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Abstract. Electroencephalography signals allow to explore the func-
tional activity of the brain cortex in a non-invasive way. However, the
analysis of these signals is not straightforward due to the presence of dif-
ferent artifacts and the very low signal-to-noise ratio. Cross-Frequency
Coupling (CFC) methods provide a way to extract information from
EEG, related to the synchronization among frequency bands. However,
CFC methods are usually applied in a local way, computing the interac-
tion between phase and amplitude at the same electrode. In this work
we show a method to compute PAC features among electrodes to study
the functional connectivity. Moreover, this has been applied jointly with
Principal Component Analysis to explore patterns related to Dyslexia
in 7-years-old children. The developed methodology reveals the tempo-
ral evolution of PAC-based connectivity. Directions of greatest variance
computed by PCA are called eigenPACs here, since they resemble the
classical eigenfaces representation. The projection of PAC data onto the
eigenPACs provide a set of features that has demonstrates their discrim-
inative capability, specifically in the Beta-Gamma bands.

Keywords: Dyslexia diagnosis · Phase Amplitude Coupling · EigenPAC
· Classification

1 Introduction

Developmental Dyslexia (DD) is one learning disability disorders with a higher
prevalence, affecting between 5% and 13% of the population [2]. It has an impor-
tant social impact causing effects in children like low self-esteem and depression
and may be a cause for school failure.

The diagnostic of DD is an important issue for procure the intervention
programs that help to adapt the learning process for dyslexic children. In this
way, an early diagnosis is essential, which has historically been a complex task
due to the use of behavioural tests. These tests depend on the motivation of
each children and also have the inconvenient of include writing and reading
tasks which postpone the start of diagnosis (i.e. it is not possible to diagnose
pre-readers).
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This aspect is changing with the use of biomedical signals, which provide
objective and quantifiable measures to study the neural basis of the healthy brain
and its pathologies. A relevant method to obtain information of brain activity
is the electroencephalography (EEG), which allows to acquire brain signals in a
non-invasive way. This technique can be used to quantify the functional activity
of the brain while developing a specific task. In particular, EEG signals have been
used to explore the neurological origin of DD in [3,4,5], towards the advance in
the knowledge of dyslexia and its objective diagnosis.

One way to build functional models that help to understand the brain pro-
cesses developed while the subject is developing a specific task, is through con-
nectivity. In other words, it consists in measuring how the different brain areas
cooperates in any manner while processing information. On the other hand, neu-
ral oscillations are produced mainly in five frequency bands: Delta (0.5-4) Hz,
Theta (4-8) Hz, Alpha (8-12) Hz, Beta (12-30) Hz and Gamma (> 30 Hz). The
exploration of the relationship among these bands has demonstrated to provide
useful information to characterize the brain activity. This way, Cross Frequency
Coupling (CFC) is a technique to explore interactions and (also called cou-
plings) between frequency bands and has undergone and special attention in
recent years.

In the present work, EEG signals are used to explore the functional con-
nectivity. Specifically, the Phase Amplitude Coupling (PAC), a type of CFC, is
calculated to analyze and identify temporal patterns in dyslexic and non-dyslexic
subjects. Then, Principal Component Analysis (PCA) is used for identify and
extract patterns in order to perform a classification using SVM for a differential
diagnosis.

The paper is organized as follows. Section 2 presents details of the database
and describes the auditory stimulus and the methods used. Then, Section 3
presents and discusses the classification results, and finally, Section 5 draws the
main conclusions and the future work.

2 Materials and Methods

2.1 Database and stimulus

The EEG data used in this work was provided by the Leeduca Study Group
at the University of Málaga [6]. EEG signals were recorded using the Brainvi-
sion acticHamp Plus with 32 active electrodes (actiCAP, Brain Products GmbH,
Germany) at a sampling rate of 500 Hz during 15 minutes sessions, while pre-
senting an auditory stimulus to the subject. A session consisted of a sequence of
white noise stimuli modulated in amplitudes at rates 2, 8, and 20 Hz presented
sequentially for 5 minutes each.

The present experiment was carried out with the understanding and written
consent of each child’s legal guardian and in the presence thereof. Forty-eight
participants took part in the present study, including 32 skilled readers (17
males) and 16 dyslexic readers (7 males) matched in age (t(1) = -1.4, p > 0.05,
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age range: 88-100 months). The mean age of the control group was 94, 1 ± 3.3
months, and 95, 6 ± 2.9 months for the dyslexic group. All participants were
right-handed Spanish native speakers with no hearing impairments and normal
or corrected–to–normal vision. Dyslexic children in this study have all received
a formal diagnosis of dyslexia in the school. None of the skilled readers reported
reading or spelling difficulties or have received a previous formal diagnosis of
dyslexia. The locations of 32 electrodes used in the experiments is in the 10–20
standardized system.

2.2 Signal Prepocessing

The EEG signals recorded were processed to remove artifacts related to eye
blinking and impedance variation due to movements. It was used blind source
separation with Independent Component Analysis (ICA) to remove artifacts
corresponding to eye blinking signals in the EEG signals. Then, EEG signal of
each channel was normalized independently to zero mean and unit variance and
referenced to the signal of electrode Cz. Baseline correction was also applied.
Finally, the EEG signals were segmented into 15.02 s long windows in order to
analyze PAC temporal patterns correctly [7]. This is the minimum appropriate
window length for which a sufficiently high number of slow oscillation cycles are
analyzed, shorter windows lead to overestimates of coupling and lower signifi-
cance. This adequate window length is one of the main requisites for robust PAC
estimation and appropriate statistical validation of the result by surrogate tests
without using long data windows that assumes stationarity of the signals within
the window.

2.3 Phase-Amplitude Coupling (PAC)

Cross-frequency coupling(CFC) has been proposed to coordinate neural dynam-
ics across spatial and temporal scales [8], it serve as a mechanism to transfer
information from large scale brain networks and has a potential relevance for
understanding healthy and pathological brain function. In particular, Phase-
Amplitude Coupling has received significant attention [7,10] and may play an
important functional role in local computation and long-range communication
in large-scale brain networks [9].

PAC describes the coupling between the phase of a slower oscillation and
the amplitude of a faster oscillation. Concretely, in this work we explore the
modulation of the amplitude of the Gamma (30–100) Hz frequency band by the
phase of the Delta (0.5-4) Hz, Theta (4-8) Hz, Alpha(8-12) Hz and Beta(12-25)
Hz bands. There are different PAC descriptors for measuring PAC [1]. In this
work, we use the Modulation Index (MI) [12,11], although there is no convention
yet of how to calculate phase-amplitude coupling and much heterogeneity of
phase-amplitude calculation methods used in the literature [13].

For calculating MI as in [11], first all phases are binned into eighteen 20 de-
grees intervals and the average amplitude of the amplitude-providing frequency
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in each phase bin of the phase-providing frequency is computed and normalized
by the following formula:

p(j) =
ā∑N

j=1 āk
(1)

where ā is the average amplitude of one bin, k is the running index for the bins,
and N = 18 is the total amount of bins; p is a vector of N values.

Then, Shannon entropy H(p) is computed by means of

H(p) = −
N∑
j=1

P (j)logP (j) (2)

where p is the vector of normalized averaged amplitudes per phase bin. This
represents the inherent amount of information of a variable. If the Shannon
entropy is maximal, all the phase bins present the same amplitude (uniform
distribution). Thus, the existence of phase-amplitude coupling is characterized
by a deviation of the amplitude distribution from the uniform distribution in a
phase-amplitude plot. To measure this, the Kullback–Leibler (KL) distance of a
discrete distribution P from a distribution Q is used and it is defined as

KL(P,Q) =

N∑
j=1

P (j)log
P (j)

Q(j)
(3)

and the KL distance is relate to the Shannon entropy by the following formula

KL(U,P ) = logN −H(p) (4)

where U is the uniform distribution and P is the amplitude distribution
defined earlier by p(j) **? Finally, the raw MI is calculated by the following
formula:

MI =
KL(U,X)

logN
(5)

In this work, PAC is measured by MI in each data segment, enabling the
exploration of the temporal evolution of the response to specific auditory stimuli.
This is achieved with the use of Tensorpac [14], an open-source Python toolbox
dedicated to PAC analysis of neurophysiological data. Tensorpac provides a set of
efficient methods and functions to implements the most common PAC estimation
methods, such as the Modulation Index used in the present work.

2.4 Dimensionality Reduction and Classification

Principal Component Analysis (PCA) is a widely used method to perform di-
mensionality reduction. It is a well known multivariate analysis technique used
in many studies [15,16] to significantly reduce the original high-dimensional fea-
ture space to a lower-dimensional subspace spanned by a number (n) of Principal
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Components (PC), while preserving the variation of the dataset in the original
space as much as possible.

A well known application of PCA the so-called eigenimage decomposition,
which results from the application of PCA to images. This is used in different
works such as [17,18] and adapted from the eigenface approach of Turk and
Pentland [19]. In this work this approach is used allowing to detect underlying
patterns that differentiate individuals within a population, even if the differences
are subtle.

Here, PCA is applied in the time axis to compute the maximum variance
directions of the PAC along the EEG segments. Thus, we obtain the PCs or
eigenvectors of the covariance matrix of the a dataset composed by N vectors,
corresponding to the MI values of each 31 electrodes for the ten segments of
every subject. These eigenvectors describe a set of features that characterize the
variation between the PAC measured in each temporal segment. As usual, they
are sorted in decreasing explained variance order. We can display these eigen-
vectors in topoplots, representing the principal components at each electrode
position. In order to keep the traditional notation, we called these PC as eigen-
PACs. Then, we selected the eigenPACs that have the largest eigenvalues which
therefore account for the most variance within the set of PAC matrix, composing
a M-dimensional subspace.

For the sake of clarity, let the measured PAC vector set be Γ1, Γ2, ..., ΓN of
length equal to the number of electrodes. The average PAC of the dataset is
defined as Γ = 1

N

∑N
n=1 Γn. Each measured PAC differs from the average by the

vector Φi = Γi − Γ with i = 1, 2, ..., N . On this set, a PCA transformation is
applied obtaining M orthogonal vectors ui which best describes the distribution
of the data. This vectors satisfy that

λ1 =
1

N

N∑
n=1

(uTi Φn)2 (6)

is maximum, subject to
uTi uj = δij (7)

where δij is the Kronecker delta, and ui and λi are the eigenvectors and eigen-
values, respectively, of the covariance matrix:

C =
1

N

N∑
n=1

ΦnΦ
T
i = AAT (8)

where the matrix A = Φ1, ..., ΦN . These eigenvectors are what we refer as eigen-
PAC. Usually, the first few eigenPACs explain almost the whole variance, so
only a number M ′ < M is necessary to appropriately describe the dataset [18].
Thus, the computacional complexity of the diagonalization process to obtain the
eigenPAC basis is significantly reduced.

In essence, the eigenPACs define a new space in which each component ex-
plains the maximum variance in the data represented by its eigenvalue and its
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correlation is minimized. The projection of the PAC vectors onto the eigenPAC
space, will determine the coordinates of each PAC vector in this subspace. It
is expected that this projection produce a pattern more suitable for class sep-
aration than the projection onto the average PAC space, due to the eigenPAC
decorrelation [17].

For the classification we use this projections of the data on the new basis
to train a Support Vector Machine (SVM). Hence, the PAC vectors measured
for the ten segments EEG signals are projected on the eigenPAC basis obtain-
ing N vectors each of them with its corresponding class label defined as control
and dyslexic. Then, using the training data the SVM separates this set of bi-
nary labelled data with a hyperplane that is maximally distant from the two
classes [18].

3 Experimental Results

In this section, we show the experimental results obtained in with the PAC
analysis, eigenPAC representation and classification. As mentioned before, the
EEG data was segmented into ten temporal windows of 15.02 s for the analysis
of the temporal evolution of the response to the stimulus. This analysis was
performed with the measure of PAC over each segment.

PAC Results To analyze PAC connectivity we used the tensorpac tool [14].
Thus, we defined the frequency bands in which the PAC is measured (phase band
and amplitude band) and we expected an identifiable temporal behaviour. This
set of frequency band pairs are: Delta-Gamma, Theta-Gamma, Alpha-Gamma
and Beta-Gamma. We measured the PAC for each subject and each temporal
segment obtaining results for all the frequency bands. This results are repre-
sented with a set of ten topoplots showing the temporal evolution of the average
PAC of dyslexic subjects and control subjects in each frequency pair. Figure. 1
shows the differences between the average MI value for the dyslexic group and
the control group. In this Figure we represented each combination of frequency
bands for which the PAC has been measured. These topoplots denote differences
between the response of dyslexic and control subjects.

EigenPAC Results PCA has been applied in two different ways. In the first
case, PAC features from all the subjects have been used to obtain the PCs, as
in the case of eigenfaces problem. This aims to obtain a representation of the
overall database in terms of the maximum variance directions. To carry out this
experiment, a matrix is created containing the MI value computed from tem-
poral segments of all subjects. Specifically, this matrix contains N*(number of
segments) rows corresponding to the number of subjects multiplied by the num-
ber of segments and M columns corresponding to MI of each of the 31 electrodes.
Then, PCA is applied and we obtain a set of PCs of which the first five repre-
sent the most part of the variance. In Fig. 2 we can see the representation of
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Fig. 1. Difference average MI topoplot for 2 Hz. a) Delta-Gamma b)Theta-Gamma
c)Alpha-Gamma d)Beta-Gamma

the eigenPAC for the first 5 PC indicating the area where there is a major tem-
poral variation in the measured MI for the Beta-Gamma PAC. This eigenPAC
are different for each stimulus and the first topoplot describes the maximal data
variation.

Fig. 2. First 5 eigenPAC for Beta-Gamma. a)2 Hz b) 8 Hz c) 20 Hz

A second experiment is performed by applying PCA to dyslexic and con-
trol groups separately. This results similar as the previous case, but only with
subjects of one group. Thus, we achieve a better representation of the temporal
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variation for each group, obtaining a set of PCs describing the maximal varia-
tion for the dyslexic subjects and another set of PCs for the control subjects.
These eigenPAC, represented in Fig. 3, show the variation specifically related
to the temporal response to the auditory stimulus. As shown, we found global
similarities for each group. Furthermore, this helps to identify the characteris-
tic patterns of each class that are used by classifications algorithms reaching a
better performance.

Fig. 3. First 5 eigenPAC. a)2 Hz b) 8 Hz c) 20 Hz

In Fig. 3, for each case there are represented in the upper row the topoplots
containing the information related to control eigenPAC and in the row below
the dyslexic eigenPAC.

Classification Once the application cases of PCA are defined, we used the
resulting eigenPAC to train a SVM classifier. Therefore, there are two ways of
perform a classification depending on how we compute the PCs that form the
eigenPAC. These are used to project the data into the lower-dimensional space
to obtain the feature space of the SVM classifier.

In the first case, the PCs are obtained from the application of PCA over all
the subjects, dyslexic and control. Then, this PCs correspond to the eigenPAC
that we use to project the data for the SVM. In this part, a k-fold stratified
cross validation scheme is employed to separate the data into train sets and test
set, specifically, 5-fold cross-validation is used.

In the second case, the application of PCA separately over the two classes
provide a set of PCs for each class. Then each subject data is projected onto the
control and DD components, and these projections are concatenated to compose
the feature vector. The process of cross validation is the same as in the above
case just with a different set of PCs.
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The metrics used in the classification are the accuracy, sensitivity, specificity
and Area Under ROC curve (AUC). The evaluation metrics are described in
Table 1. The results show the performance of the two classification scenarios
for the best case, which corresponds to the Beta-Gamma PAC as represented in
Fig. 4. We can see that there is a improvement related with the application of
PCA separately for the two classes.

Table 1. Classification comparative using the Beta-Gamma PAC

Metrics PCA with all the subjects PCA with each class separately

2 Hz 8 Hz 20 Hz 2 Hz 8 Hz 20 Hz

Accuracy 0.572 0.611 0.561 0.654 0.653 0.594
Sensitivity 0.501 0.551 0.515 0.651 0.635 0.551
Specificity 0.743 0.757 0.675 0.661 0.696 0.7
AUC 0.65 0.705 0.622 0.699 0.721 0.65

Therefore, the second case generate higher metrics achieving a better classifi-
cation performance with a greater AUC and accuracy for 2 Hz, 8 Hz and 20 Hz.
We present the results for this case in Fig. 4 where the max AUC is represented
for each band combination and each stimulus. Showing that in the Beta-Gamma
there are temporal pattern that are distinctive of each class.

Fig. 4. Max AUC for each band combination and stimulus

In the case of Beta-Gamma we perform a PC number sweep obtaining the
explained variance and the max AUC for the classification with each number of
components in Fig. 5



10 Nicolás Gallego-Molina et. al

Fig. 5. Max AUC for each number of PCs

4 Conclusions and Future Work

In this work we present a classification method for EEG signals based on the
study of functional connectivity PAC and the use of eigenPAC resulting of ap-
plying PCA to train a SVM classifier. The concept of eigenPAC helps to extract
the underlying pattern that differentiates the temporal response between control
and dyslexic subjects. Also, it can be represented in topographic plots to visual-
ize the areas with a greater variation principally corresponding to the temporal
evolution.

The classification results suggest differential patterns in the Beta-Gamma
bands that allows to discriminate between control and dyslexic subjects, ob-
taining the highest AUC for the 8 Hz stimulus. This points the bands in which
the response to the stimulus has differences across the temporal segments and
encourage continuing the approach shown in this work. As future work, it is
interesting to study the effect of using other windows length and to improve the
necessary PAC analysis with the use of decomposition methods such as MEMD
to accurately extracts the oscillatory components of the EEG signals.
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