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Preface

Everybody engages in problem solving. It is a natural and inevitable part of life.
Historically, the link between problem solving and programming has been less
emphasized. When you write an essay, you are programming—at different levels
many times. You make sure ideas flow and arguments make use of the data you are
analyzing. You write several drafts of the essay. Each draft represents a refinement.
Every paragraph has a point and you avoid repeating yourself. All this is part of
programming, including computer programming. Programmers, people who solve
problems using a computer, go through the exact same steps to write a program.
The same steps are taken by a psychologist analyzing a patient and by a chemist
experimenting in a laboratory. Even a painter engages in programming. No? Does a
painter not want to elicit an outcome or an emotion in you? Indeed, how to achieve
this is a problem that must be solved by the artist. Consider the painting Sorrowing
Old Man (At Eternity’s Gate) by Vincent van Gogh (search for it on the internet).
Can you see the old man’s sorrow? Can you imagine the weight of the years on him?
If so, we can say that the painter successfully solved the problem. This brings us to
another important component of problem solving: testing. It is not only important
to solve a problem. It is equally important to test the solution to make sure it works
and in many cases to make sure that the solution is efficient.

This book is about systematic problem solving or if you like about systematic
reasoning. Unlike most textbooks about programming, this textbook is not about
tinkering with or hacking code. This book is about making a plan to solve a problem
and then implementing the solution. As we shall discover, it turns out that the
solutions to many problems are similar. This should not come as a surprise because
we often solve many problems using similar data. How do you do grocery shopping?
You make a list of items and check them off as you put them in your cart. How do
you manage your chores today? You make a list of chores and check them off as
you get them done. Pretty similar, no? Similarities give rise to abstraction to avoid
repetitions—or reinventing the proverbial wheel. This book, therefore, is also about
abstraction. Thinking abstractly is a powerful tool in problem solving.

In this textbook, all the solutions to problems are expressed as programs. It is
important to be somewhat precise about what a program is. A program is much more
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viii Preface

than just code written using a programming language. Remember that a program is
a solution to a problem. Therefore, a program has a design, code, examples of how it
works, and tests. That is, it communicates how the problem is solved and illustrates
that the solution works. If any of the mentioned components are missing, then we
have an incomplete program. Would you believe someone who simply told you that
n?, where n is a nonnegative integer, is the sum of the first n odd numbers? Many
readers would be skeptical. What if they also provided the following examples:

02 =0
22 =1+ 3
42 =1 +3+5+7

It is very likely that most readers would now feel more confident that the claim is
true. It is the same in programming. We cannot simply say that here is a function
that does this or that. We need to explain how the function computes its value, and
we need to have examples that show how it works. The steps taken to design a
program in a systematic manner is called a design recipe. In this textbook, you shall
study many different design recipes. Each design recipe shall become a tool in your
problem-solving toolbox.

There are two problem-solving techniques that are emphasized throughout the
book: divide and conquer and iterative refinement. Divide and conquer is the process
by which a large problem is broken into two or more smaller problems that are easier
to solve and then the solutions for the smaller pieces are combined to create an answer
to the problem. Iterative refinement is the process by which a solution to a problem
is gradually made better—Ilike the drafts of an essay. Mastering these techniques is
essential to becoming a good problem solver and programmer.

Finally, problem solving ought to be fun. To this end, this book promises that by
the end of it you will have designed and implemented a multiplayer video game that
you can play with your friends over the internet. To achieve this, however, there is a
lot about problem solving and programming that you must first learn. The game is
developed using iterative refinement. As we learn about programming, we shall apply
our new knowledge to develop increasingly better versions of the video game. In
fact, every skill you develop for problem solving and program design is transferable
to other (non-programming) domains and to other programming languages.

1 The Languages and the Parts of the Book

The book uses the Racket student languages to write programs. These languages
are chosen for several reasons. The first is that they have an error-messaging system
specifically designed for beginners. This means that unlike common programming
languages the error messages are likely to make sense to beginners. If you do not
understand an error message, do not hesitate to ask your professor or search for
help online. The second is that the syntax is simple and easy to understand. This
is important because the emphasis is always on problem solving and not on how
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to correctly write expressions. The third is that the student languages progressively
become richer. At the beginning, you have fewer features at your disposal and,
therefore, the possible errors are fewer. The fourth reason is that the student languages
come with powerful libraries to create graphics, animations, and video games. These
libraries allow students to inject their own personalities in the development of games
and animations. You are strongly encouraged to be creative. Finally, the fifth reason
is that the Racket student languages are likely to put all students on the same playing
field. Most students will be learning the syntax of the programming language together
for the first time.

The book is divided into five parts. Part I focuses on the basics. It starts with
how to write expressions. Once expressions are mastered, the first abstraction lesson
introduces us to functions. In addition, this part introduces you to conditional expres-
sions that allow you to write programs that make decisions. Just this much knowledge
allows us to write interactive programs and puts us on our way to a multiplayer video
game. As you shall discover, decision-making is fundamental to solving problems
that involve information that has many varieties. For example, the whole numbers
may be positive or negative—two varieties—and how a whole number is processed
depends on which variety a given number belongs to. Think about how to compute
the absolute value of a whole number.

Part Il introduces you to compound data of finite size. Compound data has multiple
values associated. For example, a point on the Cartesian plane is compound data of
finite size. There are two values: an x coordinate and a y coordinate. Being able to
define compound data of finite size to represent elements in the real or an imaginary
world is a powerful skill to develop.

Part III introduces you to compound data of arbitrary size. This is data that has
multiple values, but the number of values is not fixed. Once again, think about a
grocery list. Sometimes there are no items in the list and at other times there may
be 10, 6, or 17 items in the list. This is where you are introduced to structural
recursion—a powerful data-processing strategy that uses divide and conquer to
process data whose size is not fixed. The types of data that are introduced are lists,
intervals, natural numbers, and binary trees. The knowledge developed is used to
develop a video game that is more challenging for the player.

Part IV delves into abstraction. This section is where we learn how to eliminate
repetitions in our solutions to problems. In fact, we learn how different data can
be processed and different problems can be solved in exactly the same way. You
are introduced to generic programming, which is abstraction over the type of
data processed. This leads to the realization that functions are data and, perhaps
more surprising, that data are functions. In other words, the line between data and
functions is artificial—a fact that is not emphasized enough in Computer Science
textbooks. This realization naturally leads to object-oriented programming—a topic
that you are likely to study extensively.

Part V introduces you to distributed programming—using multiple computers to
solve a problem. This is a topic that until now has never been addressed in a textbook
for beginning programmers. The fact that you develop proficiency in program design
makes it possible for this topic, common in modern computer applications, to be
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discussed. If you have ever sent a text message or have ever played a game online,
then you have benefitted from and have used a distributed program. It is impossible,
of course, to discuss all the nuances of distributed programming in this textbook.
Nonetheless, you are introduced to a modern trend that is likely to be common
throughout your professional career and beyond.
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