
Safe Learning for Near-Optimal Scheduling?

Damien Busatto-Gaston1, Debraj Chakraborty1, Shibashis Guha2, Guillermo
A. Pérez3, and Jean-François Raskin1

1 Université libre de Bruxelles, Belgium
2 Tata Institute of Fundamental Research, India

3 University of Antwerp – Flanders Make, Belgium

Abstract. In this paper, we investigate the combination of synthesis,
model-based learning, and online sampling techniques to obtain safe
and near-optimal schedulers for a preemptible task scheduling problem.
Our algorithms can handle Markov decision processes (MDPs) that have
1020 states and beyond which cannot be handled with state-of-the art
probabilistic model-checkers. We provide probably approximately correct
(PAC) guarantees for learning the model. Additionally, we extend Monte-
Carlo tree search with advice, computed using safety games or obtained
using the earliest-deadline-first scheduler, to safely explore the learned
model online. Finally, we implemented and compared our algorithms em-
pirically against shielded deep Q-learning on large task systems.

Keywords: Model-based learning · Monte-Carlo tree search · Task scheduling

1 Introduction

In this paper, we show how to combine synthesis, model-based learning, and on-
line sampling techniques to solve a scheduling problem featuring both hard and
soft constraints. We investigate solutions to this problem both from a theoretical
and from a more pragmatic point of view. On the theoretical side, we show how
safety guarantees (as understood in formal verification) can be combined with
guarantees offered by the probably approximately correct (PAC) learning frame-
work [24]. On the pragmatic side, we show how safety guarantees obtained from
automatic synthesis can be combined with Monte-Carlo tree search (MCTS) [21]
to offer a scalable and practical solution to solve the scheduling problem at hand.

The scheduling problem that we consider is defined as follows. A task system
is composed of a set of n preemptible tasks (τi)i∈[n] partitioned into a set F of
soft tasks and a set H of hard tasks. Time is assumed to be discrete and measured
e.g. in CPU ticks. Each task τi generates an infinite number of instances τi,j ,
called jobs, with j = 1, 2, . . . Jobs generated by both hard and soft tasks are
equipped with deadlines, which are relative to the respective arrival times of

? This work was supported by the ARC “Non-Zero Sum Game Graphs” project
(Fédération Wallonie-Bruxelles), the EOS “Verilearn” project (F.R.S.-FNRS &
FWO), and the FWO “SAILor” project (G030020N).

ar
X

iv
:2

00
5.

09
25

3v
2

 [
cs

.A
I]

 1
3

Ju
l 2

02
1

2 D. Busatto-Gaston et al.

the jobs in the system. The computation time requirements of the jobs follow a
discrete probability distribution, and are unknown to the scheduler but upper
bounded by their relative deadline. Jobs generated by hard tasks must complete
before their respective deadlines. For jobs generated by soft tasks, deadline misses
result in a penalty/cost. The tasks are assumed to be independent and generated
stochastically: the occurrence of a new job of one task does not depend on the
occurrences of jobs of other tasks, and both the inter-arrival and computation
times of jobs are independent random variables. The scheduling problem consists
in finding a scheduler, i.e. a function that associates, to all CPU ticks, a task
that must run at that moment; in order to: (i) avoid deadline misses by hard
tasks; and (ii) minimise the mean cost of deadline misses by soft tasks.

In [14], we modelled the semantics of the task system using a Markov decision
process (MDP) and posed the problem of computing an optimal and safe sched-
uler. However, that work assumes that the distribution of all tasks is known a
priori which may be unrealistic. Here, we investigate learning techniques to build
algorithms that can schedule safely and optimally a set of hard and soft tasks if
only the deadlines and the domains of the distributions describing the tasks of
the system are known a priori and not the exact distributions. This is a more
realistic assumption. Our motivation was also to investigate the joint applica-
tion of both synthesis techniques coming from the field of formal verification and
learning techniques on an understandable yet challenging setting.

Contributions. First, we show the distributions underlying a task system with
only soft tasks are efficiently PAC learnable: by executing the task system for a
polynomial number of steps, enough samples can be collected to infer ε-accurate
approximations of the distributions with high probability (Thm. 1).

Then, we consider the general case of systems with both hard and soft
tasks. Here, safe PAC learning is not always possible, and we identify two
algorithmically-checkable sufficient conditions for task systems to be safely learn-
able (Thms. 2 and 3). These crucially depend on the underlying MDP being
a single maximal end-component, as is the case in our setting (Lem. 2). Subse-
quently, we can use robustness results on MDPs to compute or learn near-optimal
safe strategies from the learnt models (Thm. 4).

Third, in order to evaluate the relevance of our algorithms, we present ex-
periments of a prototype implementation. These empirically validate the effi-
cient PAC guarantees. Unfortunately, the learnt models are often too large for
the probabilistic model-checking tools. In contrast, the MCTS-based algorithm
scales to larger examples: e.g. we learn safe scheduling strategies for systems
with more than 1020 states. Our experiments also show that a strategy obtained
using deep Q-learning [2,19] by assigning high costs to missing deadlines of hard
tasks does not respect safety, even if one learns for a long period of time and the
deadline-miss costs of hard tasks are very high (cf. [1]).

Related works In [14], we introduced the scheduling problem considered here
but made the assumption that the underlying distributions of the tasks are
known. We drop this assumption here and provide learning algorithms. In [1], the
framework to combine safety via shielding and model-free reinforcement learning

Safe Learning for Near-Optimal Scheduling 3

is introduced and applied to several examples using table-based Q-learning as
well as deep RL. In [3], shield synthesis is studied for long-run objective guaran-
tees instead of safety requirements. Unlike our work, the transition probabilities
on MDPs in both [1] and [3] are assumed to be known. We observe that [1]
and [3] do not provide model-based learning and PAC guarantees. While some
pre-shielding literature does consider unknown MDPs (see, e.g.[13]), we are not
aware of PAC-learning works that focus on scheduling problems.

In [17], we studied a framework to mix reactive synthesis and model-based
reinforcement learning for mean-payoff with PAC guarantees. There, the learning
algorithm estimates the probabilities on the transitions of the MDP. In our
approach, we do not estimate these probabilities directly from the MDP, but
learn probabilities for the individual tasks in the task system. The efficient PAC
guarantees that we have obtained for the model-based part cannot be obtained
from that framework. Finally, in [8] we introduced a first combination of shielding
with model-predictive control using MCTS, but did not consider learning.

2 Preliminaries

We denote by N the set of natural numbers; by Q, the set of rational numbers; and
by Q≥0 the set {q ∈ Q | q ≥ 0} of all non-negative rational numbers. Given n ∈
N, we denote by [n] the set {1, . . . , n}. Given a finite set A, a (rational) probability
distribution over A is a function p : A→ [0, 1]∩Q such that

∑
a∈A p(a) = 1. We

call A the domain of p, and denote it by Dom(p). We denote the set of probability
distributions on A by D(A). The support of the probability distribution p on A
is Supp(p) = {a ∈ A | p(a) > 0}. A distribution is called Dirac if |Supp(p)| = 1.
For a probability distribution p, the minimum probability assigned by p to the
elements in Supp(p) is πpmin = min

a∈Supp(p)
(p(a)). We say two distributions p and p′

are structurally identical if Supp(p) = Supp(p′). Given two structurally identical
distributions p and p′, for 0 < ε < 1, we say that p is ε-close to p′, denoted p ∼ε
p′, if Supp(p) = Supp(p′), and for all a ∈ Supp(p), we have that |p(a)−p′(a)| ≤ ε.
Scheduling problem An instance of the scheduling problem studied in [14]
consists of a task system Υ = ((τi)i∈[n], F,H), where (τi)i∈[n] are n preemptible
tasks partitioned into hard and soft tasks H and F respectively. The latter
need to be scheduled on a single processor. Formally, the work of [14] relies
on a probabilistic model for the computation times of the jobs and for the de-
lay between the arrival of two successive jobs of the same task. For all i ∈ [n],
task τi is defined as a tuple 〈Ci, Di,Ai〉, where: (i) Ci is a discrete probability
distribution on the (finitely many) possible computation times of the jobs gen-
erated by τi; (ii) Di ∈ IN is the deadline of all jobs generated by τi which is
relative to their arrival time; and (iii) Ai is a discrete probability distribution
on the (finitely many) possible inter-arrival times of the jobs generated by τi.
We denote by πΥmax the maximum probability appearing in the definition of Υ ,
that is, across all the distributions Ci and Ai, for all i ∈ [n]. It is assumed that
max(Dom(Ci)) ≤ Di ≤ min(Dom(Ai)) for all i ∈ [n]; hence, at any point in time,
there is at most one job per task in the system. Also note that when a new job of

4 D. Busatto-Gaston et al.

some task arrives at the system, the deadline for the previous job of this task is
already over. Finally, we assume that the task system is schedulable for the hard
tasks, meaning that it is possible to guarantee that jobs associated to hard tasks
never miss their deadlines. On the other hand, the full set of tasks may not be
schedulable, so that jobs associated with soft tasks may be allowed to miss their
deadlines. The potential degradation in the quality when a soft task misses its
deadline is modelled by a cost function cost : F → Q≥0 that associates to each
soft task τj a cost c(j) that is incurred every time a job of τj misses its deadline.
As a final observation, we recall the earliest deadline first (EDF) algorithm that
always gives execution time to the job closest to its deadline. EDF is an opti-
mal scheduling algorithm in the following sense: if a task system is schedulable
(without any misses at all) then EDF will yield such a feasible schedule [6]. In
general, applying EDF on both the hard and soft tasks may cause hard tasks
to miss deadlines, as the entire task system may not be schedulable. However,
one may apply EDF on hard tasks only, and allow for soft tasks whenever no
hard task is available. This version of EDF ensures that all jobs of hard tasks
are scheduled in time, but does not guarantee optimality with respect to cost.

Given a task system Υ = ((τi)i∈[n], F,H) with n tasks, the structure of Υ
is ((struct(τi))i∈[n], F,H) where struct(〈C, D,A〉) = (〈Dom(C), D,Dom(A)〉). We
denote by Cmax and Amax resp. the maximum computation time, and the max-
imum inter-arrival time of a task in Υ . Formally, Cmax = max(

⋃
i∈[n] Dom(Ci)),

and Amax = max(
⋃
i∈[n] Dom(Ai)). Note that Amax ≥ Cmax. We also let D =

maxi∈[n](|Dom(Ai)|). We denote by |Υ | the number of tasks in the task system Υ .
Consider two task systems Υ1 = ((τ1i)i∈[n], F,H), and Υ2 = ((τ2i)i∈[n], F,H), with

|Υ1| = |Υ2|, τ ji = 〈Cji , D
j
i ,A

j
i 〉 for all i ∈ [n] and j ∈ [2]. The two task systems Υ1

and Υ2 are said to be ε-close, denoted Υ1 ≈ε Υ2, if (i) struct(Υ 1) = struct(Υ 2),
(ii) for all i ∈ [n], we have A1

i ∼ε A2
i , and (iii) for all i ∈ [n], we have C1i ∼ε C2i .

Markov decision processes Let us now introduce Markov Decision Process
(MDP) as they form the basis of the formal model of [14], which we recall later.
A finite Markov decision process is a tuple Γ = 〈V,E, L, (V2, V#), A, δ, cost〉,
where: (i) A is a finite set of actions; (ii) 〈V,E〉 is a finite directed graph and
L is an edge-labelling function (we denote by E(v) the set of outgoing edges
from vertex v); (iii) the set of vertices V is partitioned into V2 and V#; (iv) the
graph is bipartite i.e. E ⊆ (V2 × V#) ∪ (V# × V2), and the labelling function
is s.t. L(v, v′) ∈ A if v ∈ V2, and L(v, v′) ∈ Q if v ∈ V#; and (v) δ assigns to
each vertex v ∈ V# a rational probability distribution on E(v). For all edges
e, we let cost(e) = L(e) if L(e) ∈ Q, and cost(e) = 0 otherwise. We further
assume that, for all v ∈ V2, for all e, e′ in E(v): L(e) = L(e′) implies e = e′,
i.e. an action identifies uniquely an outgoing edge. Given v ∈ V2, and a ∈ A, we
define Post(v, a) = {v′ ∈ V# | (v, v′) ∈ E and L(v, v′) = a} ∪ {v′′ ∈ V2 | ∃v′ :
(v, v′) ∈ E,L(v, v′) = a and δ(v′, v′′) > 0}. For all vertices v ∈ V2, we denote by
A(v), the set of actions {a ∈ A | Post(v, a) ∩ V2 6= ∅}. The size of an MDP Γ ,
denoted |Γ |, is the sum of the number of vertices and the number of edges, that
is, |V | + |E|. An MDP Γ = 〈V,E, L, (V2, V#), A, δ, cost〉 is said to structurally
identical to another MDP Γ ′ = 〈V,E, L′, (V2, V#), A, δ′, cost〉 if for all v ∈ V#,

Safe Learning for Near-Optimal Scheduling 5

we have that Supp(δ(v)) = Supp(δ′(v)). For two structurally identical MDPs Γ
and Γ ′ with distribution assignment functions δ and δ′ respectively, we say that
Γ is ε-approximate to Γ ′, denoted Γ ≈ε Γ ′, if for all v ∈ V#: δ(v) ∼ε δ′(v).

An MDP Γ can be interpreted as a game GΓ between two players: 2 and #,
who own the vertices in V2 and V# respectively. A play in an MDP is a path in
its underlying graph 〈V,E,A∪Q〉. We say that a prefix π(n) of a play π belongs
to player i ∈ {2,#}, iff its last vertex Last(π(n)) is in Vi. The set of prefixes that
belong to player i is denoted by Prefsi(GΓ). A play is obtained by the interaction
of the players: if the current play prefix π(n) belongs to 2, she plays by picking
an edge e ∈ E(Last(π(n))) (or, equivalently, an action that labels a necessarily
unique edge from Last(π(n))). Otherwise, when π(n) belongs to #, the next edge
e ∈ E(Last(π(n))) is chosen randomly according to δ(Last(π(n))). In both cases,
the plays prefix is extended by e and the game goes ad infinitum.

A (deterministic) strategy of 2 is a function σ2 : Prefs2(G) → E, such that
σ2(ρ) ∈ E(Last(ρ)) for all prefixes. A strategy σ2 is memoryless if for all finite
prefixes ρ1 and ρ2 ∈ Prefs(G): Last(ρ1) = Last(ρ2) implies σ2(ρ1) = σ2(ρ2). For
memoryless strategies, we will abuse notations and assume that such strategies
σ are of the form σ : V2 → E (i.e., the strategy associates the edge to play
to the current vertex and not to the full prefix played so far). From now on,
we will consider memoryless deterministic strategies unless otherwise stated.
Let Γ = 〈V,E, L, (V2, V#), A, δ, cost〉 be an MDP, and let σ2 be a memoryless
strategy. Then, assuming that 2 plays according to σ2, we can express the
behaviour of Γ as a Markov chain Γ [σ2], where the probability distributions
reflect the stochastic choices of # (see [14] for the details).

End components An end-component (EC) M = (T,A′), with T ⊆ V and
A′ : T ∩ V2 → 2A, is a sub-MDP of Γ such that: for all v ∈ T ∩ V2, A′(v) is a
subset of the actions available to 2 from v; for all a ∈ A′(v), Post(v, a) ⊆ T ; and,
it’s underlying graph is strongly connected. A maximal end-component (MEC)
is an EC that is not included in any other EC.

MDP for the scheduling problem Given a system Υ = {τ1, τ2, . . . , τn} of
tasks, we describe below the modelling of the scheduling problem by an MDP
ΓΥ = 〈V,E, L, (V2, V#), A, δ, cost〉 as it appears in [14]. The two players 2 and
correspond respectively to the Scheduler and the task generator (TaskGen)
respectively. Since there is at most one job per task that is active at all times,
vertices encode the following information about each task τi: (i) a distribution
ci over the job’s possible remaining computation times (rct); (ii) the time di up
to its deadline; and (iii) a distribution ai over the possible times up to the next
arrival of a new job. We also tag vertices with either 2 or # to remember their
respective owners and we have a vertex ⊥ that is reached when a hard task misses
a deadline. For a vertex v =

(
(c1, d1, a1) . . . (cn, dn, an), ∆

)
, for ∆ ∈ {2,#}, let

active(v) = {i | ci(0) 6= 1 and di > 0} be the tasks that have an active job in v;
dlmiss(v) = {i | ci(0) = 0 and di = 0}, those that have missed a deadline in v.

Possible moves The possible actions of Scheduler are to schedule an active
task or to idle the CPU. We model this by having, from all vertices v ∈ V2
one transition labelled by some element from active(v), or by ε. The moves of

6 D. Busatto-Gaston et al.

TaskGen consist in selecting, for each task one possible action out of four: either
(i) nothing (ε); or (ii) to finish the current job without submitting a new one
(fin); or (iii) to submit a new job while the previous one is already finished
(sub); or (iv) to submit a new job and kill the previous one, in the case of a soft
task (killANDsub), which will incur a cost.

We consider the following example from [14].

(1,2,3)
([1:.4,2:.6],2,3)

(1,1,2)
([0:.4,1:.6],1,2)

(0, 1, 2)
([1:.4,2:.6],1,2)

(1,1,2)
([1:.4,2:.6],1,2)

s h ε

(1,1,2)
(0, 1, 2)

(1,1,2)
(1,1,2)

(0, 1, 2)
([1:.4,2:.6],1,2)

(1,1,2)
([1:.4,2:.6],1,2)

(ε, fin) .4 (ε, ε) .6 (fin, ε) (ε, ε)

(0, 0, 1)
(0, 0, 1)

(0, 0, 1)
(0, 0, 1)

(0, 0, 0)
(0, 0, 0)

h

(fin, ε)

ε

(sub, sub)

(0, 0, 1)
(1,0,1)

(0, 0, 1)
(1,0,1)

(0, 0, 0)
(1,0,0)

h
s ε

(fin, ε)

ε

(sub, killANDsub)
cost=10

s ε

(1,0,1)
([1:.4,2:.6],0,1)

⊥

εs h

ε

ε

Fig. 1. MDP excerpt for Ex. 1. Bold tasks are active, those in italics have missed a
deadline.

Example 1. Consider a system with one hard task τh = 〈Ch, 2,Ah〉 s.t. Ch(1) = 1
and Ah(3) = 1; one soft task τs = 〈Cs, 2,As〉 s.t. Cs(1) = 0.4, Cs(2) = 0.6, and
As(3) = 1; and the cost function c s.t. c(τs) = 10. Fig. 1 presents an excerpt of the
MDP ΓΥ built from the set of tasks τ = {τh, τs} of Example 1. A distribution
p with support {x1, x2, . . . , xn} is denoted by [x1 : p(x1), x2 : p(x2), . . . ;xn :
p(xn)]. When p is s.t. p(x) = 1 for some x, we simply denote p by x. Vertices
from V2 and V# are depicted by rectangles and rounded rectangles respectively.
Each vertex is labelled by (ch, dh, ah) on the top, and (cs, ds, as) below.

A strategy to avoid missing a deadline of τh consists in first scheduling τs,
then τh. One then reaches the left-hand part of the graph from which 2 can
avoid ⊥ whatever # does. Other safe strategies are possible: the first step of the
algorithm in [14] is to compute all the safe nodes (i.e. those from which 2 can
ensure to avoid ⊥), and then find an optimal one w.r.t to missed-deadline costs.

There are two optimal memoryless strategies, one in which Scheduler first
chooses to execute τh, then τs; and another where τs is scheduled for 1 time
unit, and then preempted to let τh execute. Since the time difference between
the arrival of two consecutive jobs of the soft task τs is 3 and the cost of missing
a deadline is 10, for both of these optimal strategies, the soft task’s deadline is

Safe Learning for Near-Optimal Scheduling 7

missed with probability 0.6 over this time duration of 3, and hence the mean-cost
is 2. There is another safe schedule that is not optimal which only grants τh is
CPU access, and never schedules τs, thus giving a mean-cost of 10

3 . ut

Expected mean-cost Let us first associate a value, called the mean-cost MC(π)
to all plays π in an MDP Γ = 〈V,E, L, (V2, V#), A, δ, cost〉. First, for a prefix

ρ = e0e1 . . . en−1, we define MC(ρ) = 1
n

∑i=n−1
i=0 cost(ei) (recall that cost(e) =

0 when L(e) is an action). Then, for a play π = e0e1 . . ., we have MC(π) =
lim supn→∞MC(π(n)). Observe that MC is a measurable function. A strategy σ2
is optimal for the mean-cost from some initial vertex vinit ∈ V2 if EΓ [σ2]

vinit (MC) =

infσ′
2
EΓ [σ′

2]
vinit (MC). Such optimal strategy always exists, and it is well-known that

there is always one which is memoryless. Moreover, this problem can be solved
in polynomial time through linear programming [12] or in practice using value
iteration (as implemented, for example, in the tool Storm [10]). We denote by

EΓvinit(MC) the optimal value infσ2 EΓ [σ2]
vinit (MC).

Safety synthesis Given an MDP Γ = 〈V,E, L, (V2, V#), A, δ, cost〉, an initial
vertex vinit ∈ V , and a strategy σ2, we define the set of possible outcomes in the
Markov chain Γ [σ2] as the set of paths vinit = v0v1v2 . . . in Γ [σ2] s.t., for all i ≥
0, there is non-null probability to go from vi to vi+1 in Γ [σ2]. Let VOutsΓ [σ2](vinit) ⊆
V denote the set of vertices visited in the set of possible outcomes OutsΓ [σ2](vinit).

Given Γ with vertices V , initial vertex vinit ∈ V , and a set Vbad ⊆ V of bad
vertices, the safety synthesis problem is to decide whether 2 has a strategy σ2
ensuring to visit the safe vertices only, i.e.: VOutsΓ [σ2](vinit) ∩ Vbad = ∅. If this is
the case, we call such a strategy safe. The safety synthesis problem is decidable
in polynomial time for MDPs (see, e.g., safety games in [23]). Moreover, if a safe
strategy exists, then there is a memoryless safe strategy. Henceforth, we will
consider safe strategies that are memoryless only. We say that a vertex v is safe
iff 2 has a safe strategy from v, and that an edge e = (v, v′) ∈ E ∩ (V2 × V#)
is safe iff there is a safe strategy σ2 s.t. σ2(v) = v′. So, the safe edges safe(v)
from some node v correspond to the choices that 2 can safely make from v. The
set of safe edges exactly correspond to the set of safe actions that 2 can make
from v. Then, we let the safe region of Γ be the MDP Γ safe obtained from Γ
by applying the following transformations: (i) remove from Γ all unsafe edges;
(ii) remove from Γ all vertices and edges that are not reachable from vinit.
Most general safe scheduler Consider a task system Υ that is schedulable
for the hard tasks. Then, Scheduler has a winning strategy to avoid ⊥ in ΓΥ . We
say a non-deterministic strategy in ΓΥ is the most general safe scheduler (MGS)
for the hard tasks if from any vertex of Scheduler it allows all safe edges4.

3 Model-Based Learning

We now investigate the case of model-based learning of task systems. First, we
consider the simpler case of task systems with only soft tasks. We show that

4 The existence of a most general safe scheduler follows from the existence of a unique
most general (a.k.a. maximally permissive) strategy for safety objectives [20].

8 D. Busatto-Gaston et al.

those systems are always efficiently PAC learnable. Second, we consider learning
task systems with both hard and soft tasks. In that case, we study two conditions
for learnability. The first condition allows us to identify task systems that are
safely PAC learnable, i.e. learnable while enforcing safety for the hard tasks.
The second condition is stronger and allows us to identify task systems that are
safely and efficiently PAC learnable.
Learning setting We consider a setting in which we are given the structure of
a task system Υ = ((τi)i∈I , F,H) to schedule. While the structure is known, the
actual distributions that describe the behaviour of the tasks are unknown and
need to be learnt to behave optimally or near optimally. The learning must be
done only by observing the jobs that arrive along time. When the task system
contains some hard tasks (H 6= ∅), all deadlines of such tasks must be enforced.

For learning the inter-arrival time distribution of a task, a sample corresponds
to observing the time difference between the arrivals of two consecutive jobs of
that task. For learning the computation time distribution, a sample corresponds
to observing the CPU time a job of the task has been assigned up to completion.
Thus if a job does not finish execution before its deadline, we do not obtain a
valid sample for the computation time. Given a class of task systems, we say:

– the class is probably approximately correct (PAC) learnable if there is an
algorithm L such that for all task systems Υ in this class, for all ε, γ ∈ (0, 1):
given struct(Υ), the algorithm L can execute the task system Υ , and can
compute ΥM such that Υ ≈ε ΥM , with probability at least 1− γ.

– the class is safely PAC learnable if it is PAC learnable, and L can ensure
safety for the hard tasks while computing ΥM .

– the class is (safely) efficiently PAC learnable if it is (safely) PAC learnable,
and there is a polynomial q in the size of the task system, in 1/ε, and in 1/γ,
s.t. L obtains enough samples to compute ΥM in a time bounded by q.

Note that our notion of efficient PAC learning is stronger than the definition
used in classical PAC learning terminology [24] since we take into account the
time that is needed to get samples and not only the number of samples needed.
Learning discrete finite distributions To learn an unknown discrete distri-
bution p defined on a finite domain Dom(p), we collect i.i.d. samples from that
distribution and infer a model of it. Formally, given a sequence S = (sj)j∈J of
samples drawn i.i.d. from the distribution p, we denote by p(S) : Dom(p)→ [0, 1],
the function that maps every element a ∈ Dom(p) to its relative frequency in S.
The following lemma tells us that if the size of S is large enough then the model
p(S) is close to the actual p with high probability.

Lemma 1. For all finite discrete distributions p with |Dom(p)| = r, for all
ε, γ ∈ (0, 1) such that πpmin > ε, if S is a sequence of at least r · d 1

2ε2 (ln 2r− ln γ)e
i.i.d. samples drawn from p, then p ∼ε p(S) with probability at least 1− γ.

Proof. For a distribution p, and an element e in Dom(p), let Xpe
1 , . . . , Xpe

m be in-
dependent and identically distributed Bernoulli random variables with E

[
Xpe
j

]
=

µ for j ∈ [m]. Recall that a Bernoulli random variable takes two values, 1 and 0.

Safe Learning for Near-Optimal Scheduling 9

In our case, the value 1 denotes witnessing the element e in the domain of the

distribution p. Thus we have p(e) = µ. Let X
pe
m = 1

m

∑
j∈[m]

Xpe
j . Here m is the

number of samples required to learn the probability of occurrence of the element
e of the support of the distribution.

By Hoeffding’s two sided inequality, for the special case of Bernoulli random
variables, we have,

P(|Xpe
m − µ| ≥ ε) ≤ 2 exp(−2mε2).

Now we want that the probability of |Xpe
m −µ| ≥ ε for all e ∈ Dom(p) is at most

γ
r , so that the probability of |Xpe

m − µ| ≥ ε for some element e in the domain of
the distribution p is at most γ.

Thus we have 2 exp(−2mε2) ≤ γ
r leading to m ≥ d 1

2ε2 (ln 2r − ln γ)e. Since
there are r elements in the domain, we need a total of at least f(r, ε, γ) = m · r
samples, and hence the result. ut

We say that we “PAC learn” a distribution p if for all ε, γ ∈ (0, 1) such that
πpmin > ε, by drawing a sequence S of i.i.d. samples from p, we have p ∼ε p(S)
with probability at least 1 − γ. Given a task system Υ , if we can learn the
distributions corresponding to all the tasks in Υ , and hence a model ΥM , such
that each learnt distribution in ΥM is structurally identical to its corresponding
distribution in Υ , the corresponding MDP are structurally identical.
Efficient PAC learning Let Υ = ((τi)i∈I , F, ∅) be a task system with soft tasks
only, and let ε, γ ∈ (0, 1). We assume that for all distributions p occurring in the
models of the tasks in Υ : πpmin > ε. To learn a model ΥM which is ε-close to Υ
with probability at least 1− γ, we apply Lemma 1 in the following algorithm:

1. for all tasks i = 1, 2, · · · ∈ F , repeat the following learning phase:
Always schedule task τi when a job of this task is active. Collect the samples
S(Ai) of Ai and S(Ci) of Ci as observed. Collect enough samples to apply
Lemma 1 and obtain the desired accuracy as fixed by ε and γ.

2. the models of inter-arrival time distribution and computation time distribu-
tion for task τi are p(S(Ai)) and p(S(Ci)) respectively.

It follows that task systems with only soft tasks are efficiently PAC learnable:

Theorem 1. There is a learning algorithm such that for all task systems Υ =
((τi)i∈I , F,H) with H = ∅, for all ε, γ ∈ (0, 1), the algorithm learns a model
ΥM such that ΥM ≈ε Υ with probability at least 1 − γ after executing Υ for
|F | · Amax · D · d 1

2ε2 (ln 4D|F | − ln γ)e steps.

Proof. Using Lemma 1, given ε, γ′ ∈ (0, 1), for every distribution p of the task
system, a sequence S of D · d 1

2ε2 (ln 2D − ln γ′)e i.i.d. samples suffices to have
p(S) ∼ε p with probability at least 1− γ′. Since in the task system Υ , there are
2|F | distributions, with probability at least 1 − 2|F |γ′, we have that the learnt
model ΥM ≈ε Υ . Thus for γ′ = γ

2|F | , and using 2 exp(−2mε2) ≤ γ
2|F |D , we have

10 D. Busatto-Gaston et al.

that for each distribution, a sequence of D ·d 1
2ε2 (ln 4D|F |− ln γ)e samples suffices

so that ΥM ≈ε Υ with probability at least 1− γ.
Since samples for computation time distribution and inter-arrival time dis-

tribution for each soft task can be collected simultaneously, and observing each
sample takes a maximum of Amax time steps, and we collect samples for each
soft task by scheduling one soft task after another, the result follows. ut

Safe learning with hard tasks We turn to task systems Υ = ((τi)i∈I , F,H)
with both hard and soft tasks. The learning algorithm must ensure that all the
jobs of hard tasks meet their deadlines while learning the task distributions. The
soft-task-only algorithm is clearly not valid for that more general case. Recall
we have assumed schedulability of the task system for the hard tasks5. This is a
necessary condition for safe learning but it is not a sufficient condition. Indeed,
to apply Lemma 1, we need enough samples for all tasks i ∈ H ∪ F .

First, we note that when executing any safe schedule for the hard tasks, we
will observe enough samples for the hard tasks. Indeed, under a safe schedule for
the hard tasks, any job of a hard task that enters the system will be executed
to completion before its deadline. We then observe the value of the inter-arrival
and computation times for all the jobs of hard tasks that enter the system.
Unfortunately, this is not necessarily the case for soft tasks when they execute
in the presence of hard tasks. Indeed, it is in general not possible to schedule
all the jobs of soft tasks up to completion. We thus need stronger conditions in
order to be able to learn the distributions of the soft tasks while ensuring safety.
PAC guarantees for safe learning Our condition to ensure safe PAC learn-
ability relies on properties of the safe region Γ safe

Υ in the MDP ΓΥ associated to
the task system Υ . First, note that Γ safe

Υ is guaranteed to be non-empty as the
task system Υ is guaranteed to be schedulable for its hard tasks by hypothesis.
Our condition will exploit the following property of its structure:

Lemma 2. Let Υ = ((τi)i∈I , F,H) be a task system and let Γ safe
Υ be the safe

region of its MDP. Then Γ safe
Υ is a single maximal end-component (MEC).

Proof. We first assume that the task system Υ = ((τi)i∈I , F,H) is schedulable.
Otherwise, Γ safe

Υ is empty and the Lemma is trivially true. Let V and E be the
set of vertices and the set of edges of Γ safe

Υ respectively. First, observe that, since
we want to prove that the whole MDP Γ safe

Υ corresponds to an MEC, we only
need to show that its underlying graph (V,E) is strongly connected. Indeed,
since (V,E) contains all vertices and edges from Γ safe

Υ , it is necessarily maximal,
and all choices of actions from any vertex will always lead to a vertex in V .

In order to show the strongly connected property, we fix a vertex v ∈ V , and
show that there exists a path in Γ safe

Υ from v to vinit. Since all vertices in V are,
by construction of Γ safe

Υ , reachable from the initial vertex vinit, this entails that
all vertices v′ are also reachable from v, hence, the graph is strongly connected.

Let us first assume that v ∈ V2, i.e., v is a vertex where Scheduler has to
take a decision. Let vinit = v0, v

′
0, v1, v

′
1, · · · , v′n−1, vn = v be the path π leading

5 Note that safety synthesis already identifies task systems that violate this condition.

Safe Learning for Near-Optimal Scheduling 11

to v, where all vertices vj belong to Scheduler, and all v′j are are vertices that
belong to TaskGen.

Then, from path π, we extract, for all tasks τi the sequence of actual inter-
arrival times σi = ti(1), ti(2), . . . , ti(ki) defined as follows: for all 1 ≤ j ≤
ki, t

i(j) ∈ Supp(Ai) is the time elapsed (in CPU ticks) between the arrival
of the j − 1th job the jth job of task i along π (assuming the initial release
occurring in the initial state vinit is the 0-th release). In other words, letting

T i(j) =
∑j
k=1 t

i(k), the jth job of τi is released along π on the transition between
v′T i(j−1) and vT i(j). Observe thus that all tasks i ∈ [n] are in the same state in
vertex vinit and in vertex vT i(j), i.e. the time to the deadline, and the probability
distributions on the next arrival and computation times are the same in vinit and
vT i(j). However, the vertices vT i(j) can be different for all the different tasks,
since they depend on the sequence of job releases of τi along π. Nevertheless, we
claim that π can be extended, by repeating the sequence of arrivals of all the tasks
along π, in order to reach a vertex where all tasks have just submitted a job (i.e.
vinit). To this aim, we first extend, for all tasks i ∈ [i], σi into σ′i = σi, t

i(ki + 1),
where ti(ki + 1) ∈ Supp(Ai) ensures that the ki + 1 arrival of a τi occurs after v.

For all i ∈ [n], let ∆i denote
∑ki+1
j=1 ti(j), i.e. ∆i is the total number of CPU

ticks needed to reach the first state after v where task i has just submitted
a job (following the sequence of arrival σ′i defined above). Further, let ∆ =
lcm(∆i)i∈[n]. Now, let π′ be a path in Γ safe

Υ that respects the following properties:

1. π is a prefix of π′;
2. π′ has a length of ∆ CPU ticks;
3. π′ ends in a 2 vertex v′; and
4. for all tasks i ∈ [n]: τi submits a job at time t along π′ iff it submits a job

at time t mod ∆i along π.

Observe that, in the definition of π′, we do not constrain the decisions of Sched-
uler after the prefix π. First, let us explain why such a path exists. Observe that
the sequence of task arrival times is legal, since it consists, for all tasks i, in re-
peating ∆/∆i times the sequence σ′i of inter-arrival times which is legal since it
is extracted from path π (remember that nothing that Scheduler player does can
restrict the times at which TaskGen introduces new jobs in the system). Then,
since Υ is schedulable, we have the guarantee that all 2 vertices in Γ safe

Υ have at
least one outgoing edge. This is sufficient to ensure that π′ indeed exists. Finally,
we observe π′ visits v (since π is a prefix of π′), and that the last vertex v′ of π′

is a 2 vertex obtained just after all tasks have submitted a job, by construction.
Thus v′ = vinit, and we conclude that, from all v ∈ V2 which is reachable from
vinit, one can find a path in Γ safe

Υ that leads back to vinit.
This reasoning can be extended to account for the nodes v ∈ V#: one can

simply select any successor v ∈ V2 of v, and apply the above reasoning from v
to find a path going back to vinit. ut

Good for sampling The safe region Γ safe
Υ of the task system Υ = ((τi)i∈I , F,H)

is good for sampling if for all soft tasks i ∈ F , there exists a vertex vi ∈ Γ safe
Υ

such that: (i) a new job of task i enters the system in vi; and (ii) there exists a

12 D. Busatto-Gaston et al.

strategy σi of Scheduler that is compatible with the set of safe schedules for the
hard tasks so that from vi, under schedule σi, the new job associated to task τi
is guaranteed to reach completion before its deadline.

There is an algorithm that executes in polynomial time in the size of Γ safe
Υ

and which decides if Γ safe
Υ is good for sampling. Also, remember that only the

knowledge of the structure of the task system is needed to compute Γ safe
Υ .

Given a task system Γ safe
Υ that is good for sampling, given any ε, γ ∈ (0, 1),

we safely learn a model ΥM which is ε-close to Υ with probability at least 1− γ
(PAC guarantees) by applying the following algorithm:

1. Choose any safe strategy σH for the hard tasks, and apply it until enough
samples (S(Ai),S(Ci)) for each i ∈ H have been collected according to
Lemma 1. The models for tasks i ∈ H are p(S(Ai)) and p(S(Ci)).

2. Then for each i ∈ F , apply the following phases:

(a) from the current vertex v, schedule some task uniformly at random
among the set of tasks that correspond to the safe edges in safe(v) up
to reaching some vi (while choosing tasks that do not violate safety uni-
formly at random, we reach some vi with probability 1.6 The existence
of a vi is guaranteed by the hypothesis that Γ safe

Υ is good for sampling).
(b) from vi, apply the schedule σi as defined by the second condition in the

good for sampling condition. This way we are guaranteed to observe the
computation time requested by the new job of task i that entered the
system in vertex vi, no matter how TaskGen behaves. At the completion
of this job of task i, we have collected a valid sample of task i.

(c) go back to (a) until enough samples (S(Ai),S(Ci)) have been collected
for soft task i according to Lemma 1.

The properties of the learning algorithm above are used to prove that:

Theorem 2. There is a learning algorithm such that for all task systems Υ =
((τi)i∈I , F,H) with a safe region Γ safe

Υ that is good for sampling, for all ε, γ ∈
(0, 1), the algorithm learns a model ΥM such that ΥM ≈ε Υ with probability at
least 1− γ.

Proof. For the hard tasks, as mentioned above, we can learn the distributions by
applying the safe strategy σH to collect enough samples (S(Ai),S(Ci)) for each
i ∈ H.

We assume an order on the set of soft tasks. First for all τi for i ∈ F , since
Γ safe
Υ is good for sampling, we note that the set Vi of vertices vi (as defined in

the definition of good for sampling condition) is non-empty. Recall from Lemma
2 that Γ safe

Υ has a single MEC. Thus from every vertex of Γ safe
Υ , Scheduler by

playing uniformly at random reaches some vi ∈ Vi with probability 1, and hence
can visit the vertices of Vi infinitely often with probability 1. Now given ε and γ,
using Theorem 1, we can compute an m, the number of samples corresponding
to each distribution required for safe PAC learning of the task system. Since by

6 This follows from the fact that there is a single MEC in the MDP by Lemma 2.

Safe Learning for Near-Optimal Scheduling 13

playing uniformly at random, Scheduler has a strategy to visit the vertices of
Vi infinitely often with probability 1, it is thus possible to visit these vertices at
least m times with arbitrarily high probability.

Also after we safely PAC learn the distributions for task τi, since there is a
single MEC in Γ safe

Υ , there exists a uniform memoryless strategy to visit a vertex
vi+1 corresponding to task τi+1 with probability 1. Hence the result. ut

In the algorithm above, to obtain one sample of a soft task, we need to reach
a particular vertex vi from which we can safely schedule a new job for the task
i up to completion. As the underlying MDP Γ safe

Υ can be large (exponential
in the description of the task system), we cannot bound by a polynomial the
time needed to get the next sample in the learning algorithm. So, this algorithm
does not guarantee efficient PAC learning. We develop in the next paragraph a
stronger condition to guarantee efficient PAC learning.
Good for efficient sampling The safe region Γ safe

Υ of the task system Υ =
((τi)i∈I , F,H) is good for efficient sampling if there exists K ∈ N which is
bounded polynomially in the size of Υ = ((τi)i∈I , F,H), and if, for all soft tasks
i ∈ F the two following conditions hold:

1. let V safe
2 be the set of Scheduler vertices in Γ safe

Υ . There is a non-empty subset
Safei ⊆ V safe

2 of vertices from which there is a strategy σi for Scheduler to
schedule safely the tasks H ∪ {i} (i.e. all hard tasks and the task i); and

2. for all v ∈ V safe
2 , i ∈ F , there is a uniform memoryless strategy σ�Safei s.t.:

(a) σ�Safei is compatible with the safe strategies (for the hard tasks) of Γ safe
Υ ;

(b) when σ�Safei is executed from any v ∈ V safe
2 , then the set Safei is reached

within K steps. By Lemma 2, since Γ safe
Υ has a single MEC, we have that

Safei is reachable from every v ∈ V safe
2 .

Here again, the condition can be efficiently decided: there is a polynomial-time
algorithm in the size of Γ safe

Υ that decides if Γ safe
Υ is good for efficient sampling.

Given a task system Γ safe
Υ that is good for efficient sampling, given ε, γ ∈

(0, 1), we safely and efficiently learn a model ΥM which is ε-close of Υ with
probability at least than 1− γ (efficient PAC guarantees) by applying:

1. Choose any safe strategy σH for the hard tasks, and apply this strategy until
enough samples (S(Ai),S(Ci)) for each i ∈ H have been collected according
to Lemma 1. The models for tasks i ∈ H are p(S(Ai)) and p(S(Ci)).

2. Then for each i ∈ F , apply the following phase:

(a) from the current vertex v, play σ�Safei to reach the set Safei.
(b) from the current vertex in Safei, apply the schedule σi as defined above.

This way we are guaranteed to observe the computation time requested
by all the jobs of task i that enter the system.

(c) go to (b) until enough samples (S(Ai),S(Ci)) are collected for task i as
per Lem. 1. The models for task i are given by p(S(Ai)) and p(S(Ci)).

For a task system Υ , let T = Amax ·D · d 1
2ε2 (ln 4D|Υ |− ln γ)e. The properties

of the learning algorithm above are used to prove the following theorem:

14 D. Busatto-Gaston et al.

Theorem 3. There exists a learning algorithm such that for all task systems
Υ = ((τi)i∈I , F,H) with a safe region Γ safe

Υ that is good for efficient sampling,
for all ε, γ ∈ (0, 1), the algorithm learns a model ΥM such that ΥM ≈ε Υ with
probability at least 1− γ after scheduling Υ for T + |F | · (T +K) steps.

Proof. Consider the algorithm described above. Since σH is a safe schedule for
the hard tasks, we can observe the samples corresponding to the computation
time distribution and the inter-arrival time distribution for all the hard tasks
simultaneously while scheduling the system. Following the proof of Theorem 1,
the samples required to learn the distributions of the hard tasks can be observed
in time T .

Now consider an order on the set of tasks. Under the good for efficient sam-
pling condition, again from the proof of Theorem 1, we need to execute the
system for |F |T time steps for collecting samples to PAC learn the computation
time distributions and the inter-arrival time distributions for all soft tasks in F .
Further, for every soft task τi with i ∈ F , from a vertex in V safe

2 , by using the
strategy σ�Safei , we reach Safei in at most K steps. Hence the result. ut

We note that there indeed exist task systems that satisfy the good for sam-
pling condition, but not the stronger good for efficient sampling condition.

Example 2. Consider the following task system with one hard and one soft task
that we want to learn. More specifically, we want to learn the distributions
associated to the tasks in the system. For the hard task, the computation time
distribution is Dirac with support {2}, the relative deadline is 2, and the inter-
arrival time distribution is also Dirac with support {4}. For the soft task, the
computation time distribution has the support {1, 2}, the relative deadline is 2,
and the inter-arrival time distribution is also Dirac and has the support {3}. We
assume that the domain of each distribution is the same as its support.

We can see that during the execution of the task system, for every time t,
Scheduler does not have a safe schedule from t that also ensures that the soft task
will never miss a deadline. This implies that considering the good for efficient
sampling condition, we have Safei = ∅ for i ∈ F , and hence the good for efficient
sampling condition is not satisfied by this task system. Thus we cannot ensure
safe and efficient PAC learning for this task system.

On the other hand, there exists a schedule such that for all the jobs of the
soft task that arrive at time lcm(4, 3) ·n+6 = 12n+6 (assuming that the system
starts executing at time 0) for n ≥ 0 can be scheduled to completion, and thus
by Theorem 2, there exists an algorithm to safely PAC learn the task system. ut
Using the learnt model Given a system Υ of tasks, and parameters ε, γ ∈
(0, 1), once we have learnt a model ΥM such that ΥM ≈ε Υ , we construct the
MDP Γ safe

ΥM . From Γ safe
ΥM , we can compute an optimal scheduling strategy that

minimises the expected mean-cost of missing deadlines of soft tasks. Such an
algorithm is given in [14]. Then, we execute the actual task system Υ under
schedule σ. However, since σ has been computed using the model ΥM , it might
not be optimal in the original, unknown taks system Υ . Nevertheless, we can
bound the difference between the optimal values obtained in Γ safe

ΥM and Γ safe
Υ .

Safe Learning for Near-Optimal Scheduling 15

The following lemma relates the model that is learnt with the approximate
distribution that we have in the MDP corresponding to the learnt model. Given
ε ∈ (0, 1), let s = min{1, πΥmax + ε} and η = s2n − (s− ε)2n, where n = |Υ |.

Lemma 3. Let Υ be a task system, let ε, γ ∈ (0, 1), let ΥM be the learnt model
such that ΥM ≈ε Υ with probability at least 1−γ. Then we have that ΓΥM ≈η ΓΥ
with probability at least 1− γ.

Proof. Since we have that ΥM ≈ε Υ with probability at least 1−γ, by definition,
we have that the probability that all the distributions of ΥM are ε-close to their
corresponding distributions in Υ is at least 1−γ. Let |Υ | = n, and there are a total
of 2n distributions. Let δ and δM be the distribution assignment functions of Γ
and ΓM respectively. Thus corresponding to δ in M, if an edge has probability
p = p1p2 · · · p2n, and for δM we have the corresponding probability as pM , then

|pM − p| ≤
2n∏
i=1

(p′i)−
2n∏
i=1

(pi), where p′i is the estimation of pi in δM , and is such

that p′i ≤ min{1, pi + ε}, since each estimated probability in the distribution
δM is also bounded above by 1. Now p′i ≤ s for all i ∈ [2n], and we have that
2n∏
i=1

p′i −
2n∏
i=1

(pi) ≤ s2n − (s − ε)2n, and thus δM ∼η δ with probability at least

1− γ. ut

A strategy σ is said to be (uniformly) expectation-optimal if for all v ∈ V2,

we have EΓ [σ]
v (MC) = infτ EΓ [τ]

v (MC). The following Lemma captures the idea
that some expectation-optimal strategies for MDPs whose transition functions
have the same support as that of Γ are ‘robust’.

Lemma 4 (Adapted from [7, Theorem 5]). Consider β ∈ (0, 1), and MDPs
Γ and Γ ′ such that Γ ≈ηβ Γ ′ with ηβ ≤ β·πmin

8|V2| , where πmin is the minimum

probability appearing in Γ . For all memoryless deterministic expectation-optimal

strategies σ in Γ ′, for all v ∈ V2, it holds that
∣∣∣EΓ [σ]
v (MC)− infτ EΓ [τ]

v (MC)
∣∣∣ ≤ β.

Proof. Recall that in our case, we have that the cost of missing the deadlines of
the soft tasks are known, and thus we have the same cost function cost in both
Γ and Γ ′. The bounds for ηβ is obtained directly from Solan’s inequality [22,
Theorem 6] as adapted by Chatterjee [7, Proposition 1]:∣∣∣∣inf

τ1
EΓ [τ1]
vinit (MC)− inf

τ2
EΓ

′[τ2]
v′init

(MC)

∣∣∣∣ ≤ 4|V2|(ηβ/πmin)

1− 2|V2|(ηβ/πmin)
(1)

In the proof of [7, Theorem 5]), it has been shown that if the optimal expected
values of two structurally identical MDPs differ by at most λ, then a memoryless
expectation-optimal strategy for one MDP is 2λ-expectation-optimal for the
other one.

Thus
4|V2|(ηβ/πmin)

1−2|V2|(ηβ/πmin)
≤ β

2 that gives us ηβ ≤ β·πmin

8|V2|+2|V2|β ≤
β·πmin

8|V2| . The

result thus follows. ut

16 D. Busatto-Gaston et al.

One of the results we cite, i.e. [7, Theorem 5], focuses on stochastic parity
games with the same support, i.e., for structurally identical MDPs. There, they
derive robustness bounds for MDPs with the discounted-sum function and use
them to obtain robustness bounds for MDPs with a parity objective. We are,
however, extending those results to MDPs with the mean-cost function (cf. [9])
making use of an observation by Solan [22]: robustness bounds for discounted-
sum MDPs extend directly to mean-cost MDPs if they do not depend on the
discount factor.

Finally, using both Lemma 3 and Lemma 4, we obtain the following guar-
antees on the quality of the scheduler that our model-based learning algorithm
outputs:

Theorem 4. Suppose we are given a task system Υ (with min probability πmin)
and a robustness precision β ∈ (0, 1). Let γ, ε ∈ (0, 1) be s.t. ε ≤ βπmin

8|V2|+βπmin
.

Let ΥM be the model that is learnt using the above algorithms s.t. ΥM ≈ε Υ with
probability at least 1 − γ, and let σ be a memoryless deterministic expectation-
optimal strategy of ΓΥM . Then, with probability at least 1 − γ, the expected
mean-cost of playing σ in ΓΥ (i.e. in the task system Υ) is s.t. for all v ∈ V2:∣∣∣EΓΥ [σ]
v (MC)− infτ EΓΥ [τ]

v (MC)
∣∣∣ ≤ β.

4 Monte Carlo Tree Search with Advice

When the model of the task system is known, or once it has been learned us-
ing techniques developed in Section 3, our goal is to compute a (near) optimal
strategy while ensuring safe scheduling of hard-tasks with certainty.

The challenge is the sizes of the MDPs that are too large for exact model-
checking techniques (see Sect. 5). To overcome this problem, we resort to a
receding horizon framework [15], that bases its decisions on a finite-depth un-
folding of the MDP from the current state. In particular, we advocate the use of
Monte Carlo Tree Search (MCTS) algorithms [4], that are a popular method for
sampling the finite-depth unfolding while avoiding an exponential dependency
on the horizon. MCTS algorithms aim at discovering and exploring the “most
relevant” parts of the unfolding, and they approximate the value of actions in
intermediary nodes using a fixed number of trajectories obtained by simulations.
The MCTS algorithm builds an exploration tree incrementally. At every step of
the algorithm, the selection phase selects a path in the current tree, possibly
extending it by adding a new node. It is followed by a simulation phase, that
extends this trajectory further, until the fixed horizon is reached. Finally, a back-
propagation phase updates the exploration tree based on this new trajectory. A
reader looking for a more detailed introduction to MCTS is referred to [5].

MCTS has been successfully applied to large state-spaces. For example, it is
an important building block of the AlphaGo algorithm [21] that has obtained
super-human performances in the game of Go. Such level of performances cannot
be obtained with the plain MCTS algorithm. In Go, the simulation and selection

Safe Learning for Near-Optimal Scheduling 17

0

200

400

600

800

0

0.1

0.2

0.3

0.4

0.5

10
0

50
0

90
0

13
00

17
00

21
00

25
00

29
00

33
00

37
00

41
00

45
00

49
00

53
00

57
00

61
00

65
00

69
00

73
00

77
00M
ax
	-n

or
m
	d
Is
ta
nc
e	
fr
om

	a
ct
ua
l	

di
st
rib

ut
io
ns

Training	steps

Distance	between	learnt	and	actual	distributions
Max	norm	exe Max	norm	arr

Exe	samples Arr	samples

Fig. 2. Learning distributions for a sys-
tem with 6 soft tasks.

0

0.02

0.04

0.06

0.08

0.1

0.12

90 180 270 360 450 540 630 720 810 900

O
bs
er
ve
d	
va
lu
e	
on

	
le
ar
nt
	ta
sk
	s
ys
te
m
s

Training	steps

Value	from	Storm	on	
actual	task	system:	0.0678526

Fig. 3. Model-based learning for 1 hard,
2 soft tasks

phases are guided by a board scoring function that has been learned using neural-
networks techniques and self-play. For our scheduling problem, we also need a
solution to this guidance problem and, equally importantly, we must augment
the MCTS algorithm in a way that ensures safe scheduling of hard tasks.

Symbolic advice In a recent previous work [5], we have introduced the notion
of (symbolic) advice that provides a generic and formal solution to systemati-
cally incorporate domain knowledge in the MCTS algorithm. For our scheduling
problem, we use selection advice that prunes parts of the MDP on-the-fly in
order to ensure that only safe schedulers are explored. We have considered two
possibilities. First, we consider the most general safe scheduler (MGS scheduler)
as defined in page 7 to restrict the selection phase to safe scheduling decisions
only. Second, we consider the earliest deadline first (EDF) scheduling strategy
for hard tasks defined in page 4, that only allows soft tasks when there are no
available hard tasks, and restricts to the hard tasks with the earliest deadline
otherwise. EDF is guaranteed safe as the set of hard tasks is assumed schedula-
ble. The MGS advice allows for maximal exploration as it leaves open all possible
safe scheduling solutions, while the EDF advice can be applied on larger task
systems as it does not require any precomputations. These advice are also ap-
plicable during the simulation phases.

5 Experimental Results

In this section, we first report experimental results on model-based learning
and observe that the models are learnt efficiently with only a small number of
samples. Our MCTS based algorithms can then be applied on the learnt models
that are very close to the original ones.7 We compare the performance of our
MCTS-based algorithms with a state-of-the-art deep Q-learning implementation
from OpenAI [11] on a set of benchmarks of task systems of various sizes. The
experimental results show that our MCTS-based algorithms perform better in
practice than safe reinforcement learning (RL)[3].

7 Here we do not learn to the point where our PAC guarantees hold. Rather, we are
interested in how fast the learnt model converges to the real model in practice.

18 D. Busatto-Gaston et al.

Models with only soft tasks In Figure 2, we show that the distributions of
a task system with soft tasks can be learnt efficiently with a small number of
samples, corroborating our theory in Section 3. This is not the case in general
for arbitrary MDPs where in order to collect samples, one may need to reach
some specific states of the MDP, and it may take a considerable amount of time
to reach such states. However, in this case of systems with only soft tasks, the
number of samples increases linearly with time. As a representative task system,
we display the learning curve for a system with six soft tasks in Figure 2. Here
“exe” and “arr” refer to the distributions of the computation times and the
inter-arrival times respectively. The left y-axis is the max-norm distance between
the probabilities in the actual distributions and the learnt distributions across
all soft tasks. The x-axis is the number of time steps over which the system
is executed. For learning the computation time distribution, the soft tasks are
scheduled in a round robin manner. Once a job of a soft task is scheduled, it is
executed until completion without being preempted. A sample for learning the
computation time distribution of a soft task thus corresponds to a job of the
task that is scheduled to execute until completion. Since the system has only
soft tasks, a job can always be executed to finish its execution without safety
being violated. On the other hand, the samples for learning the inter-arrival
time distribution for each task correspond to all the jobs of the task that arrive
in the system. Thus over a time duration, for each task, the number of samples
collected for learning the inter-arrival time distribution is larger than the number
of samples collected for learning the computation time distribution. The number
of samples of both kinds increases linearly with time. The y-axis on the right
corresponds to the number of samples collected over a duration of time when the
system executes. The plot “Exe samples” corresponds to the number of samples
collected per task for learning the computation time distributions. Since the
tasks are executed in a round robin manner, the tasks have an equal number of
samples for learning their computation time distributions. On the other hand,
for learning inter-arrival time distributions, a task with larger inter-arrival time
produces fewer samples than a task with smaller inter-arrival time. The plot
“Arr samples” corresponds to the minimum of the number of jobs, over all the
tasks, that arrived in the system. Each point in the graphs is obtained as a result
of averaging over 50 simulations.

Safe model-based learning For safe model-based learning of systems with
both hard and soft tasks, first, we verify that the task system satisfies the good
for efficient sampling condition, and hence admits safe efficient PAC learning. We
consider a small representative task system, and report the value of the optimal
expected mean-cost strategy as computed by Storm on the learnt model as
a function of the number of steps for which the system is executed (training
steps). This converges quickly to the optimal expected value of the actual task
system, roughly equal to 0.06 (see Fig 3). We also note that the expected value
computed by Storm is not necessarily monotonic as it is computed on the learnt
model and this model changes over time with the samples that it receives, and
the expected value may also sometimes be smaller than the value on the actual

Safe Learning for Near-Optimal Scheduling 19

model. The results show that this approach is effective in terms of the quality
of learning and the number of samples required.

MCTS In the above approach, the main bottleneck towards scalability is the ex-
traction of an optimal strategy from the learnt model using probabilistic model-
checkers like Storm. This is because the underlying MDP grows exponentially
with the number of tasks. Therefore we advocate the use of receding horizon
techniques instead, that optimize the cost based on the next h steps for some
horizon h. In our examples, the unfoldings have approximately 2h states, so we
use MCTS to explore them in a scalable way.

Deep Q-learning One of the most successful model-free learning algorithm is
the Q-learning algorithm, due to Watkins and Dayan [25]. It aims at learning
(near) optimal strategies in a (partially unknown) MDP for the discounted sum
objective. In our scheduling problem, we search for (near) optimal strategies for
the mean-cost and not for the discounted sum, as we want to minimise the limit
average of the cost of missing deadlines of soft tasks. However, if the discount
factor is close to 1, both values coincide [22,18]. In our experiments, we use an
implementation of deep Q-learning available in the OpenAI repository [11]. We
make use of shielding [8,1,3], a technique that restricts actions in the learning
process so that only those actions that are safe for the hard tasks can be used.

Experimental setup for MCTS and deep Q-learning We compare some
variants of model-based learning augmented with MCTS and some variants of
deep Q-learning in the context of scheduling. The first option is to set a very
high penalty on missing the deadline of a hard task, and then to apply either
MCTS or deep Q-learning. However, safety is not guaranteed in this case, and
we report on whether a violation was observed or not. We call this variant unsafe
MCTS and unsafe deep Q-learning respectively as a consequence. The second
option is to enforce safety in MCTS and deep Q-learning by computing the most
general safe scheduler for hard tasks, and then using the MGS advice for MCTS
or the MGS shield for deep Q-learning. The third option is to use the earliest-
deadline-first (EDF) scheme on hard tasks instead of MGS as an advice or a
shield. Note that the second and the third options are required to ensure safety,
and thus are applicable to systems that have at least one hard task, and hence
are not applicable (NA) to systems with only soft tasks.

Experimental Results In the first column of Table 1, we describe the task
systems that we consider. A description 2H, 5S refers to a task system with two
hard tasks and five soft tasks, while 4S refers to a task system with four soft tasks
and no hard tasks. The simple system refers to a 1H, 2S task system where all the
arrival time distributions are Dirac. The output of Storm for the smaller task
systems is given in the third column. We report sizes of the MDPs, computed
with Storm whenever possible. Otherwise we report an approximation of the
size of the state space obtained by taking the product of (ci + 1)(ai + 1) over
the set of tasks, where ci and ai are the greatest elements in the support of the
distributions Ci and Ai. Recall that the size of the state space is exponential in
the number of tasks in the system. In the columns where safety is not guaranteed,
∞ denotes an observed violation (a missed deadline for a hard task).

20 D. Busatto-Gaston et al.

Task size
Storm

output

MCTS

unsafe

MCTS

MGS

MCTS

EDF

Deep-Q

unsafe

Deep-Q

MGS

Deep-Q

EDF

4S 105 0.38 0.52 NA NA 0.56 NA NA

5S 106 T.O. 0 NA NA 0.13 NA NA

10S 1018 T.O. 0 NA NA 0.96 NA NA

simple 102 0 0.72 0 0 1.08 0.1 0

1H, 2S 104 0.07 0.67 0.14 0.28 0.24 0.11 0.22

1H, 3S 105 0.28 1.13 0.45 0.49 ∞ 0.47 0.47

2H, 1S 104 0 0.92 0 0.2 ∞ 0.02 0.3

2H, 5S 1010 T.O. 3.44 1.93 2.14 ∞ 2.39 2.48

3H, 6S 1014 T.O. 4.17 2.88 2.97 ∞ 3.42 3.47

2H, 10S 1022 T.O. 0.3 0.03 0.03 ∞ 1.42 1.6

4H, 12S 1030 T.O. 2.1 1.2 1.3 ∞ 2.68 2.87

Table 1. Comparison of MCTS and reinforcement learning.

For MCTS, at every step we explore 500 nodes of the unfolding of hori-
zon 30, and the value of each node is initialized using 100 uniform simulations.
This computation takes 1-4 minutes in our Python implementation for differ-
ent benchmarks, running on a standard laptop. It is reasonable to believe that a
substantial speedup could be obtained with well-optimised code and parallelism.
For deep Q-learning, we train each task system for 10000 steps. The implemen-
tation of deep-Q learning in the OepnAI respository uses the Adam optimizer
[16]. The size of the replay buffer is set to 2000. The learning rate used is 10−3.
The probability ε of taking a random action is initially set to 1. This parameter
reduces over the training steps, and becomes equal to 0.02 at the end of the
training. The network used is a multi-layer perceptron which, by default, uses
two fully connected hidden layers, each with 64 nodes. Since we are interested in
mean-cost objective, the discount factor γ is set to 1. We observed that reducing
the value of γ leads to poorer results. The values reported for both MCTS and
deep Q-learning are obtained as an average cost over 600 steps.
Conclusions While deep Q-learning provides good results for small task systems
with 3-4 tasks with several thousands of states, this method does not perform
well for the benchmarks with large number of tasks. We trained the task system
with 10 soft tasks with deep Q-learning for several million steps, but the state
space was found to be too large to learn a good strategy, and the resulting output
produced a cost that is much higher than that observed with MCTS.

Overall, our experimental results show that MCTS consistently provides bet-
ter results, in particular when the task systems are large, with huge state spaces.
This can be explained by the fact that MCTS optimizes locally using informa-
tion about multiple possible “futures” while deep Q-learning rather optimizes
globally using information about the uniquely observed trace. We observe that
the performance of MCTS with EDF advice is only slightly worse than MCTS
with MGS advice. EDF guarantees safety and does not require computing the
most general safe strategy, therefore it forms a good heuristic for systems with
many hard tasks, where MGS computation becomes too expensive.

Safe Learning for Near-Optimal Scheduling 21

In future work, we consider using Deep-Q learning in either a selection advice
for MCTS or as a complement to simulations when evaluating new states.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI. pp. 2669–2678. AAAI Press (2018)

2. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforce-
ment learning: A brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

3. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
CAV. pp. 630–649 (2019)

4. Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Liebana, D.P., Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. on Computational Intelligence and AI in Games
4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.2012.2186810

5. Busatto-Gaston, D., Chakraborty, D., Raskin, J.: Monte Carlo Tree Search
Guided by Symbolic Advice for MDPs. In: CONCUR. pp. 40:1–40:24 (2020).
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40

6. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algo-
rithms and applications, vol. 24. Springer Science & Business Media (2011)

7. Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In:
FOSSACS. pp. 270–285 (2012)

8. Chatterjee, K., Novotný, P., Pérez, G.A., Raskin, J.F., Zikelic, D.: Optimizing
expectation with guarantees in pomdps. In: AAAI. pp. 3725–3732 (2017)

9. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model check-
ing for unbounded temporal properties. ACM Trans. Comput. Log. 18(2), 12:1–
12:25 (2017)

10. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-
abilistic model checker. In: CAV (2017)

11. Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schul-
man, J., Sidor, S., Wu, Y., Zhokhov, P.: Openai baselines. https://github.com/
openai/baselines (2017)

12. Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer (1997)

13. Fu, J., Topcu, U.: Probably approximately correct MDP learning and con-
trol with temporal logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati,
H. (eds.) Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014 (2014). https://doi.org/10.15607/RSS.2014.X.039, http:

//www.roboticsproceedings.org/rss10/p39.html

14. Geeraerts, G., Guha, S., Raskin, J.F.: Safe and optimal scheduling for hard and
soft tasks. In: FSTTCS. LIPIcs, vol. 122, pp. 36:1–36:22 (2018)

15. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning 49(2-3), 193–208
(2002). https://doi.org/10.1023/A:1017932429737

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

17. Kret́ınský, J., Pérez, G.A., Raskin, J.F.: Learning-based mean-payoff optimization
in an unknown MDP under omega-regular constraints. In: CONCUR. LIPIcs (2018)

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.15607/RSS.2014.X.039
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://doi.org/10.1023/A:1017932429737

22 D. Busatto-Gaston et al.

18. Mertens, J.F., Neyman, A.: Stochastic games. International Journal of Game The-
ory 10(2), 53–66 (1981)

19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (Feb 2015)

20. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. on Cont. and Opt. 25(1), 206–230 (1987)

21. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Diele-
man, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P.,
Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of
go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016).
https://doi.org/10.1038/nature16961

22. Solan, E.: Continuity of the value of competitive markov decision processes. Journal
of Theoretical Probability 16, 831–845 (2003)

23. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS. pp. 1–13
(1995)

24. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
25. Watkins, C.J.C.H., Dayan, P.: Technical note Q-learning. Machine Learning 8,

279–292 (1992)

https://doi.org/10.1038/nature16961

	Safe Learning for Near-Optimal Scheduling

