —1 0 - 0
K(w)=w; and K(w)=det{ o 1 . . o0 |,n>2
. e Wp—1 —1
o --- 0 1w,

It can also be defined recursively by K ({ }) = 1 ({ } = empty word), K(w;) = wy and K(w; - --w;) =
wiK(wy - -wj_1) + K(wy - -wj_g) for j > 2. For each 1 <k <m < n we set Wy, = Wy -+ W,
and W := Wy ,,, Wi, = K(wg,m). The following fundamental formula goes back to the late 19th
century and can be found in Perron [2], p.11, (4): (W =) Wi, = Wi jWit1n + Wi ,;-1Wiian
( €{1,...,n—1}). From this we infer the simple but useful inequality

Wi <2Wi Wit n. (1)

Let A= {a; <--- < as} CN. We consider a word w = wy - w,, := a*---aP* of length n with
Parikh vector p = (p1, ..., ps) with p; + -+ + ps = n where

a"=aa---q
——
r-times
denotes a sequence of r equal elements a. Let X = X(A,p) denote the set of all permutations

of w where we identify each word v with its reverse v. Let N(A, p) denote the cardinality of X.
Then, N(A,p) > 5="—. We put Wiyax = Wiax(4,p) := max{K(v) : v € X'}. It was shown in

2p1l..ps!’

[3] (see (3), p. 190) that Wi,.x is uniquely attained (up to reversal) by the arrangement
asLs—la's—QLs—?) e a1171 e a's—3Ls—2as—1Ls (2)
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where L; = a” . Let P = P(A,p) = #{K(v) : v € X}.

Proof of the Theorem. Our first goal is to describe how to specify the last digit s (> 2) in an
alphabet A : {b; <---<b <l+1<---<s}. We consider ’equipartitioned” words

w=wy- Wy, =b" b)) ™

corresponding to the Parikh vector p = (m,m,...,m) in which each digit of A occurs pre-
cisely m-times in w. We will give a lower bound for s (see (7l) below). To this end, we intro-
duce the quantities @Q,,,_1 := K(r™ ') (r € 1,2,...). They are the elements of the r-th gen-
eralised Fibonacci sequence which is determined by the recursion @, := 1, Q.1 = K(r) = r,

Qrjy1 = 1Quj +Qrj1 (1 =1,2,...).
Claim: Q, ;1 < (r+ 1)? for each fixed » > 1 and all j > 1.

To prove the claim, we proceed by induction on j: This is obviously true for j = 1 and j = 2.
Then by the induction hypothesis

Qrj1=71Qrj 2+ Qrjz<r(r+1)7"+ (r+1)72
=r+172rr+1)+1) < (r+173(r+1)°
= (r+1).

In order to obtain an upper bound for the number P(A, p), it suffices to consider words over the
largest allowed s-digit alphabet A" : {1 < --- < s}, by =t =1=1 (< s), with Parikh vector

p' = (m,m,...,m). Clearly

s-times

P(A,p) < Wiax(A4,p) < Wiax (4", p)

and by (2
Wax (A, P) =5- (s —1)™ (s —=2)---1- 1™ (s =2)™ 1 (s —1) - s™ L, (3)

By iteration of () applied to the decomposition in (B]) we obtain the inequalities

WmaX(Ala p/) = K(wmaX(A/7 p,))

<2 s-(s—1)---3-2 [[KG™)
7j=1
=2% sl [] Qjn—s
j=1

<22 s [JG+nm
j=1

= 2% sl((s + 1)H™



and hence

P(A,p) <2% s! ((s+1))™ (4)
For each s > 2 we define mo = my(s) to be the smallest positive integer such that
mo
2% 5l < 100 .
99

P(A,p) < (@ ((s + 1)!))m for all m > my(s). (5)

Then

99

On the other hand, we have the following lower bound for the number of different words in X' (w):

((s=1+1t)m)!
2(ml)s—1+

N(A,p) > (6)
Based on the condition (7)) below, we will later make a choice of s = §'(¢,1) depending on the
parameters t,l. We apply the estimates provided by Sterling’s formula to the factorial terms
occurring in relations (5] and (@) to obtain

100 100 12
(P(A,p))Y/™ < %(s + 1) < 9—9Oﬁ e (s + 1)t /27(s + 1).

(s — L+ ) m))Y™ > e 0 (5 — [ 4 £)m)* /2 (s — T+ Dm .

. 192 s\ /M
(2 (m!)s—l—l—t)l/ < o= (5=l s—l+t <2 ( /—27rm) ) .

11

s—Il+t
1/m

s—1+t and m

When we put the right hand sides of the last two inequalities together, the terms e
cancel out, and if we keep the parameters t,[ fixed for the moment, the terms of the form 4/ -

tend to 1 as m — oo. Letting m — oo we get

lim <N(A, P))l/m > 99 11 estl(s — [ 4 t)s—i+ _
m—00 P(A, p) — 10012 27'('(8 + 1)(8 4 1)3+1
363e (s 41— 1t — 1) ot

400 27 (s + 1)(s + 1)+
363 et (1 l—t+1)8+1
400 \/27r(s + 1) (s — [ +t)i-tH s+1 .

: _ s+1
For fixed ¢,1 (I —¢ > 1) the function f(t,l,s) = (1— L)

increasing on the interval [I — ¢ + 1,00) with f(t,1,s) /e ("9~ as s — co. We define s; to be
the lowest integer such that f(t,1,s9) > 1 e~ (=9=1 Then

in the variable s is strictly

N(A 1/m s+1
hm( ( ,p>> _ 363 o

1
e =)-1 . H(t.1
e * b 78
P(A,p)) =400 \/2r(s + 1) (s — [+ t)—t+1 2 (t:1,5)

m—0o0



for all s > s5. Obviously there exists some sufficiently large s’ = §'(¢,1) > so such that

H(t,l,s") > 1. (7)
Therefore the right hand side of

N(A, p) Syym
(PD) > (e1.s)) ®)

can be made arbitrarily large by letting m — oco. We call an (s’ — [ + t)-digit alphabet A =
{1 )by <o < b < -+ < &'} admissible if s = §'(t,1) fulfills condition (7)) We consider
the word w(A,p1) = (by)™ -+ (b)™ (L + 1)™ ---(s')™ of length n = (s’ — | + t)m; with Parikh

vector p1 = ((m1)* ") where we choose m; > mq such that (%) > (H(t,l,s"))™. The

multi-set X; = X'(A, p1) is made up of the N(A, p;) = #A) permuted arrangements of u. There
exists at least one word w; € A with multiplicity 1 > 2 because otherwise we would have
N(A,p1) = P(A, p1) which contradicts (8) with m = m;. Let gy (> 2) be the maximal multiplicity
attained by words w € X;. Next choose may > my(s’) such that H(t,1,s')™ > p;. We claim that
at least one word wy from Xy = X(A,ps), p2 = ((mg)* ") has multiplicity g > p1. Otherwise
we would have N (A, py) < puy P(A, ps) which contradicts (§) with m = my. Next let s (> 1)
be the maximal multiplicity attained by words w € X,. Proceeding with this construction step
by step we end up with a sequence of words wy on A with multiplicities puy — oo as k — oo. The
construction can be carried out for infinitely many different admissible alphabets. This completes
the proof of the Theorem. O

The question remains largely unsolved in the case of semi-regular continuants though it seems
certain that the behavior is quite similar to the regular case.

There is some evidence supporting the following

Conjecture. Given any ordered alphabet A = {a; < --- < a5} (a; € N, s > 2), let 4 > 2 be
a positive integer. Then there exist infinitely many words on A whose multiplicity is precisely
. The problem appears to require a difficult investigation into the values of continuants. Most
likely our theorem and the conjecture also hold for continuants of semi-regular continued fractions.
Unfortunately no higher-dimensional analogue of the theorem is available at present for s > 4 due
to the fact that very little is known about the maximizing arrangements w .. for s > 4 (see [§]).

max
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