
ar
X

iv
:2

10
7.

01
70

5v
1 

 [
cs

.L
G

] 
 4

 J
ul

 2
02

1

Randomized Neural Networks for Forecasting

Time Series with Multiple Seasonality⋆

Grzegorz Dudek[0000−0002−2285−0327]

Electrical Engineering Faculty, Częstochowa University of Technology,
Częstochowa, Poland

grzegorz.dudek@pcz.pl

Abstract. This work contributes to the development of neural fore-
casting models with novel randomization-based learning methods. These
methods improve the fitting abilities of the neural model, in comparison
to the standard method, by generating network parameters in accordance
with the data and target function features. A pattern-based representa-
tion of time series makes the proposed approach useful for forecasting
time series with multiple seasonality. In the simulation study, we evaluate
the performance of the proposed models and find that they can compete
in terms of forecasting accuracy with fully-trained networks. Extremely
fast and easy training, simple architecture, ease of implementation, high
accuracy as well as dealing with nonstationarity and multiple seasonality
in time series make the proposed model very attractive for a wide range
of complex time series forecasting problems.

Keywords: Multiple seasonality · Pattern representation of time series
· Randomized neural networks · Short-term load forecasting · Time series
forecasting.

1 Introduction

Time series (TS) expressing different phenomena and processes may include
multiple seasonal cycles of different lengths. They can be observed in demand
variations for various goods, weather conditions, customer numbers, stock mar-
ket indicators or results of experimental research. Multiple seasonality in TS
as well as nonstationarity, nonlinear trend and random fluctuations place high
demands on forecasting models. The model should be flexible enough to cap-
ture these features without imposing too much computational burden. Over the
years, many sophisticated forecasting models for TS with multiple seasonality
have been proposed including statistical and machine learning (ML) ones.

One of the most commonly employed classical approaches, the autoregres-
sive moving average model (ARMA), can be extended to multiple seasonal cycles
by including additional seasonal factors [1]. Another popular statistical model,

⋆ Supported by Grant 2017/27/B/ST6/01804 from the National Science Centre,
Poland.

http://arxiv.org/abs/2107.01705v1


2 G. Dudek

Holt–Winters exponential smoothing (ETS), was developed for forecasting TS
data that exhibits both a trend and a seasonal variation. ETS was extended to
incorporate a second and a third seasonal component in [2]. Both these models,
ARMA and seasonal Holt–Winters model, have a significant weakness. They re-
quire the same cyclical behavior for each period. In [3], to cope with changing
seasonal patterns, innovations state space models for ETS were proposed. The
limitation of the model is that it can only be used for double seasonality where
one seasonal length is a multiple of the other. A further extension of ETS was
proposed in [4]. To deal with multiple seasonal periods, high-frequency, non-
integer seasonality, and dual-calendar effects, it combines an ETS state space
model with Fourier terms, a Box-Cox transformation and ARMA error correc-
tion.

As an alternative to statistical models, ML models have the ability to learn
relationships between predictors and forecasted variables from historical data.
One of the most popular in the well-stocked arsenal of ML methods are neural
networks (NNs). A huge number of forecasting models based on different NN
architectures have been proposed [5]. They deal with multiple seasonality differ-
ently, depending on the specific architectural features and the creativity of the
authors. For example, the model that won the renowned M4 Makridakis compe-
tition combines ETS and recurrent NN (RNN) [6]. In this approach, ETS pro-
duces two seasonal components for TS deseasonalization and adaptive normal-
ization during on-the-fly preprocessing, while RNN, i.e. long short term memory
(LSTM), predicts the preprocessed TS.

Another example of using LSTM for forecasting TS with multiple seasonal
patterns was proposed recently in [7]. To deal with multiple seasonal cycles,
the model initially deseasonalizes TS using different strategies including Fourier
transformation. RNNs, such as LSTM, gated recurrent units, and DeepAR [8],
dominate today as NN architectures for TS forecasting thanks to their power-
ful ability to process sequential data and capture long-term dependencies. But
other deep architectures are also useful for forecasting multiple seasonal TS. For
example, N-Beats [9] was designed specifically for TS with multiple seasonality.
It is distinguished by a specific architecture including backward and forward
residual links and a very deep stack of fully-connected layers.

The above presented approaches to forecasting TS with multiple seasonal
periods rely on incorporating into the model mechanisms which allow it to deal
with seasonal components. This complicates the model and makes it difficult
to train and optimize. An alternative approach is to simplify the forecasting
problem by TS decomposition or preprocessing. In [10], TS with three seasonal
cycles was represented by patterns expressing unified shapes of the basic cy-
cle. This preprocessing simplified the relationship between TS elements, making
decomposition unnecessary and removing the need to build a complex model.
Instead, simple shallow NNs can be used [10] or nonparametric regression mod-
els [11]. Experimental research has confirmed that these models can compete in
terms of accuracy with state-of-the-art deep learning models, like the winning
M4 submission [12].



Randomized NNs for Forecasting Time Series with Multiple Seasonality 3

In this study, we use a pattern representation of TS to simplify the forecast-
ing problem with multiple seasonality and propose randomization-based shal-
low NNs to solve it. Randomized learning was proposed as an alternative to
gradient-based learning as the latter is known to be time-consuming, sensitive
to the initial parameter values and unable to cope with the local minima of the
loss function. In randomized learning, the parameters of the hidden nodes are se-
lected randomly and stay fixed. Only the output weights are learned. This makes
the optimization problem convex and allows us to solve it without tedious gradi-
ent descent backpropagation, but using a standard linear least-squares method
instead [13]. This leads to a very fast training. The main problem in randomized
learning is how to select the random parameters to ensure the high performance
of the NN [14], [15]. In this study, to generate the random parameters we use
three methods recently proposed in [16], [17]. These methods distribute the ac-
tivation functions (sigmoids) of hidden nodes randomly in the input space and
adjust their weights (or a weight interval) to the target function (TF) complexity
using different approaches.

The main goal of this study is to show that randomization-based NNs can
compete in terms of forecasting accuracy with fully-trained NNs. The contribu-
tion of this study can be summarized as follows:

1. A new forecasting model for TS with multiple seasonality based on random-
ized NNs is proposed. To deal with multiple seasonality and nonstationarity,
the model applies pattern representation of TS in order to simplify the rela-
tionship between input and output data.

2. Three randomization-based methods are used to generate the NN hidden
node parameters. They introduce steep fragments of sigmoids in the input
space, which improves modeling of highly nonlinear TFs. A randomized ap-
proach leads to extremely fast and easy training, simple NN architecture and
ease of implementation.

3. Numerical experiments on several real-world datasets demonstrate the effi-
ciency of the proposed randomization-based models when compared to fully-
trained NNs.

The remainder of this work is structured as follows. Section 2 presents the
proposed forecasting model based on randomized NNs, and a TS representation
using patterns of seasonal cycles and three methods of generating NN parameters
are described. The performance of the proposed approach is evaluated in Section
3. Finally, Section 4 concludes the work.

2 Forecasting model

The proposed forecasting model is shown in Fig. 1. It is composed of encoder
and decoder modules and a randomized feedforward NN (FNN). The model
architecture, its specific features, and components are described below.



4 G. Dudek

Fig. 1: Block diagram of the proposed forecasting model.

2.1 Encoder

The task of the encoder is to convert an original TS into unified input and
output patterns of its seasonal cycles. To create input patterns, the TS expressing
multiple seasonality, {Ek}

K
k=1, is divided into seasonal sequences of the shortest

length. Let these sequences be expressed by vectors ei = [Ei,1, Ei,2, . . . , Ei,n]
T ,

where n is the seasonal sequence length and i = 1, 2, ...,K/n is the sequence
number. These sequences are encoded in input patterns xi = [xi,1, xi,2, . . . , xi,n]

T

as follows:

xi =
ei − ei

ẽi
(1)

where ei is a mean value of sequence ei, and ẽi =
√∑n

t=1(Ei,t − ei)2 is a measure
of sequence ei dispersion.

Note that the x-patterns are normalized versions of centered vectors ei. All x-
patterns, representing successive seasonal sequences, have zero mean, the same
variance and the same unity length. However, they differ in shape. Thus, the
original seasonal sequences, which have a different mean value and dispersion,
are unified. This is shown in Fig. 2 on the example of the hourly electricity
demand TS expressing three seasonalities: daily, weekly, and yearly. Note that
the x-patterns representing the daily cycles are all normalized and differ only in
shape.

The output patterns yi = [yi,1, yi,2, . . . , yi,n]
T represent the forecasted se-

quences ei+τ = [Ei+τ,1, Ei+τ,2, . . . , Ei+τ,n]
T , where τ ≥ 1 is a forecast horizon.

The y-patterns are determined as follows:

yi =
ei+τ − ei

ẽi
(2)

where ei and ẽi are the same as in (1).
Note that in (2), for the i-th output pattern, we use the same coding variables

ei and ẽi as for the i-th input pattern. This is because the coding variables for the
forecasted sequence, ei+τ and ẽi+τ , are unknown for the future period. Using the
coding variables determined from the previous period has consequences which
are demonstrated in Fig. 2. Note that y-patterns in this figure reveal the weekly
seasonality. The y-patterns of Mondays are much higher than the patterns of



Randomized NNs for Forecasting Time Series with Multiple Seasonality 5

other days of the week because the Monday sequences are coded with the means
of Sunday sequences which are much lower than the means of Monday sequences.
For similar reasons, y-patterns for Saturdays and Sundays are lower than y-
patterns for the other days of the week. Thus, the y-patterns are not unified
globally but are unified in groups composed of the same days of the week. For this
reason, we construct forecasting models that learn from data representing the
same days of the week. For example, when we train the model to forecast the daily
sequence for Monday, the training set for it, Φ = {(xi,yi)}

N
i=1, is composed of the

y-patterns representing all Mondays from history and corresponding x-patterns
representing the previous days (depending on the forecast horizon; Sundays for
τ = 1).

0 0.876 1.752 2.628 3.504

Time, hours 104

1

1.5

2

2.5

E
, G

W
h

104 Hourly electricity demand

40
56

41
04

41
52

42
00

42
48

82
56

83
04

83
52

84
00

84
48

84
96

Time, hours

1

1.5

2

2.5

E
, G

W
h

104 Real time series

...
... ...

40
56

41
04

41
52

42
00

42
48

82
56

83
04

83
52

84
00

84
48

84
96

Time, hours

-0.5

0

0.5

x

Patterns x

... ... ...

40
56

41
04

41
52

 

42
00

42
48

82
56

83
04

83
52

84
00

84
48

84
96

Time, hours

-0.5

0

0.5

1

y

Patterns y

... ... ...

Fig. 2: Real hourly electricity demand TS and its x- and y-patterns.

2.2 Decoder

The decoder converts a forecasted output pattern into a TS seasonal cycle. The
output pattern predicted by randomized FNN is decoded using the coding vari-
ables of the input query pattern, x, using transformed equation (2):

ê = ŷẽ+ e (3)

where ê is the forecasted seasonal sequence, ŷ is the forecasted output pattern,
ẽ and e are the coding variables determined from the TS sequence encoded in
query pattern x.

2.3 Randomized FNN

The randomized FNN is composed of n inputs, one hidden layer with m nonlinear
nodes, and n outputs. Logistic sigmoid activation functions are employed for



6 G. Dudek

hidden nodes. The training set is Φ = {(xi,yi)}
N

i=1 ,xi,yi ∈ R
n. The randomized

learning algorithm consists of three steps [18].

1. Randomly generate hidden node parameters, i.e. weights aj = [aj,1, aj,2, . . . ,
aj,n]

T and biases bj , j = 1, 2, . . . ,m, according to any continuous sampling
distribution.

2. Calculate the hidden layer output matrix:

H =



h(x1)

...
h(xN )


 (4)

where h(x) = [h1(x), h2(x), . . . , hm(x)] is a nonlinear feature mapping from
n-dimensional input space to m-dimensional feature space, and hj(x) is an
activation function of the j-th node (a sigmoid in our case).

3. Calculate the output weights:

β = H+Y (5)

where β ∈ R
m×n is a matrix of output weights, Y ∈ R

N×n is a matrix of
target output patterns, and H+ ∈ R

m×N is the Moore-Penrose generalized
inverse of matrix H.

Typically, the hidden node weights and biases are i.i.d random variables both
generated from the same symmetrical interval aj,i, bj ∼ U(−u, u). It was pointed
out in [18] and [16] that as the weights and biases have different functions they
should be selected separately. The weights decide about the sigmoid slopes and
should reflect the TF complexity, while the biases decide about the sigmoid shift
and should ensure the placement of the most nonlinear sigmoid fragments, i.e.
the fragments around the sigmoid inflection points, into the input hypercube.
These fragments, unlike saturation fragments, are most useful for modeling TF
fluctuations.

Recently, to improve the performance of randomized FNNs, several new
methods of generating the hidden node parameters have been proposed. Among
them is the random a method (RaM) which was proposed in [16]. In the first
step, this method randomly selects weights from the interval whose bounds u
are adjusted to the TF complexity, aj,i ∼ U(−u, u). Then, to ensure the intro-
duction of the sigmoid inflection points into the input hypercube, the biases are
calculated from:

bj = −aTj x
∗

j (6)

where x∗

j is one of the training x-patterns selected for the j-th hidden node at
random.

The second method proposed in [16], called the random α method (RαM), in-
stead of generating weights, generates the slope angles of sigmoids. This changes
the distribution of weights, which typically is a uniform one. This new distribu-
tion ensures that the slope angles of sigmoids are uniformly distributed, and so



Randomized NNs for Forecasting Time Series with Multiple Seasonality 7

improves results by preventing overfitting, especially for highly nonlinear TFs.
This method, in the first step, selects randomly the slope angles of the sigmoids,
αj,i ∼ U(αmin, αmax). Then, the the weights are calculated from:

aj,i = 4 tanαj,i (7)

Finally, the biases are determined from (6). To simplify the optimization
process, the lower bound for the angles, αmin, can be set as 0◦. In such a case
only one parameter decides about the model flexibility, i.e. αmax ∈ (0◦, 90◦).
This is what we used in our simulation study.

To improve further FNN randomized learning, a data-driven method (DDM)
was proposed in [17]. This method introduces the sigmoids into randomly se-
lected regions of the input space and adjusts the sigmoid slopes to the TF slopes
in these regions. As a result, the sigmoids mimic the TF locally, and their linear
combination approximates smoothly the entire TF. In the first step, DDM selects
the input space regions by selecting randomly the set of training points, {x∗

j}
m
j=1.

Then, the hyperplanes are fitted to the TF locally in the neighbourhoods of all
points x∗

j . The neighborhood of point x∗

j , Ψ(x
∗

j ), contains this point and its k
nearest neighbors in Φ. The weights are determined based on the hyperplane
coefficients from:

aj,i = 4a′j,i (8)

where a′j,i are the coefficients of the hyperplane fitted to neighbourhood Ψ(x∗

j ).

The hidden node biases are calculated from (6).

Note that the biases in the above-described approaches are determined based
on the weights selected first and the data points. Unlike in the standard ap-
proach, they are not chosen randomly from the same interval as the weights.
Randomized FNN has two hyperparameters to adjust: number of hidden nodes
m, and the smoothing parameter, i.e. u, αmax or k, depending on the method of
generating parameters chosen. These hyperparameters decide about the fitting
performance of the model and its bias-variance tradeoff. Their optimal values
should be selected by cross-validation for a given forecasting problem.

3 Simulation Study

In this section, we apply the proposed randomization-based neural models to
forecasting hourly TS with three seasonalities: yearly, weekly and daily. These
TS express electricity demand for four European countries: Poland (PL), Great
Britain (GB), France (FR) and Germany (DE). We use real-world data collected
from www.entsoe.eu. The data period covers the 4 years from 2012 to 2015.
Atypical days such as public holidays were excluded from these data (between
10 and 20 days a year). The forecast horizon τ is one day, i.e. 24 hours. We
forecast the daily load profile for each day of 2015. For each forecasted day,
a new training set is created and a new randomized model is optimized and

www.entsoe.eu


8 G. Dudek

trained. The results presented below are averaged over 100 independent training
sessions.

The hyperparameters of randomized FNNs were selected using grid search
and 5-fold cross-validation. The number of hidden nodes was selected from the set
{5, 10, ..., 50}. The bounds for weights in RaM were selected from {0.02, 0.04, ...,
0.2, 0.4, ..., 1}. The αmax in RαM was selected from {2◦, 4◦, ..., 40◦, 45◦, ..., 90◦}.
The number of nearest neighbors in DDM was selected from {25, 27, ..., 69}.

For comparison, we applied a multilayer perceptron (MLP) for the same
forecasting problems. MLP was composed of a single hidden layer with m sig-
moid nodes whose number was selected using 5-fold cross-validation from the
set {2, 4, ..., 24}. MLP was trained using Levenberg-Marquardt backpropagation
with early stopping to avoid overtraining (20% of training samples were used as
validation samples).

Forecasting quality metrics for the test data are presented in Table 1. They
include: mean absolute percentage error (mape), median of ape, root mean
square error (rmse), mean percentage error (mpe), and standard deviation of
percentage error (pe) as a measure of the forecast dispersion.

Table 1: Forecasting results.

RaM RαM DDM MLP

PL data mape 1.32 1.32 1.35 1.37
Median(ape) 0.93 0.94 0.94 0.96
rmse 358.86 364.13 380.77 374.86
mpe 0.40 0.39 0.39 0.26
Std(pe) 1.94 1.98 2.09 2.07

GB data mape 2.61 2.62 2.80 2.93
Median(ape) 1.88 1.90 1.99 2.17
rmse 1187.60 1184.58 1382.97 1314.78
mpe -0.61 -0.61 -0.58 -0.60
Std(pe) 3.57 3.56 4.16 3.99

FR data mape 1.67 1.69 1.81 1.87
Median(ape) 1.15 1.16 1.25 1.31
rmse 1422.60 1433.90 1530.15 1565.70
mpe -0.42 -0.39 -0.45 -0.39
Std(pe) 2.60 2.61 2.78 2.85

DE data mape 1.38 1.39 1.43 1.58
Median(ape) 0.96 0.98 0.99 1.09
rmse 1281.14 1242.36 1333.79 1452.54
mpe 0.14 0.14 0.10 0.04
Std(pe) 2.22 2.13 2.34 2.50



Randomized NNs for Forecasting Time Series with Multiple Seasonality 9

More detailed results, i.e. distributions of ape, are shown in Fig. 3. Based on
ape, we performed a Wilcoxon signed-rank test with α = 0.05 to indicate the
most accurate models. Fig. 4 depicts pairwise comparisons of the models. The
arrow lying at the intersection of the two models indicates which of them gave
the significantly lower error. A lack of an arrow means that both models gave
statistically indistinguishable errors.

RaM R M DDM MLP
0

1

2

3

4

A
P

E

PL

RaM R M DDM MLP
0

2

4

6

8
A

P
E

GB

RaM R M DDM MLP
0

2

4

6

A
P

E

FR

RaM R M DDM MLP
0

1

2

3

4

A
P

E

DE

Fig. 3: Boxplots of ape.

Fig. 4: Results of the Wilcoxon signed-rank test for ape.

As can be seen from Table 1 and Fig. 4, the randomization-based FNNs gave
significantly lower errors than fully-trained MLP for each dataset. According to
the Wilcoxon test, RaM outperformed the other approaches.

mpe shown in Table 1 allows us to asses the bias of the forecasts produced
by different models. A positive value of mpe indicates underprediction, while a
negative value indicates overprediction. As can be seen from Table 1, for PL and
DE data the bias was positive, whilst for GB and FR data it was negative. The
forecasts produced by MLP for PL and DE were less biased than the forecast
produced by randomized FNNs.

Fig. 5 presents examples of forecasts of the daily load profiles produced by
the examined models. Note that the proposed models generate multi-output
response, maintaining the relationships between the output variables (y-pattern
components). In the case of single-output models, these relationships are ignored
because the variables are predicted independently. This may cause a lack of
smoothness in the forecasted curve (zigzag effect; see for example [19]).

Fig. 6 shows the optimal numbers of hidden nodes selected in the cross-
validation procedure. Obviously, the number of hidden nodes is dependent on
TF complexity. The forecasting problem for PL required the greatest number of



10 G. Dudek

Fig. 5: Examples of forecasts (shaded regions are 5th and 95th percentiles, mea-
sured over 100 trials).

nodes for randomized FNNs, around 30, regardless of the learning method. MLP
for PL needed many fewer nodes, 12 on average. Other forecasting problems were
solved by randomized FNNs with fewer hidden nodes, from 20 to 30 on average.
For these problems, the difference in the number of nodes between MLP and
randomized FNNs was not as large as for PL data. The relatively small number
of hidden nodes in randomized FNNs (note that randomized learning usually
requires hundreds or even thousands of nodes) results from TS representation
by unified patterns and the decomposition of the forecasting problem (a separate
model for each forecasting task, i.e. every day in 2015, trained on the selected
patterns).

The optimal values of smoothing parameters for the randomized learning
methods are depicted in Fig. 7. As can be seen from this figure, the optimal
value of the bound for weights in RaM varies from 0.2 for FR to 0.7 for GB on
average, which correspond to sigmoid slope angles from around 3◦ to 10◦ (see
[16]). The optimal value of the bound for slope angle in RαM varies from 12◦ for
FR to 32◦ for DE on average. Note also the high value of k in DDM (from 49 for
PL to 65 for FR on average) in relation to the number of training points, which
ranged from 150 to 200. Thus, for our forecasting problems we can expect flat
TFs without fluctuations. Such TFs can be modeled using RaM. Its competitors,
RαM and DDM, reveal their strengths in modeling highly nonlinear TFs with
fluctuations (see [16], [17]).



Randomized NNs for Forecasting Time Series with Multiple Seasonality 11

RaM R M DDM MLP
0

10

20

30

40

50

#n
eu

ro
ns

PL

RaM R M DDM MLP
0

10

20

30

40

50

#n
eu

ro
ns

GB

RaM R M DDM MLP
0

10

20

30

40

50

#n
eu

ro
ns

FR

RaM R M DDM MLP
0

10

20

30

40

50

#n
eu

ro
ns

DE

Fig. 6: Boxplots of the optimal number of hidden nodes.

PL GB FR DE
0

2

4

6

u

RaM

PL GB FR DE
0

20

40

60

80

m
ax

R M

PL GB FR DE

30

40

50

60

70

k

DDM

Fig. 7: Boxplots of the optimal smoothing parameters.

4 Conclusion

Forecasting TS with multiple seasonality is a challenging problem, which we pro-
pose to solve with randomized FNNs. Unlike fully-trained FNNs, randomized
FNNs learn extremely fast and are easy to implement. The simulation study
showed that their forecasting accuracy is comparable to the accuracy of fully-
trained NNs. To deal with nonstationary TS with multiple seasonal periods, the
proposed approach employs a pattern representation of the TS. This represen-
tation simplifies the relationship between input and output data and makes the
problem easier to solve using simple regression models.

The effectiveness of the randomized FNNs in modeling nonlinear target func-
tions was achieved due to the application of new methods of generating hid-
den node parameters. These methods, using different approaches, introduce the
steepest fragments of sigmoids, which are most useful for modeling TF fluctua-
tions, into the input hypercube and adjust their slopes to TF complexity. This
makes the model more flexible, more data-dependent, and more dependent on
the complexity of the solved forecasting problem.

In a future study, we plan to introduce an attention mechanism into our
randomization-based forecasting models to select training data and develop an
ensemble approach for these models.

References

1. Box, G.E.P., Jenkins, G.M. and Reinsel, G.C.: Time series analysis: Forecasting and
control. 3rd ed., Prentice Hall, New Jersey, 1994.



12 G. Dudek

2. Taylor, J.W.: Triple seasonal methods for short-term load forecasting. European
Journal of Operational Research 204, 139–152 (2010)

3. Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J. and Vahid-
Araghi, F.: Forecasting time-series with multiple seasonal patterns. European Jour-
nal of Operational Research 191, 207–222 (2008)

4. De Livera, A.M., Hyndman, R.J. and Snyder, R.D.: Forecasting time series with
complex seasonal patterns using exponential smoothing. Journal of the American
Statistical Association 106(496), 1513–1527 (2011)

5. Benidis, K., Rangapuram, S.S., Flunkert, V., Wang, B., Maddix, D., Turk-
men, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Callot L.
and Januschowski, T.: Neural forecasting: Introduction and literature overview.
arXiv:2004.10240 (2020)

6. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. International Journal of Forecasting 36(1), 75–85 (2020)

7. Bandara, K., Bergmeir C. and Hewamalage, H.: LSTM-MSNet: Leveraging forecasts
on sets of related time series with multiple seasonal patterns. IEEE Transactions on
Neural Networks and Learning Systems 32(4), 1586–1599 (2021)

8. Salinas, D., Flunkert, V., Gasthaus, J. and Januschowski, J.: DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Fore-
casting 36(3), 1181–1191 (2020)

9. Oreshkin, B.N., Carpov, D., Chapados, N. and Bengio, Y.: N-BEATS: Neural ba-
sis expansion analysis for interpretable time series forecasting. 8th International
Conference on Learning Representations, ICLR, (2020).

10. Dudek, G.: Neural networks for pattern-based short-term load forecasting: A com-
parative study. Neurocomputing 205, 64–74 (2016)

11. Dudek, G.: Pattern similarity-based methods for short-term load forecasting – Part
1: Principles. Applied Soft Computing 37, 277–287 (2015).

12. Dudek, G., Pełka, P. and Smyl, S.: A hybrid residual dilated LSTM and exponen-
tial smoothing model for mid-term electric load forecasting. IEEE Transactions on
Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2020.3046629

13. Principe, J., Chen, B.: Universal approximation with convex optimization: Gim-
mick or reality? IEEE Computational Intelligence Magazine 10(2), 68–77 (2015)

14. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random
weights. Neurocomputing 275, 278–287 (2018)

15. Zhang, L., Suganthan, P.: A survey of randomized algorithms for training neural
networks. Information Sciences 364–365, 146–155 (2016)

16. Dudek, G.: Generating random parameters in feedforward neural networks with
random hidden nodes: Drawbacks of the standard method and how to improve it.
In: Neural Information Processing. ICONIP 2020. CCIS, vol. 1333, pp. 598–606,
Springer, Cham (2020).

17. Dudek, G.:Data-driven randomized learning of feedforward neural networks, 2020
International Joint Conference on Neural Networks (IJCNN), Glasgow, United
Kingdom, pp. 1–8 (2020).

18. Dudek, G.: Generating random weights and biases in feedforward neural networks
with random hidden nodes. Information Sciences, 481, 33–56 (2019)

19. Dudek G.: Multivariate regression tree for pattern-based forecasting time series
with multiple seasonal cycles. In: Information Systems Architecture and Technol-
ogy: Proc. 38th International Conference on Information Systems Architecture and
Technology – ISAT 2017. AISC, vol. 655. pp. 85–94, Springer, Cham (2018).

http://arxiv.org/abs/2004.10240

	Randomized Neural Networks for Forecasting Time Series with Multiple Seasonality

