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Abstract. Frailty syndrome can be defined as a clinical state in which there is 

a rise in individual vulnerability, developing an increase in both the dependence 

of the person and mortality. Frailty is completely related to age. A fundamental 

factor to apply rehabilitative interventions successfully resides in having a simple 

and reliable method capable of identifying frailty syndrome.  

Frailty indexes (FI) have several sources of uncertainty trough the opinion of 

the patients, white coat effect and external factors. Moreover, in the clinical prac-

tice, the experience of the geriatricians led them to determine an approximation 

of the frailty level only with a simple handshake. Hand grip strength (HGS) has 

been widely used in tests by investigators and therapists to be able to diagnose 

sarcopenia and frailty, as it is a reliable indicator of the overall muscle strength, 

which decreases with age. Most researches focused mainly on peak HGS, which 

will not give insight on how the patient’s strength was distributed over time. In 

the present work it is proposed to evaluate HGS behavior over a period of time, 

and to develop a system based on Machine Learning for the identification of 

frailty levels using physiological features, FI and the classical signal processing 

based on statistics of the HGS signals. 

The starting hypothesis is that it can be identified the "way" of performing 

HGS correlated with the level of frailty. To achieve this goal a clinical study was 

designed and carried out with a cohort of 70 elderly persons, in two Hospitals.  
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1 Introduction 

Frailty syndrome can be defined as a clinical state in which there is a rise in individual 

vulnerability, developing an increase in both the dependence of the person and 
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mortality when exposed to a stressor. Frailty is completely related to age, being highly 

prevalent in the elderly, reaching up to 30% in people over 75 years of age. 

There are many questionnaires that define various frailty factors, but there is no ac-

cepted standardization on this. In addition, these methods require the opinion of the 

patient, whose criteria may vary depending on the patient, thus generating an imprecise 

diagnosis. Geriatricians consider that this clinical condition considerably increases 

health risks [1] and even death [2]. 

On the other hand, there is evidence through several studies that show that the ap-

pearance of frailty can be anticipated, delayed or even avoided [9]. Therefore, a funda-

mental factor to apply rehabilitative interventions successfully resides in having a sim-

ple, effective and reliable method capable of identifying people with frailty syndrome. 

At present there is no common criterion to quantify frailty. Most questionnaires are 

based on asking the patient about various symptoms and noting which ones he or she 

manifests or perceives [3], [4], [5]. One of these methods is that of Fried et al. [17], 

which involved 5210 people over 65 years of age, who proposed that the frailty pheno-

type is defined by the presence of three or more of the following symptoms: unintended 

weight loss, weakness, low resistance, slowness of movement, low activity.   

In the 90s it was demonstrated the usefulness of VIG (comprehensive geriatric as-

sessment) [18] to evaluate frailty in the elderly. The VIG is a global diagnostic tool or 

methodology at all levels of care, it is designed to identify and quantify biomedical and 

pharmacological data, physical, functional, psychological and social problems that the 

elderly may present.     

Both Fried and other indices or scales exclusively use the maximum value of the grip 

strength of the hand as one of the symptoms, but in clinical practice the geriatrician 

uses his experience to make quick diagnoses based on the "form" in which the patient 

performs a handshake. 

1.1 HGS Related work 

Hand grip strength (HGS) has been widely used in tests by investigators and therapists 

to be able to diagnose sarcopenia and frailty, as it is a reliable indicator of the overall 

muscle strength, which decreases with age. Results obtained from these tests have been 

used to verify if HGS can indeed work as a predictor of disability in older men [6]. 

These tests are tied to recent protocols, such as Southampton protocol or the one pro-

posed by the ASHT (American Society of Hand Therapists), made to try and establish 

a common ground for different studies. 

However, even after updating these protocols recently (as recent as 2015), there is 

still a lack of consistency when it comes to evaluate HGS over a period of time. There 

are studies which aim to gather data from other studies that measured HGS to diagnose 

sarcopenia and frailty and identify the differences in the protocols used [7], which is an 

important focus for the present research, as the protocol that is to be proposed will use 

others as means for comparison and innovation.  

When a protocol is taken for a specific study, there are a few main elements that can 

be appreciated and need to be highlighted from the beginning, such as the dynamometer 

used to measure HGS, which hand was used, the subject’s posture, arm position, handle 
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position, how long did the measurement take or how long were the intervals between 

the measurements. the recommended protocol to follow is the most recent ASHT pro-

tocol, as it is the most detailed one, and if a modification should be made, it is to be 

mentioned [8]. 

Another parameter which has also shown to have correlation to grip strength is the 

body mass index (BMI). Again, data was collected with a Jamar dynamometer and us-

ing healthy males as subjects aged 20 – 74 years [9].  

Even though a wide range of instruments was used among the majority of studies 

(Smedley, Martin, Tekdyne, among others), the predominant dynamometer used was 

de Jamar dynamometer [10].  

Regarding sincerity of effort, that is, whether a genuinely maximal effort is being 

given during clinical strength testing, there are several studies that have examined the 

force-time curve produced by maximal and submaximal effort [11]. By using a special-

ized dynamometer with a force transducer (Biopac Instruments), with a test time of 5 

seconds, a 30-second rest interval between trials, the function obtained had the form of 

a step. 

Respecting the time for test, a 6-second test was found to have a higher reliability 

despite gender or hand dominance, in contrast to a 10-second test, which did not have 

results as reliable as the first [12].   

If HGS was to be measured over time, and plot a strength curve for the same period 

of the procedure, more valuable information could be obtained regarding how HGS 

really determines patients’ muscle strength, or perhaps, even go as far as being able to 

diagnose more efficiently frailty or sarcopenia by extracting determined features from 

it. Some studies studied the slope of the force-time curve related to sincerity of effort 

with a Jamar dynamometer and following the protocol recommended by the ASHT [13, 

14].   

Another study that aimed to investigate the force-time characteristics during a sus-

tained maximal grip effort, according to age and clinical condition [15] was consulted, 

in which a sustained maximal grip was continuously recorded by using a modified Mar-

tin vigorimeter. The investigators concluded that the force-time characteristics during 

a sustained maximal handgrip effort are significantly different according to age and 

clinical condition. Old patients were characterized by a rather fast decline in muscle 

work during the first part of sustained grip. 

1.2 HGS and the level of frailty 

In the present work, a system based on Machine Learning for identifying the levels of 

frailty is developed using the features of the grip force signal in a determined period of 

time. The objectives of this study are two: to perform the main frailty indexes VIG, 

Fried, Frail, with a cohort of elderly persons, done by geriatricians, in a transversal pilot 

together with a designed test of HGS in a period of time, and with the created database 

to develop different Machine Learning strategies to extract significant information and 

knowledge useful for the detection of frailty tendencies using the results of only one 

simple test. The starting hypothesis is that we can identify the "way" of performing 

HGS correlated with the level of frailty. 
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2 Material and Methods 

The following lines are dedicated to the description of the instrument and the cohort . 

 

2.1 Instrumentation 

The instrument used for the present study was a modified Deyard dynamometer, being 

the modified part the whole electronic circuit, which was replaced by one designed and 

made by the CETpD, the rest of the model, meaning the mechanical design, remained 

the same as the original. Thanks to this modification, the dynamometer measures the 

HGS continuously in time. 

 

 

Fig. 1.  Modified Deyard dynamometer 

 

The modification includes the ability to store information and Bluetooth connectivity 

with the IMU (Inertial Measurement Unit) developed by the CETpD [16] 15 for long-

term monitoring of human pathological movement. 

 

2.2 Calibration 

Calibration was necessary to set the accuracy of the modified version to an acceptable 

level. For this, weights that ranged from 5 to 40 Kg were used (which is more than the 

max force expected for the tested population), with an increasing rate of 5 Kg per trial. 

The dynamometer was held by two metallic bars, which were placed in the space be-

tween the handle and the screen, where no disruption should be presented for the test. 

A belt was tied to the base for the weights (extra 731.8 grams) and to the handle, as 

centered as possible, note that the belt is made of a non-stretchable material, as to not 

influence the result of the calibration tests.  
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Fig. 2. Calibration process 

Its calibration curve resulted as follows: 

 

Fig. 3. Calibration curve Force (Kg) Vs Voltage (V) 

For which the slope equation for the curve is as shown: 

𝑦 = 28.426 ∗ 𝑥 − 34.07 

Considering the weight of the balance used for the calibration trials (731.8 g) it is then: 

𝑦 = 28.426 ∗ 𝑥 − (34.07 − 0.7318) 

Where y is the force total (Kg), and x represents the voltage (V) measured. 

 

2.3 Pilot Protocol 

The protocol designed includes the cohort, the clinical study, which includes the regis-

tration of several frailty indexes, and the performance of 3 HGS test recorded with a 

modified Deyard dynamometer to store and transmit the produced signals. This proto-

col was carried out by geriatricians, with a cohort of 70 elderly persons, in two Hospi-

tals, (Hospital Central de la Cruz Roja San José and Santa Adela de Madrid, Consorci 

Sanitari de l’Alt Penedès i Garraf). All data were captured in a single visit, where the 

general inclusion criteria were applied and each participant was assigned their corre-

sponding level of frailty. Geriatricians performed the HGS test and evaluated the fol-

lowing scales in clinical trials: Fried criteria [17], Fragile Vig Index (VIG) [18], Barthel 

scale [19] and Lawton – Brody scale [20]. The protocol was approved by the “Comité 

de Ética de la Investigación con Medicamentos de la Comunidad de Madrid” (Ref 

47/916546.9/19). 
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The HGS test consists of 3 trials carried out in a sitting stance take on a chair, forearm 

placed on top of the leg in neutral position (holding the dynamometer perpendicular to 

the leg), feet firm on the floor at shoulder-width distance, shoulder adducted, neutrally 

rotated and using the dominant hand. Encouragement was also one aspect to keep into 

consideration, as it was used as well. Tests had a duration of 6 seconds each, and a rest 

interval of 1 minute between tests. 

 

  

Fig. 4. Protocol position example 

 

2.4 Data acquisition and processing 

To plot the force-time curves, the data was stored in the memory card inside the IMU 

and inserted in the PC to run the Matlab script, which acquired the signal, filter it, es-

tablish the desired range for treatment, and then segment the resulting signal in three 
phases: the Force-generation phase (FGP), force maintenance (FM) and the Force-de-

cay phase (FDP) (Fig. 5). These phases will be used to extract different proposed fea-

tures with a Matlab script, specially designed for this function. These specific charac-

teristics can be identified to truly be able to detect whether a patient is prone to devel-

oping frailty in the future or not.   

 

 

 



7 

  

Fig. 5. Filtered signal sample from a patient and the 3 segments of the resulting signal. 

 

2.5 Features 

The features to consider for each patient are divided in 2 large groups: Physiological 

information compiled during the VIG & FRIED Tests performed to each patient and a 

group of between 1 to 3 HGS signals for each patient. 

 

Physiological information compiled during the VIG & FRIED Tests performed 

to each patient. 

In total we gather around 92 features from the VIG and Fried Tests from those we only 

took interest in 5: age, gender, weight, height, ICM. This was because the need was to 

select as few features as possible that were related with the muscular strength of the 

patients and that were easy and simple to get.  

 

HGS signals for each patient. 

First is important to remember that the signal is a non-structured data because it does 

not have a fixed number of samples and behaves as a time dependent variable. So, the 

first step was to convert the signal into a structured group of data. To do so we took 

inspiration in the work of industrial control signal featurization since the HGS could be 

interpreted as a response to a step input function and the features selected to represent 

each of the 3 segments (Generation, Maintenance and Decay phases) of the HGS signal 

were: Initial time, Initial Strength, Final time, Final Strength, Area, Density, Minimum 

Strength, Time of occurrence of Minimum Strength, Maximum Strength, Time of oc-

currence of Maximum Strength, Mean Strength, Median Strength,  Strength Scope 

(Last-First),Mean Slope, Median Slope, Maximum Slope, Minimum Slope and Over-

Peak. Meaning that the HGS Signals were converted into 54 structured features. 

Summarizing, each sample of each patient have 59 features. It was decided to work 

with the samples because we could upgrade our number of observations from 83 pa-

tients to 235 samples. 
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2.6 Targets 

The original DDBB possessed 3 possible outputs or diagnosis the ones from VIG, 

FRIED and Estratos. Each of them had 3 possible output classifications: Frail, prefrail 

and Sturdy. The ideal distribution of classifications should be 33.33/33.33/33.33 so the 

more the actual distributions approach to it the better.  

The Output of the VIG Diagnosis was selected to use as target, since: FRIED diag-

nosis had only 1 patient classified as sturdy, Estratos diagnosis depends on both the 

FRIED and VIG Test and the VIG diagnosis has a good distribution between the frail, 

prefrail and sturdy patients. 

Also, to simplify the number of classifications, a one vs all focus was applied. Mean-

ing that the classifications were changed from prefrail, frail and sturdy (3-class) to frail 

or not-frail (2-class). 

 

2.7 Structured Data Base Creation 

With the features and the targets selected we created a new Data Base that can be use 

as input for a predictor with the following size: 235 rows (samples) x 60 Columns (59 

features and 1 target). 

 

2.8 Predictor Structure  

The predictor proposed was a SNN (Shallow Neural Network) available in Matlab as 

patterned a NN (Neural Network) with 1 hidden layer. The final amount of hidden size 

or internal neurons of the hidden layer were determined during the training. 

 

 

Fig 6. SNN without Training 

2.9 Predictor Training 

To create the final predictor (Fig. 7), the following steps were followed: a) Separate the 

Structured DDBB in 3 subsets called train, check and test b) Perform the basic training 

of an SNN c) Train 10000 SNN for the same hidden size d) train 120 different hidden 

size. And then the best SNN is picked from 1.200.000 trained SNN. This Final SNN 

was called FragilNET. 
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Fig 7. Training Methodology 

 

3 Tests and Results 

The confusion matrix of each set of the FragilNET are presented in figure 8. 

 

  
Train Check 
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Test Complete 

Fig 8. Confusion Matrix associated with each data set. 

A summary of the data comparations is found in table 1. 

Table 1. Confusion Metrics comparation. 

 Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Train 83.7 90.9 58.8 95.9 

Check 88.9 100 50 100 

Test 87.5 50 100 85.7 

Complete 85.5 82.4 60.9 95 

Mean±std 86.4±2.3 80.8±21.8 67.4±22.2 94.2±6.0 

4 Conclusions 

The protocol design proposed was successfully implemented during the different tests 

conducted in the population, and the modified Deyard dynamometer was calibrated ef-

fectively and yielded satisfactory results for these tests and the resulting force overtime 

signals were similar to what was expected after consulting past studies that used them 

as well. 

The Data of 83 patients (235 samples) was used to build a SNN called FragilNET 

that can predict the frailty label with 85,5% of accuracy and a sensibility of 67% using 

the signal information of the hand strength and the physiological data of the patient. 

This research has many layers of development and finally we got the predictor that 

can relate the signal of hand force to the frailty level.  
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Even with the good news, we found it convenient to increase SNN training with 

more iterations, as it is slightly lower than check performance meaning that we hadn't 

reach the best training performance yet. 

All decision to pick the best SNN were automatized. Data preprocessing Methods 

and how to separate it could work on other signals with similar step-like behaviors. 

In order to achieve a support tool to correctly classify with a simple test the fragile 

condition it is crucial to have a high level of precision in our predictions, that means 

the correct classification of True Positives (Fragile) among all the subject. A value 

around 86% corroborates that assertation. On the other hand, and in the same level of 

importance, it is the fact that we need to minimize the number of False Negatives i.e., 

being fragile and predict robust. In this case the Sensitivity index that measures this 

concept has still a low value, around 67%. This is the weakness part of the whole pre-

diction system and further work is needed to improve this sensitivity. 

 

4.1 Recommendations for future work 

Apply a data augmentation algorithm or get more data to balance the labels. We need 

more data from frail patients or perform data augmentation strategies like SMOTE to 

achieve a better balance between frail and robust patients. 

Follow the classification strategy of the VIG, FRIED and Estratos index, built a 

three-class predictor including the “prefrailty level”. 

Combine all 3 predictors to enhance the final frailty level predictor with a 3-level 

definition. 

We can work also in the redesign of the data base, for example doing all de previous 

steps to a data set with one observation per patient (only last sample, the average of the 

samples or the weighted average of the samples). 
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