Texts in Computer Science

Series Editors
David Gries, Department of Computer Science, Cornell University, Ithaca, NY, USA

Orit Hazzan @, Faculty of Education in Technology and Science, Technion—Israel
Institute of Technology, Haifa, Israel



Titles in this series now included in the Thomson Reuters Book Citation Index!

"Texts in Computer Science’ (TCS) delivers high-quality instructional content for
undergraduates and graduates in all areas of computing and information science,
with a strong emphasis on core foundational and theoretical material but inclusive
of some prominent applications-related content. TCS books should be reasonably
self-contained and aim to provide students with modern and clear accounts of topics
ranging across the computing curriculum. As a result, the books are ideal for semester
courses or for individual self-study in cases where people need to expand their
knowledge. All texts are authored by established experts in their fields, reviewed
internally and by the series editors, and provide numerous examples, problems, and
other pedagogical tools; many contain fully worked solutions.

The TCS series is comprised of high-quality, self-contained books that have broad
and comprehensive coverage and are generally in hardback format and sometimes
contain color. For undergraduate textbooks that are likely to be more brief and
modular in their approach, require only black and white, and are under 275 pages,
Springer offers the flexibly designed Undergraduate Topics in Computer Science
series, to which we refer potential authors.

More information about this series at https://link.springer.com/bookseries/3191


https://link.springer.com/bookseries/3191

Marco T. Morazan

Animated Problem Solving

An Introduction to Program Design
Using Video Game Development

@ Springer



Marco T. Morazin

Department of Computer Science
Seton Hall University

South Orange, NJ, USA

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-030-85090-6 ISBN 978-3-030-85091-3  (eBook)

https://doi.org/10.1007/978-3-030-85091-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-85091-3

To my parents, Doris and Marco, who taught
me to love teaching and to realize that having
an education is not a privilege but a
responsibility.



Preface

Everybody engages in problem solving. It is a natural and inevitable part of life.
Historically, the link between problem solving and programming has been less
emphasized. When you write an essay, you are programming—at different levels
many times. You make sure ideas flow and arguments make use of the data you are
analyzing. You write several drafts of the essay. Each draft represents a refinement.
Every paragraph has a point and you avoid repeating yourself. All this is part of
programming, including computer programming. Programmers, people who solve
problems using a computer, go through the exact same steps to write a program.
The same steps are taken by a psychologist analyzing a patient and by a chemist
experimenting in a laboratory. Even a painter engages in programming. No? Does a
painter not want to elicit an outcome or an emotion in you? Indeed, how to achieve
this is a problem that must be solved by the artist. Consider the painting Sorrowing
Old Man (At Eternity’s Gate) by Vincent van Gogh (search for it on the internet).
Can you see the old man’s sorrow? Can you imagine the weight of the years on him?
If so, we can say that the painter successfully solved the problem. This brings us to
another important component of problem solving: testing. It is not only important
to solve a problem. It is equally important to test the solution to make sure it works
and in many cases to make sure that the solution is efficient.

This book is about systematic problem solving or if you like about systematic
reasoning. Unlike most textbooks about programming, this textbook is not about
tinkering with or hacking code. This book is about making a plan to solve a problem
and then implementing the solution. As we shall discover, it turns out that the
solutions to many problems are similar. This should not come as a surprise because
we often solve many problems using similar data. How do you do grocery shopping?
You make a list of items and check them off as you put them in your cart. How do
you manage your chores today? You make a list of chores and check them off as
you get them done. Pretty similar, no? Similarities give rise to abstraction to avoid
repetitions—or reinventing the proverbial wheel. This book, therefore, is also about
abstraction. Thinking abstractly is a powerful tool in problem solving.

In this textbook, all the solutions to problems are expressed as programs. It is
important to be somewhat precise about what a program is. A program is much more

vii



viii Preface

than just code written using a programming language. Remember that a program is
a solution to a problem. Therefore, a program has a design, code, examples of how it
works, and tests. That is, it communicates how the problem is solved and illustrates
that the solution works. If any of the mentioned components are missing, then we
have an incomplete program. Would you believe someone who simply told you that
n?, where n is a nonnegative integer, is the sum of the first n odd numbers? Many
readers would be skeptical. What if they also provided the following examples:

02 =0
22 =1+ 3
42 =1 +3+5+7

It is very likely that most readers would now feel more confident that the claim is
true. It is the same in programming. We cannot simply say that here is a function
that does this or that. We need to explain how the function computes its value, and
we need to have examples that show how it works. The steps taken to design a
program in a systematic manner is called a design recipe. In this textbook, you shall
study many different design recipes. Each design recipe shall become a tool in your
problem-solving toolbox.

There are two problem-solving techniques that are emphasized throughout the
book: divide and conquer and iterative refinement. Divide and conquer is the process
by which a large problem is broken into two or more smaller problems that are easier
to solve and then the solutions for the smaller pieces are combined to create an answer
to the problem. Iterative refinement is the process by which a solution to a problem
is gradually made better—Ilike the drafts of an essay. Mastering these techniques is
essential to becoming a good problem solver and programmer.

Finally, problem solving ought to be fun. To this end, this book promises that by
the end of it you will have designed and implemented a multiplayer video game that
you can play with your friends over the internet. To achieve this, however, there is a
lot about problem solving and programming that you must first learn. The game is
developed using iterative refinement. As we learn about programming, we shall apply
our new knowledge to develop increasingly better versions of the video game. In
fact, every skill you develop for problem solving and program design is transferable
to other (non-programming) domains and to other programming languages.

1 The Languages and the Parts of the Book

The book uses the Racket student languages to write programs. These languages
are chosen for several reasons. The first is that they have an error-messaging system
specifically designed for beginners. This means that unlike common programming
languages the error messages are likely to make sense to beginners. If you do not
understand an error message, do not hesitate to ask your professor or search for
help online. The second is that the syntax is simple and easy to understand. This
is important because the emphasis is always on problem solving and not on how



1 The Languages and the Parts of the Book ix

to correctly write expressions. The third is that the student languages progressively
become richer. At the beginning, you have fewer features at your disposal and,
therefore, the possible errors are fewer. The fourth reason is that the student languages
come with powerful libraries to create graphics, animations, and video games. These
libraries allow students to inject their own personalities in the development of games
and animations. You are strongly encouraged to be creative. Finally, the fifth reason
is that the Racket student languages are likely to put all students on the same playing
field. Most students will be learning the syntax of the programming language together
for the first time.

The book is divided into five parts. Part I focuses on the basics. It starts with
how to write expressions. Once expressions are mastered, the first abstraction lesson
introduces us to functions. In addition, this part introduces you to conditional expres-
sions that allow you to write programs that make decisions. Just this much knowledge
allows us to write interactive programs and puts us on our way to a multiplayer video
game. As you shall discover, decision-making is fundamental to solving problems
that involve information that has many varieties. For example, the whole numbers
may be positive or negative—two varieties—and how a whole number is processed
depends on which variety a given number belongs to. Think about how to compute
the absolute value of a whole number.

Part Il introduces you to compound data of finite size. Compound data has multiple
values associated. For example, a point on the Cartesian plane is compound data of
finite size. There are two values: an x coordinate and a y coordinate. Being able to
define compound data of finite size to represent elements in the real or an imaginary
world is a powerful skill to develop.

Part III introduces you to compound data of arbitrary size. This is data that has
multiple values, but the number of values is not fixed. Once again, think about a
grocery list. Sometimes there are no items in the list and at other times there may
be 10, 6, or 17 items in the list. This is where you are introduced to structural
recursion—a powerful data-processing strategy that uses divide and conquer to
process data whose size is not fixed. The types of data that are introduced are lists,
intervals, natural numbers, and binary trees. The knowledge developed is used to
develop a video game that is more challenging for the player.

Part IV delves into abstraction. This section is where we learn how to eliminate
repetitions in our solutions to problems. In fact, we learn how different data can
be processed and different problems can be solved in exactly the same way. You
are introduced to generic programming, which is abstraction over the type of
data processed. This leads to the realization that functions are data and, perhaps
more surprising, that data are functions. In other words, the line between data and
functions is artificial—a fact that is not emphasized enough in Computer Science
textbooks. This realization naturally leads to object-oriented programming—a topic
that you are likely to study extensively.

Part V introduces you to distributed programming—using multiple computers to
solve a problem. This is a topic that until now has never been addressed in a textbook
for beginning programmers. The fact that you develop proficiency in program design
makes it possible for this topic, common in modern computer applications, to be



X Preface

discussed. If you have ever sent a text message or have ever played a game online,
then you have benefitted from and have used a distributed program. It is impossible,
of course, to discuss all the nuances of distributed programming in this textbook.
Nonetheless, you are introduced to a modern trend that is likely to be common
throughout your professional career and beyond.

2 Acknowledgments

This book is the product of over ten years of work at Seton Hall University build-
ing on the shoulders of giants in Computer Science. There are many persons and
groups who deserve credit for informing my work. The Racket community has been
unequivocal in its support for the techniques that I have developed. There is an un-
payable debt of gratitude owed to Matthias Felleisen from Northeastern University
for our discussions over the years about Computer Science education, Liberal Arts
education, and program design. My students and I have greatly benefitted from his
support. Other Racketeers who have deeply influenced me are Shriram Krishna-
murthi, Matthew Flatt, Robert Bruce Findler, and Kathi Fisler. This textbook is a
tribute to our debates and their published work.

I would also like to thank the Trends in Functional Programming (TFP) and
the Trends in Functional Programming in Education (TFPIE) communities. These
communities provided (and continue to provide) a venue to discuss and present
work advancing Computer Science education. I am grateful to many individuals
including Peter Achten, Jurriaan Hage, Pieter Koopman, Simon Thompson, and
Marko van Eekelen. Their insightful feedback has informed much of the material in
this textbook.

Finally, I would like to thank Seton Hall University and its Department of Com-
puter Science for supporting the development of the work presented in this textbook.
In particular, the support of John T. Saccoman, Manfred Minimair, and Daniel Gross
is appreciated. Most of all, I am grateful to all my CS1 students over the past decade
who have informed my Computer Science education efforts. It is likely true that my
students have learned a great deal in my courses, but it is an absolute certainty that
I have learned more from them. They have refined the delivery of every idea found
in this textbook. I am especially grateful to all my undergraduate tutors and teach-
ing assistants, including Shamil Dzhatdoyev, Josie Des Rosiers, Nicholas Olson,
Nicholas Nelson, Lindsey Reams, Craig Pelling, Barbara Mucha, Joshua Schappel,
Sachin Mahashabde, Rositsa Abrasheva, Isabella Felix, and Sena Karsavran. Without
my dedicated students at Seton Hall University and their insight into what students
understood, this textbook would have been impossible.



Contents

Preface

1
2

The Languages and the Parts of the Book .....................
Acknowledgments. ..........c. i

Part I The Basics of Problem Solving with a Computer

1

The Science of Problem Solving . . . ...............................
3 Getting Started .......... ...
4 Computing New Values ...
5 Definitions and Interactions Areas Differences .................
6 Saving Your Work. . ...
7 Error Messages . ... oovveini e
7.1 Grammatical Errors.......... ... ... ... .. oL
7.2 Type Errors . ...
7.3 Runtime Errors .......... ... ..o oo
8 What Have We Learned in This Chapter? .....................
Expressionsand Data Types . .............. ... ... ...,
9 Definitions . ...
10 NUmMbEIS. . ..o
11 Strings and Characters ............. ... i,
12 Symbols .. ..o
13 Booleans ...... ... ..
13.1 Basic Boolean Operators in BSL .....................
13.2 Predicates .. ...
14 Images . ..o
14.1 Basic Image Constructors. . ..............ooovennn...
14.2 Property Selectors . ........ .. ... i i
14.3 Image COmpOSers . ......couunniiennnnneennnnn..

xi



xii

Contents

14.4 Empty Scenes and Placing Images ................... 42

15 What Have We Learned in This Chapter? ..................... 45
The Nature of Functions ............. ... ... ... . ... 47
16 The Rise of Functions ............ ... ... . i, 48
17 General Design Recipe for Functions ......................... 51
17.1 The Design Recipein Action . ....................... 53

18 Auxiliary Functions .......... ... ... 55
18.1 Bottom-UpDesign ............... ... . ... 56

19 Top-DownDesign........ ... o i 61
20 What Have We Learned in This Chapter? ..................... 68
Aliens Attack Version 0 ............ .. ... ... i, 71
21 The Scene for Aliens Attack ........... ... ... .. oo, 72
22 Creating Aliens Attack Images ........... ...t 76
23 ShotImage. ......oooiiii 78
24 AlienImage .. ... ..o 80
25 RocketImage........ ... ... 82
25.1 Rocket Window Image Constructor................... 82

25.2 Rocket Fuselage Image Constructor .................. 84

253 Rocket Single Booster Image Constructor ............. 85

254 Rocket Booster Image Constructor ................... 87

25.5 Rocket Main Body Image Constructor ................ 88

25.6 Rocket Nacelle Image Constructor ................... 90

25.7 Rocket ci Constructor .........cooveinviinneenn.... 92

26 Drawing Functions ............. .. i 94
27 What Have We Learned in This Chapter? ..................... 100
Making Decisions ............ .. .. i 101
28 Conditional Expressionsin BSL ............... ... ... 102
29 Designing Functions to Process Data with Variety .............. 104
30 Enumeration Types ... . ..ottt i 110
31 Interval Types .. ..o 118
32 Itemization Types . ... ..o 121
33 What Have We Learned in This Chapter? ..................... 125
Aliens Attack Version 1 ......... ... ... ... .. it 127
34 The Universe Teachpack .............. .. ... .. ... ... 128
35 A Video Game Design Recipe. ...t 139
36 Adding the Rocket to Aliens Attack .......................... 140
37 What Have We Learned in This Chapter? ..................... 149

Part I Compound Data of Finite Size



Contents xiii

7

10

11

Structures . . ... 153
38 The posn Structure . .. ...t 155
39 Going Beyond the Design Recipe . ........................ .. 160
40 Revisiting in—Q17 ...t e 162
41 What Have We Learned in This Chapter? ..................... 166
Defining Structures. .. ....... ... ... ... i 167
42 Defining Structures . . . . ..ottt e 167
43 Computing StIrUCTUTES . . .. oo vttt i e s 171
44 Structures for the Masses . ...t .. 176
45 What Have We Learned in This Chapter? ..................... 183
Aliens Attack Version 2 ........... ... ... .. 185
46 Data Definitions ........ ...ttt 186
47 Function Templates and Sample Instances . .................... 187
48 TherunFunction ....... ... ... . . 190
49 Drawingthe World ....... ... . . i 191
49.1 The draw-world Refinement ....................... 191
49.2 Drawing Aliens .......... ... ... i i 193
50 The process-keyRefinement .............................. 195
51 Processing Ticks . ...t 197
51.1 The process-tickHandler ........................ 197
51.2 The Design of new-dir-after-tick................ 199

51.3 The Design of Auxiliary Functions for
new-dir-after-tick .......... ... .. . L 202
514 The Design of move-alien.................ccoun... 206
52 SUBLYPING. . oo 209
52.1 Checking Errors. ..., 214
53 The game-over?Handler ................ ... ... ... ... ... 218
54 Computing the LastScene ............. .. ... . ... .. 220
55 What Have We Learned in This Chapter? ..................... 223
Structuresand Variety . ......... ... ... .. . i il 225
56 A Bottom-UpDesign ..., 226
57 Code Refactoring ............ . i 233
58 What Have We Learned in This Chapter? ..................... 236
Aliens Attack Version 3 ........... ... ... oo 239
59 Data Definitions ............. i 240
60 The draw-world Refinement .............. ... ... ... .. ... 243
61 The process-keyRefinement .............................. 246
62 The process-tickRefinement............................. 251
62.1 The Refinement ........... ... ... ... i, 251
62.2 The move-shot Design ........... ..., 253
63 The game-over? Refinement ............................... 256

63.1 Thehit?Design.........ccoooiiiiiiiiininn.. 257



Xiv Contents

63.2 The draw-last-world Refinement.................. 259
64 What Have We Learned in This Chapter? ..................... 261

Part III Compound Data of Arbitrary Size

12 Lists ... o 265
65 Creating and Accessing Lists in ISL+ ............. ..ot 266
66 Shorthand for Building Lists ....................... ... .... 269
67 Recursive Data Definitions ............ ... ... .. i, 271
68 Generic Data Definitions .............. .. ... .. ... ... 274
69 Function Templates for Lists ............. ... o it 275
70 Designing List-Processing Functions ......................... 277
71 What Have We Learned in This Chapter? ..................... 279

13 List Processing............. ..ot 281
72 List Summarizing ...........oo i 281
73 List Searching ......... .. ... i 286
T4 LiStORING. . ..ottt 288

74.1 Determining If an Alien Is at the Left Edge ............ 288
74.2 Determining If an Alien Is at the Right Edge ........... 291
74.3 Determining If an Alien Has Reached Earth ........... 292
75 List ANDING ..o iiti ittt e 294
75.1 AllEveninalon ...............iiiiiiiniiinnnnn.. 295
75.2 Determiningif alonIs Sorted ...................... 296
76 List Mapping . .. ..o oottt 300
76.1 Moving a Listof Aliens ............ ... ..., 300
76.2 Moving a Listof Shots ............. ... ... ....... 301
76.3 Returning a Different List Type ...................... 302
77 ListFiltering .. ... ... i e 304
77.1 Extracting Evennumbers ........................... 305
77.2 Removing Hit Aliens. ............ ... 306
77.3 Removing Shots......... . ... i i 310
78 List Sorting . ... 314
79 What Have We Learned in This Chapter? ..................... 318

14 Natural Numbers ........... ... ... 319
80 Data Definition for a Natural Number ........................ 320
81 Computing Factorial .. ........ ... ... .. ... 321
82 Computing Tetrahedral Numbers ............................ 323
83 Making COpPies . . ..oovui ettt e e 327

84 What Have We Learned in This Chapter? ..................... 329



Contents

XV

15 Interval Processing ............ ...ttt 331
85 Interval Data Definition .......... ... ... ... ... .. .. ... 332
86 Revisiting Factorial . .. ........ .. . i i 334
87 Creating an Army of Aliens. ............ ...t 336
88 Largest PrimeinanInterval................................. 342
89 What Have We Learned in This Chapter? ..................... 347
16 Aliens Attack Version4 .......... ... ... ... ... 349
90 New world Data Definition and Function Template............. 349
91 The draw-world Refinement .............. ... ... . ....... 351
92 The process-keyRefinement .............................. 354
93 The process-tickRefinement............................. 358
93.1 The new-dir-after-tickDesign .................. 361

94 The game-over?Refinement ............................ ... 365
94.1 The draw-last-world Refinement.................. 367

95 A Bug Despite Hundreds of Tests Passing . .................... 369
96 What Have We Learned in This Chapter? ..................... 372
17 Binary Trees. ... ... ... i 373
97 Binary Tree Data Definition ............ ... ... ... ... ... 374
98 Traversinga Binary Tree ......... ... .. ... .. ... ... 376
99  The Maximum of a (btof int) ...............ccciiio... 379
100 Binary SearchTrees ......... ... . ..o, 382
100.1 A (listof cr) Representation......................... 383

100.2 A (btof cr) Representation.......................... 384

100.3 A (bstof cr) Representation ......................... 386

101 Abstract Running Time ........... ..., 388
102 The Complexity of Searching the Criminal Database . ........... 391
103 Balanced (bstof cr) ..ottt 393
103.1  Creating a Balanced Binary Search Tree .............. 393

103.2  AnalysiS ...ttt 396

104  What Have We Learned in This Chapter? ..................... 398
18 Mutually Recursive Data............. ... ... ... .. ... ... .. 401
105 Designing with Mutually Recursive Data...................... 403
105.1  Revisiting the Maximum of a (btof int) ............ 403

106  Evaluating Arithmetic Expressions...................c....... 407
LO7  TrCES . oo vttt et e e e e e 414
107.1  Creating a Search Tree for Tic Tac Toe ................ 418

107.2 CanWinTicTacToe?........... ... ..o, 422

108  Project: TICTac TO€ ... .vvvvnn e 426
108.1  Data AnalySiS. ... ....oouuuuiiiiiiiniiiiinnnan 427

108.2 Designdraw-world................oiiiiiiiii.. 428

108.3  Design procesSsS—MOUSE ... ....outrruuneeeeennnnnnnn 428

108.4 Design process—tick.......... ...t 429



Xvi Contents
108.5 Design game-over?.............oiiiiiiiiiiiiiian. 430
109  What Have We Learned in This Chapter? ..................... 430
19 Processing Multiple Inputs of Arbitrary
Size .. 433
110 One Input Has a DominantRole ............................. 433
111 Inputs Must Be Processed Simultaneously..................... 436
112 No Clear Relationship Between the Inputs..................... 438
113 What Have We Learned in This Chapter? ..................... 442
Part IV Abstraction
20 Functional Abstraction ............... ... ... ... ... 445
114 A Design Recipe for Abstraction.............c..oovviiinnn... 447
115 Functionsas Values .......... ... .. o i 447
116  Abstraction Over List-Processing Functions ................... 450
116.1  List Summarizing .............coouineieeininn.... 450
116.2 ListSearching ........... ... .. it 456
1163 ListORING .. .o oottt 459
1164 List ANDING .. oottt ettt e e e 462
116.5  List Mapping .. ... ...oouuunniiiiii e 464
116.6  ListFiltering ......... i 466
116.7  ListSorting . .........c.uuuniiiiiiin i 467
117  Abstraction over Interval-Processing Functions ................ 472
118  What Have We Learned in This Chapter? ..................... 475
21 Encapsulation ................. ... 477
119  Local-Expressions ...............coiiiiiiiiiinneeinnnn... 477
120 Lexical SCOPING . ..ottt 480
121 Using Local-EXPressions . . . ......oouuiineeeeniinneeennnn... 483
121.1  Encapsulation................cooiiiiiiiiinnaan. 483
1212 Readability ........ .. i 488
121.3  Furthering Functional Abstraction.................... 490
121.4  One-Time Expression Evaluation .................... 492
122 What Have We Learned in This Chapter? ..................... 497
22 Lambda EXpressions . ..................uuiiiiiiiiiiiiiia. 499
123 AnonymousFunctions .............. ... ... ... i 501
124 Revisiting Function Composition ...................oooouo.. 503
125 Curried Functions ........... o i i 505
126  Designing Using Existing Abstractions ....................... 511
126.1  Computing the Valueof a Series ..................... 511
126.2  ApproXimating 7 .. .......uuueeiininneeeennnnenn 514

127  What Have We Learned in This Chapter? ..................... 516



Contents xvii

23 Aliens Attack Version 5 ........... ... ... .. it 517

128 ConStants . ........oiiiiiiiiiit i 518

129 Structure Definitions. . ........ ... .o i 522

130  Encapsulating and Refactoring Handlers ...................... 522

130.1 The draw-worldHandler .......................... 522

130.2 The process-keyHandler ......................... 525

130.3 The process-tickHandler........................ 526

1304 The game-over?Handler .......................... 532

130.5 The draw-last-worldHandler..................... 533

131  Refactoringrun ............ ... it 534

132 What Have We Learned in This Chapter? ..................... 535

24 For-Loops and Pattern Matching ................................ 537

133 For-Loops ..o 538

133.1  for-loopS......ciiii 538

1332 for*-loops .. ....oiiiii 542

134 Pattern Matching......... ... i 546

134.1 Illustrative Example ........... . ... ... 0 547

134.2  Refactoring Using Pattern Matching .................. 549

134.3  Designing Using Pattern Matching ................... 551

135 What Have We Learned in This Chapter? ..................... 554

25 Interfacesand Objects .......... ... ... .. .. ... i, 557

136 Interfaces . ......oouiinn 558

136.1 Improving the Human Interface ...................... 561

136.2  Services that Require More Input .................... 561

137 A Design Recipe for Interfaces ............. ... . ..., 565

138 Interfaces and Union Types .........cc.oovviiiinnnennn... 566

139  An Abbreviated (listof X) Interface .......................... 567

139.1  Step 1: Values and Services ......................... 567

139.2  Step 2: Interface and Message Definitions ............. 568

139.3  Step 3: Class Function Template ..................... 568

140  The Empty (listof X) Class ........cooiiiiiiiiiinniinn... 571
140.1  Step 4: Signature, Purpose, Class Header, and

Message-Passing Function . ......................... 571

140.2  Step 5: Auxiliary Functions ......................... 572

141  The Non-Empty (listof X) Class ............ccooiiiiin... 573
141.1  Step 4: Signature, Purpose, Class Header, and

Message-Passing Function . ......................... 573

141.2  Step 5: Auxiliary Functions ......................... 574

142 Step 6: Wrapper Functionsand Tests ......................... 575

143 What Have We Learned in This Chapter? ..................... 579

Part V Distributed Programming



Xviii Contents
26 Introduction to Distributed Programming ........................ 583
144 A Design Recipe for Distributed Programming................. 585

145 Moreonthe Universe APT ...........iiiiiiiinnnnnnn. 586

146 A Chat Application.............cooiuuiiiiiiiinneeennnnn.. 589
146.1 The Components ..............oouiuinieiieinnnnnnn. 589

146.2 DataDefinitions..............ccoviiii .. 589

146.3  Communication Protocol ........................... 592

146.4  Marshalling and Unmarshalling...................... 593

146.5 Component Implementation......................... 593

146.6 Runningthe ChatTool ............................. 600

147  What Have We Learned in This Chapter? ..................... 601

27 Aliens Attack Version 6 ............... ... ... ...t 603
148  Refining the world Data Definition .......................... 603

149  The draw-world Refinement ............. ... .. ... ... ..... 607

150 The process-keyRefinement .............................. 610

151 The process-tickRefinement............................. 615

152 The game-over? Refinement ............................... 617

153  What Have We Learned in This Chapter? ..................... 619

28 Aliens Attack Version 7 ........ ... ... .. ... i 621
154 COmMPONENLS. .« e vvt ettt et e e e 621

155 Data Definitions . .........couiiinieiinii i 622

156  Communication Protocol ......... ... ... ... .. o il 623
156.1  Player-Sparked Communication Chains ............... 623

156.2  Server-Sparked Communication Chains ............... 624

156.3  Message Data Definitions .. ...............cooouit. 626

157 Marshalling and Unmarshalling ............................. 632

158  Component Implementation ................................ 638
158.1 Player Component..................ooviiiininn.... 638

158.2  Server Component. . ...........coouuuuneeeeinnnnnnn 646

159 ASubtleBug........ ... 653

160 What Have We Learned in This Chapter? ..................... 656

29 Aliens Attack Version 8 ........ ... ... .. ... ...l 657
161 The COmMPONents . ... .oovvtt ettt 657

162  DataDefinitions ............iiiiiiiiiiiiiiiiiii 658

163  Communication Protocol ......... ... ... ... . il 659
163.1  Player-Sparked Communication Chains ............... 660

163.2  Server-Sparked Communication Chains ............... 661

163.3  Message Data Definitions . ................coooot. 662

164  Marshalling and Unmarshalling ............................. 664

165 Component Implementation ................................ 665
165.1 Player Component.................oiiiiiiininn..n. 666

165.2  Server Component.................uuiueiieinnnnnnn. 669



Contents Xix

166 A SubtleProblem .......... ... ... 683
167 What Have We Learned in This Chapter? ..................... 684

Part VI Epilogue

30 Advicefor Future Steps ............. ... ... i 687
168  Advice for Computer Science Students ....................... 687
169  Advice for Non-Computer Science Students ................... 688



	Preface
	1 The Languages and the Parts of the Book
	2 Acknowledgments


