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Abstract. We are addressing two fundamental problems in authorship
verification (AV): Topic variability and miscalibration. Variations in the
topic of two disputed texts are a major cause of error for most AV sys-
tems. In addition, it is observed that the underlying probability estimates
produced by deep learning AV mechanisms oftentimes do not match the
actual case counts in the respective training data. As such, probability
estimates are poorly calibrated. We are expanding our framework from
PAN 2020 to include Bayes factor scoring (BFS) and an uncertainty
adaptation layer (UAL) to address both problems. Experiments with
the 2020/21 PAN AV shared task data show that the proposed method
significantly reduces sensitivities to topical variations and significantly
improves the system’s calibration.

Keywords: Authorship Verification · Deep Metric Learning · Bayes Fac-
tor Scoring · Uncertainty Adaptation · Calibration

1 Introduction

Computational authorship verification (AV) is often described as the task to
automatically accept or reject the identity claim of an unknown author by com-
paring a disputed document with a reference document written by a known
author. AV can be described mathematically as follows. Suppose we have a pair
of documents D1 and D2 with an associated ground-truth hypothesis Ha for
a ∈ {0, 1}. The value of a indicates if the two documents were written by the
same author (a = 1) or by different authors (a = 0). Automated systems usually
calculate scores or likelihood ratios to distinguish between the same-author and
the different-authors cases. The score-based task can formally be expressed as
a mapping f :{D1,D2} −→ s ∈ [0, 1]. Usually, the estimated label â is obtained
from a threshold test applied to the score/prediction value s. For instance, we
may choose â = 1 if s > 0.5 and â = 0 if s < 0.5. The PAN 2020/21 shared
tasks also permit the return of a non-response (in addition to â = 1 and â = 0)
in cases of high uncertainty [8], e.g. when s is close to 0.5.

The current PAN AV challenge moved from a closed-set task in the previous
year to an open-set task in 2021, i.e. a scenario in which the testing data contains
only authors and topics that were not included in the training data. We thus
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Fig. 1: Our proposed end-to-end neural-probabilistic model.

expect a covariate shift between training and testing data, i.e. the distribution of
the features extracted from the training data is expected to be different from the
distribution of the testing data features. It was implicitly shown in [8] that such
a covariate shift, due to topic variability, is a major cause of errors in authorship
analysis applications.

Our proposed framework3 is presented in Fig. 1. In [3], we introduced the
concept of linguistic embedding vectors (LEVs), where we perform deep metric
learning (DML) to encode the stylistic characteristics of a pair of documents
into a pair of fixed-length representations, yi with i ∈ {1, 2}. Given the LEVs, a
Bayes factor scoring (BFS) layer computes the posterior probability for a trial.
Finally, we propose an uncertainty adaptation layer (UAL) including uncertainty
modeling and adaptation to correct possible misclassifications and to return
corrected and calibrated posteriors, p(Hâ|y1,y2) with â ∈ {0, 1}.

For the decision, whether to accept H0/H1 or to return a non-response, it is
desirable that the concrete value or outcome of the posterior p(Hâ|y1,y2) = s
has a reliable confidence score. Ideally, this confidence score should match the
true probability of a correct outcome. Following [11], our neural-probabilistic
model is said to be well-calibrated if its posterior probabilities match the corre-
sponding empirical frequencies. Inspired by [6], we take up the topic of calibra-
tion of confidence scores in the field of deep learning to the case of binary AV.
A perfectly calibrated authorship verification system can be defined as

P
(
Hâ = Ha

∣∣∣∣p(Hâ|y1,y2) = s

)
= s ∀s ∈ [0, 1], a ∈ {0, 1}, â ∈ {0, 1}. (1)

As mentioned in [6] we are not able to directly measure the probability in
Eq. (1) and the authors proposed two empirical approximations, i.e. the expected
calibration error (ECE) and the maximum calibration error (MCE) to capture the
miscalibration of neural networks.

Another way to visualize how well our model is calibrated, is to draw the
reliability diagram. The confidence interval is discretized into a fixed number of
bins. Afterwards, we compute the average confidence and the corresponding ac-
curacy for each bin. Fig. 2 illustrates the differences between our PAN 2020 sub-
mission and our extended version for PAN 2021. The red gaps between accuracy
and confidence in Fig. 2(a) indicate a miscalibration, meaning that the system
delivers under-confident predictions since the accuracy is always larger than the

3 The source code is accessible online: https://github.com/boenninghoff/pan_2020_
2021_authorship_verification

https://github.com/boenninghoff/pan_2020_2021_authorship_verification
https://github.com/boenninghoff/pan_2020_2021_authorship_verification


3

0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Accuracy

Gap

(a) Uncalibrated confidence values
of our PAN 2020 submission.
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Fig. 2: Reliability diagrams for our PAN 2020 submission and the proposed 2021
submission. The red bars are darker for bins with a higher number of trials.

confidence - resulting in a higher occurrence of false negatives. In contrast, the
diagram in Fig. 2(b) shows that, for our proposed new method, accuracy and
confidence are closer, if not equal.

In this work, we expand our method from PAN 2020 by adding new sys-
tem components, evaluate performance w.r.t. authorship and topical label, and
illustrate the effect of the fine-tuning of some core hyper-parameters. Our exper-
iments show that, even though we are not able to fully suppress the misleading
influence of topical variations, we are at least able to reduce their biasing effect.

2 Text Preprocessing Strategies

2.1 PAN2020 Dataset Split

The fanfictional dataset for the PAN 2020/21 AV tasks is described in [8] and
contains 494,227 unique documents written by 278,162 unique authors, grouped
into 1,600 unique fandoms. We split the dataset into two disjoint (w.r.t. author-
ship and fandom) datasets and removed all overlapping documents. The training
set contains 303,142 documents of 1,200 fandoms written by 200,732 authors.
The test set has 96,027 documents of 400 fandoms written by 77,430 authors.

2.2 Re-sampling Document Pairs

The size of the training set can be augmented by re-sampling new document
pairs in each epoch, as illustrated in the pseudo-algorithm in Fig. 3. Each doc-
ument pair is characterized by a tuple (a, f), where a ∈ {0, 1} denotes the
authorship label and f ∈ {0, 1} describes the equivalent for the fandom. Each
document pair is assigned to one of the subsets4 SA SF, SA DF, DA SF, and DA DF

in correspondence with its label tuple (a, f).

The algorithm in Fig. 3 follows three constraints: Firstly, all documents con-
tribute equally to the neural network training in each epoch. Secondly, repeti-
tively re-sampling of the same document pairs should be reduced. Thirdly, each
document should appear in equal numbers in all subsets. Our re-sampling strat-

4 SA=same author, DA=different authors, SF=same fandom, DF=different fandoms
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1 Input: Sorted documents w.r.t authorship and
fandom

2 Output: Pairs of documents

3 while author with a document is available do
4 for all authors do
5 if r ∼ U [0, 1] < δ1 then
6 if r ∼ U [0, 1] < δ2 then
7 Try to sample a SA SF pair
8 else
9 Try to sample a SA DF pair

10 else
11 Try to sample a DA candidate

12 Delete author if all documents are sampled

13 while two documents are available do
14 if r ∼ U [0, 1] < δ3 then
15 Try to sample a DA SF pair
16 else
17 Try to sample a DA DF pair

Fig. 3: Pair re-sampling procedure.
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Fig. 4: Zipf plot of the pair counts.

egy roughly consists of two while loops, where U [0, 1] represents a uniform sam-
pler over the half-open interval [0, 1). In the first while loop (lines 3-12) we
iterate over all authors until all documents have been sampled either to one of
the same-author sets (SA SF and SA DF) or have been chosen to be a DA candi-
date. In the second while loop (lines 13-17), we take all collected DA candidates
to sample DA SF and DA DF pairs. The parameters δ1, δ2, and δ3 control the dis-
tributions of the subsets. We chose δ1 = 0.7, δ2 = 0.6 and δ3 = 0.6. As a result,
the epoch-wise training sets are not balanced, rather, we obtain approximately
70% different-authors pairs and 30% same-author pairs.

Fig. 4 shows a Zipf plot of the pair counts. It can be seen that there is still
a high repetition regarding the same-author pairs since each author generally
contributes only with a small number of documents.

During the evaluation stage, the verification task is performed on the test set
only. The pairs of the test set are sampled once and then kept fixed. In Section 4,
we briefly report on the system performance for all subsets and then proceed
with the analysis of a more challenging case: We removed all SA SF and DA DF

pairs. Finally, we have 5, 216 SA DF pairs and 7, 041 DA SF pairs, resulting in a
nearly balanced dataset of 12, 257 test pairs.

2.3 Sliding Windowing

As suggested in [3], we perform tokenization and generate sentence-like units
via a sliding window technique. An example is given in Fig. 5. With the sliding
window technique we obtain a compact representation for each document, where
zero-padding tokens only need to be added to the last sentence. Given the total
number of tokens per sentence Tw, the hop length h and the total number of
tokens N , the total number of sentence units per document is Ts =

⌈
N−Tw+h

h

⌉
.

We choose Tw = 30 and h = 26. The maximum number of sentence units per
document is upper bounded by the GPU memory and set to Ts = 210.
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" Yes , Master Luke , "   Rey    says , a little surprised . " How did you know ? " " You [...]

, a little surprised . " How did you know ? " " You 
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" Yes , Master Luke , " <UNK> says , a little surprised . 
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Fig. 5: Example of our sliding window approach.

2.4 Word Embeddings and Topic Masking

A disadvantage of the sliding window approach is that our sentence-like units
differ from common sentence structures required by modern contextualized word
embedding frameworks. Hence, we decided to represent a token by two dif-
ferent context-independent representations which are learned during training.
Firstly, we initialize semantic word representations from the pretrained FastText
model [4]. Secondly, we encode new word representations based on characters [2].
We further reduce the vocabulary size for tokens and characters by mapping all
rare token/character types to a special unknown (<UNK>) token which can be
interpreted as a topic masking strategy [14]. Finally we chose vocabulary sizes
of 5, 000 tokens and 300 characters. The embedding dimensions are given by
Dw = 300 for words and Dc = 10 for characters.

3 Neural-Probabilistic Model

3.1 Neural Feature Extraction and Deep Metric Learning

Neural feature extraction and the deep metric learning are realized in the form
of a Siamese network, mapping both documents into neural features through
exactly the same function.

Neural Feature Extraction: After text preprocessing, a single document con-
sists of a list of Ts ordered sentences. Each sentence consists of an ordered list
of Tw tokens. Again, each token consists of an ordered list of Tc characters. As
mentioned in Section 2.4, we implemented a characters-to-word encoding layer
to obtain word representations. The dimension is set to Dr = 30. The system
passes a fusion of token and character embeddings into a two-tiered bidirectional
LSTM network with attentions,

xi = NeuralFeatureExtractionθ
(
Ew
i ,E

c
i

)
, (2)

where θ contains all trainable parameters, Ew
i ∈ RTs×Tw×Dw represents word

embeddings and Ec
i ∈ RTs×Tw×Tc×Dc represents character embeddings. A com-

prehensive description can be found in [2].

Deep Metric Learning: We feed the document embeddings xi in Eq. (2) into
a metric learning layer,

yi = tanh
(
WDMLxi + bDML

)
, (3)
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which yields the two LEVs y1 and y2 via the trainable parameters ψ = {WDML,
bDML}. We then compute the Euclidean distance between both LEVs,

d(y1,y2) = ‖y1 − y2‖22 . (4)

Probabilistic contrastive loss: In [2], we chose the modified contrastive loss,

LDML
θ,ψ = a ·max {d(y1,y2)− τs, 0}2 + (1− a) ·max {τd − d(y1,y2), 0}2 , (5)

with τs = 1 and τd = 3. With the contrastive loss all distances between same-
author pairs are forced to stay below τs and conversely, distances between
different-authors pairs are forced to remain above τd. A drawback of this con-
trastive loss is that its output cannot be interpreted as a probability. We therefore
introduce a new probabilistic version of the contrastive loss: Given the Euclidean
distance of the LEVs in Eq. (4), we apply a kernel function

pDML(H1|y1,y2) = exp
(
− γ d(y1,y2)α

)
, (6)

where γ and α can be seen as both, hyper-parameters or trainable variables. The
new loss then represents a slightly modified version of Eq. (5),

LDML
θ,ψ = a ·max

{
τs − pDML(H1|y1,y2), 0

}2

+ (1− a) ·max {pDML(H1|y1,y2)− τd, 0}2 ,
(7)

where we set τs = 0.91 and τd = 0.09. Fig. 6 illustrates the decision mapping
of the new loss, transforming the distance scores into probabilities. The cosine
similarity is a widely used similarity measure in AV [1]. Hence, we initialized
α and γ to approximate the cosine function in the interval [0, 4] (blue curve),
which was the operating interval in [2]. During training, we optimized α and γ,
resulting in the green curve. We will discuss the effect in Section 4.

3.2 Deep Bayes Factor Scoring

The idea of pairwise Bayes factor scoring was originally proposed in [5]. In [3], we
adapted the idea to the context of AV. We assume that the LEVs in Eq. (4) stem
from a Gaussian generative model that can be decomposed as y = s+n, where
n characterizes a noise term, caused by e.g. topical variations. We assume that
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the writing characteristics of the author, measured in the observed LEV y, lie
in a latent stylistic variable s. The probability density functions for s and n are
given by Gaussian distributions, p(s) = N (s|µ,B−1) and p(n) = N (n|0,W−1),
where B−1 defines the between-author covariance matrix and W−1 denotes the
within-author covariance matrix. We outlined in [3] how to compute the like-
lihoods for both hypotheses. The verification score for a trial is then given by
the log-likelihood ratio: score(y1,y2) = log p(y1,y2|H1) − log p(y1,y2|H0). As-
suming p(H1) = p(H0) = 1

2 , the probability for a same-author trial is calculated
as [3]:

pBFS(H1|y1,y2) =
p(y1,y2|H1)

p(y1,y2|H1) + p(y1,y2|H0)
= Sigmoid

(
score(y1,y2)

)
(8)

Loss function: The calculation of Eq. (8) requires numerically stable inversions
of matrices [3]. Hence, we firstly reduce the dimension of the LEVs via

yBFS
i = fBFS

(
WBFSyi + bBFS

)
, (9)

where fBFS(·) represents the chosen activation function (see Section 4). We
rewrite Eq. (8) as follows

pBFS(H1|y1,y2) = Sigmoid
(
score(yBFS

1 ,yBFS
2 )

)
(10)

and incorporate Eq. (10) into the binary cross entropy,

LBFS
φ = a · log {pBFS(H1|y1,y2)}+ (1− a) · log {1− pBFS(H1|y1,y2)} , (11)

where all trainable parameters are denoted with φ =
{
WBFS, bBFS,W ,B,µ

}
.

We also consider the within-author and between-authors variabilities by deter-
mining the Gaussian entropy during training. As shown in Fig. 7, the within-
author variability decreases while the between-author variability increases.

3.3 Uncertainty Modeling and Adaptation

We expect that the BFS component returns a mixture of correct and mislabelled
trials. We therefore treat the posteriors as noisy outcomes and rewrite Eq. (10)

as pBFS(Ĥ1|y1,y2) to emphasize that this represents an estimated posterior.
Inspired by [10], the idea is to find wrongly classified trials and to model the
noise behavior of the BFS. We firstly have to find a single representation for
both LEVs, which is done by

yUAL = tanh
(
WUAL

(
y1 − y2

)◦2
+ bUAL

)
, (12)

where (·)◦2 denotes the element-wise square. Next, we compute a 2×2 confusion
matrix as follows

p(Hj |Ĥi,y1,y2) =
exp

(
wT
ji y

BFS + bji
)

∑
i′∈{0,1}

exp
(
wT
ji′ y

BFS + bji′
) for i, j ∈ {0, 1}. (13)

The term p(Hj |Ĥi,y1,y2) defines the conditional probability of the true hy-

pothesis Hj given the assigned hypothesis Ĥi by the BFS. Here, vector wji and
bias term bji characterize the confusion between j and i. We can then adapt the
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uncertainty to define the final output predictions:

pUAL(Hj |y1,y2) =
∑

i∈{0,1}

p(Hj |Ĥi,y1,y2) · pBFS(Ĥi|y1,y2). (14)

Loss function: The loss consists of two terms, the negative log-likelihood of the
groundtruth hypothesis and a regularization term,

LUAL
λ = − log pUAL(Hj |y1,y2)

+ β
∑

i∈{0,1}

∑

j∈{0,1}

p(Hj |Ĥi,y1,y2) · log p(Hj |Ĥi,y1,y2), (15)

with trainable parameters denoted by λ =
{
WUAL, bUAL,wji, bji|j, i ∈ {0, 1}

}
.

The regularization term, controlled by β, follows the maximum entropy princi-
ple to penalize the confusion matrix for returning over-confident posteriors [12].
We observed that the probabilities are usually placed closer to zero or one,
which is equivalent to a distribution with low entropy. Without regulariza-
tion, either p(H0|Ĥ0,y1,y2) ≈ p(H0|Ĥ1,y1,y2) ≈ 1 or p(H1|Ĥ1,y1,y2) ≈
p(H1|Ĥ0,y1,y2) ≈ 1. The objective of the maximum entropy regularizer is to
reduce this effect.

3.4 Overall Loss Function:

The overall loss combines the model accuracy, as assessed in Bayes factor scoring,
with the uncertainty adaptation loss:

Lθ,ψ,φ,λ = LDML
θ,ψ + LBFS

φ + LUAL
λ . (16)

All components are optimized independently w.r.t. the corresponding loss.

4 Experiments

The overall score of the PAN 2021 shared task is given by averaging five met-
rics [8]: AUC measures true/false positive rates for various thresholds. F1 is defined
as the harmonic mean of precision and recall. In this work, the c@1 score rep-
resents the accuracy, since we do not return non-responses. The f 05 u favors
systems deciding same-author trials correctly. Finally, the Brier score rewards
systems that return correct and self-confident predictions. To capture the cali-
bration capacity, we provide the ECE and MCE metrics. The first one computes
the weighted macro-averaged absolute error between confidence and accuracy of
all bins. The latter returns the maximum absolute error [6].

4.1 Analysis of the Sensitivity to Topical Interference

In a first step, we evaluated the discriminative power of the DML component
alone, for fixed parameters α and γ as described in Eq. (6). In Fig. 8, we show
histograms of the posteriors including the accuracy and averaged confidence for
a single run. All confidence values (also in Fig. 2) lie within the interval [0.5, 1],
since we solve a binary classification task. Hence, to obtain confidence scores,
the posterior values are transformed w.r.t. to the estimated authorship label,
showing p(H1|y1,y2) if â = 1 and 1− p(H1|y1,y2) if â = 0.
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Fig. 8: Posterior histograms for DML with fixed kernel parameters.

It can be clearly seen that all subsets exhibit a high degree of miscalibration,
where the accuracy is significantly larger than the corresponding confidence. For
all subsets, the DML model tends to be under-confident in its predictions.

It is also worth noting that topical interference leads to lower performance.
Comparing the histograms in Fig. 8 (c) and (d), the accuracy of DA SF pairs is 3%
lower than the accuracy of DA DF pairs. For SA SF and SA DF pairs in Fig. 8 (a)
and (b), the topical interference is even more obvious and the histogram of SA DF

pairs almost resembles a uniform distribution. Fig. 9 displays the confidence
histograms after the proposed uncertainty adaptation layer. We can observe a
self-calibrating effect, where confidence is much better aligned with accuracy on
average. However, plot (a) in Fig. 9 also reveals that the model returns a small
number of self-confident but wrongly classified same-author trials.

Our most important discovery at this point is that our model analyzes
different-authors pairs more readily. As illustrated in Fig 4, this can be ex-
plained by the difficulty of re-sampling heterogeneous subsets of same-authors
trials. Experiments conducted on a large dataset of Amazon reviews in [2], where
we had to limit the total contribution of each author, have shown lower error
rates for same-authors pairs.

4.2 Ablation Study

Next, we focus on the more problematic SA DF and DA SF cases. All model
components are analyzed separately to illustrate notable effects of some hyper-
parameters. We observed that all runs generally achieved best results between
epochs 29 and 33. To avoid cherry-picking, we averaged the metrics over these
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Fig. 9: Posterior histograms after uncertainty adaptation (β = 0.1).

epochs and at least over four runs totally. All PAN metrics and the correspond-
ing calibration scores are summarized in Table 1. Here, we also provide the
averaged confidence, allowing us to characterize a system as over- (c@1<conf)
or under-confident (c@1>conf).

In the first two rows, we see the performance of the DML component, showing
the effect of learning the kernel parameters α and γ. The overall score slightly
increases, which mainly follows from a better Brier score. As can be seen in
Fig. 6, the learned mapping holds the distance d(y1,y2) of a pair close to one
or zero over a wider range, resulting in significantly reduced calibration errors.

The next two rows provide the results of the BFS component for two different
activation functions fBFS in Eq. (9). We tried some variations of the ReLU func-
tion but did not notice any performance differences and finally proceeded with
the Swish function [13]. The ECE and MCE show further significant improvements
for both activation functions and the overall score slightly increases using the
Swish activation. Comparing the c@1, f 05 u and F1 scores, it is noticeable that
the choice of activation function can clearly influence the performance metrics.

The last six rows provide a comparison of the UAL component5. The fourth
row shows that the output of BFS returns slightly over-confident predictions
(c@1<conf). The UAL without regularization (β = 0) only reinforces this trend.
We varied the parameter β over the range [0.05, 0.1, 0.125, 0.2]. We observed that
increasing β generally reduces the over-confidence of the model and with β = 0.2
in the 8th row, the influence of the regularizer becomes so strong that output
predictions are now under-confident. In addition, the higher the β parameter is
chosen, the lower the MCE values become for tanh activation while it remains on
the same level for the Swish activation. This offers a mechanism to optimize the
calibration, decreasing the ECE to approximately 0.7− 0.8%.

4.3 Discussion

Our experiments yield two findings: First, as intended, the Bayes factor scor-
ing together with uncertainty adaptation and maximum entropy regularization
achieve a high agreement between model confidence and accuracy. Secondly, we
are able to slightly increase the overall performance score. Our results from the
PAN 2020 shared task, furthermore, show that our framework can better cap-

5 α, γ are learned, first four rows for tanh activation, last two rows for Swish activation.
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Model
PAN 2021 Evaluation Metrics Calibration Metrics

AUC c@1 f 05 u F1 Brier overall conf ECE MCE

D
M

L fixed 97.3± 0.1 91.2± 0.2 91.7± 0.2 89.2± 0.2 92.4± 0.1 92.4± 0.1 82.9± 0.1 7.9± 1.0 16.6± 0.5

learned 97.3± 0.1 91.5± 0.2 90.6± 0.7 89.9± 0.3 93.5± 0.3 92.6± 0.2 89.4± 0.2 2.2± 0.2 7.9± 1.0
B
F
S Swish 97.4± 0.1 91.6± 0.2 90.9± 0.4 89.9± 0.3 93.7± 0.1 92.7± 0.1 91.4± 0.2 0.8± 0.1 4.4± 1.3

tanh 97.3± 0.1 91.2± 0.2 91.5± 0.3 89.2± 0.4 93.4± 0.2 92.5± 0.1 91.8± 0.1 1.1± 0.2 4.7± 1.5

U
A
L

(t
a
n
h
)

β = 0 97.3± 0.1 91.5± 0.3 91.4± 0.4 89.8± 0.5 93.6± 0.3 92.7± 0.3 93.7± 0.2 2.3± 0.4 8.1± 1.5

β = 0.05 97.3± 0.1 91.4± 0.2 91.0± 0.4 89.7± 0.3 93.7± 0.1 92.6± 0.1 92.7± 0.2 1.4± 0.2 6.7± 1.7

β = 0.1 97.3± 0.1 91.5± 0.2 91.2± 0.4 89.8± 0.2 93.7± 0.1 92.7± 0.2 92.1± 0.2 0.8± 0.1 5.4± 1.5

β = 0.2 97.4± 0.1 91.5± 0.2 91.1± 0.4 89.8± 0.3 93.7± 0.1 92.7± 0.1 90.2± 0.2 1.6± 0.2 4.1± 1.1

U
A
L β = 0.1 97.3± 0.0 91.5± 0.1 90.9± 0.4 89.9± 0.2 93.8± 0.1 92.7± 0.1 91.9± 0.2 0.7± 0.1 4.8± 1.3

β = 0.125 97.4± 0.1 91.6± 0.1 91.0± 0.3 90.0± 0.1 93.8± 0.1 92.8± 0.1 91.6± 0.1 0.8± 0.1 5.0± 1.6

Table 1: Results for PAN 2021 evaluation and calibration metrics.

ture the writing style of a person compared to traditional hand-crafted features
or compression-based approaches.

Nevertheless, our model is constrained by limits in the discriminative power
of the employed LEVs, which serve as the input to all of the subsequent compo-
nents. One critical point is that LEVs may only capture the surface structure of
the writing style. The visualization of the attentions in [2] shows that the system
primarily focuses on easily identifiable features, like orthography or punctuation.
Another issue is the use of the chosen word representations, which are limited
to represent the semantic meaning of a word only in a small context.

We can further improve our framework by addressing the two major types
of uncertainty [7]: On the one hand, aleatoric or data uncertainty is associated
with properties of the document pairs and captures noise inherent in each doc-
ument. Examples are topical variations, the intra- and inter-author variabilities
or the varying lengths of documents. Aleatoric uncertainty generally can not
be reduced, even if more training pairs become available, but it can be learned
along with the model. Aleatoric uncertainty can be captured by returning a
non-response, when it is hard to decide for one hypothesis H0 or H1.

On the other hand, epistemic or model uncertainty characterizes uncer-
tainty in the model parameters. Examples are the lack of knowledge, e.g. out-
of-distribution document pairs or the described issue of re-sampling heteroge-
neous same-author pairs. This uncertainty obviously can be explained away given
enough training pairs. One way to capture epistemic uncertainty is to extend our
model to an ensemble. We expect all models to behave similarly for known au-
thors or topics. But the predictions may be widely dispersed for pairs under
covariate shift [9]. We will discuss our approaches for capturing these uncertain-
ties and defining non-responses in the PAN 2021 submission paper.

5 Conclusion

In this work, we present a hybrid neural-probabilistic framework to address the
task of authorship verification. We generally achieve high overall scores under co-
variate shift and we further show that our framework mitigates two fundamental
problems: topic variability and miscalibration.
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In forensic applications, the requirement exists to return suitable and well-
calibrated likelihood-ratios rather than decisions. However, in the context of the
PAN shared tasks, the evaluation protocol assesses decisions. Nevertheless, the
experiments show that we are closing in on a well-calibrated system, which would
allow us to interpret the obtained confidence score or posterior as the probability
of a correct decision and to bridge the gap between computational authorship
verification and traditional forensic text comparison.
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