
A CASE STUDY OF LLVM-BASED ANALYSIS FOR OPTIMIZING
SIMD CODE GENERATION

Joseph Huber
Oak Ridge National Laboratory

huberjn@ornl.gov

Weile Wei
Louisiana State University

wwei9@lsu.edu

Giorgis Georgakoudis
Lawrence Livermore National Laboratory

georgakoudis1@llnl.gov

Johannes Doerfert
Argonne National Laboratory

jdoerfert@anl.gov

Oscar Hernandez
Oak Ridge National Laboratory

oscar@ornl.gov

June 29, 2021

ABSTRACT

This paper presents a methodology for using LLVM-based tools to tune the DCA++ (dynamical cluster
approximation) application that targets the new ARM A64FX processor. The goal is to describe
the changes required for the new architecture and generate efficient single instruction/multiple data
(SIMD) instructions that target the new Scalable Vector Extension instruction set. During manual
tuning, the authors used the LLVM tools to improve code parallelization by using OpenMP SIMD,
refactored the code and applied transformation that enabled SIMD optimizations, and ensured that
the correct libraries were used to achieve optimal performance. By applying these code changes, code
speed was increased by 1.98× and 78 GFlops were achieved on the A64FX processor. The authors
aim to automatize parts of the efforts in the OpenMP Advisor tool, which is built on top of existing
and newly introduced LLVM tooling.

Keywords OpenMP · SIMD · compilers · feedback · LLVM · HPC tools

1 Introduction

Program analysis tools are important in helping users understand, improve, and port their applications to new platforms.
This is crucial for applications that need tuning and significant code restructuring to exploit new types of hardware
devices, such as single instruction/multiple data (SIMD) units and accelerators. Compiler-based tools are crucially
important for identifying opportunities to improve application codes as the compiler generates code for different
architectures. In particular, the LLVM compiler is an open-source compiler that provides a set of tools for the static
analysis and feedback of application code. Static program analysis information can be combined with dynamic
information (profile-based) to filter the large amount of information produced by the compiler so that users can focus on
the most frequently executed regions of their code.

This paper presents a methodology for using LLVM-based tools to tune an application to generate efficient SIMD
instructions that target the new ARM A64FX processor, as well as describes what is required to achieve good
performance.

0This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

ar
X

iv
:2

10
6.

14
33

2v
1

 [
cs

.D
C

]
 2

7
Ju

n
20

21

https://orcid.org/0000-0002-3065-4959
https://orcid.org/0000-0002-5380-6951
http://energy.gov/downloads/doe-public-access-plan

A PREPRINT - JUNE 29, 2021

2 Case Study: Porting DCA++ to Wombat

This section describes the authors’ experiences in porting the DCA++ (dynamical cluster approximation) application to
the Wombat1 cluster, an ARM-based heterogeneous cluster at Oak Ridge National Laboratory. This section presents a
methodology for using LLVM-based tools to tune the DCA++ application targeting the ARM A64FX and ThunderX2
processors. The goal is to describe what changes are required for the new architecture and generate efficient SIMD
instructions that target the new Scalable Vector Extension (SVE) instruction set available in the A64FX processors
based on LLVM-based tools information.

2.1 Evaluation Environment

The case study used the Wombat test bed with 24 compute nodes. Sixteen compute nodes are based on the Fujitsu
A64FX processor with SVE and a theoretical peak performance of 3.3792 TFlops. Each A64FX node has one processor
socket with 32 GB of second-generation High-Bandwidth Memory (HBM2). The A64FX-equipped nodes do not have
additional Double Data Rate (DDR) memory. Eight compute nodes have two ThunderX2 processors with NEON vector
instructions and a theoretical peak performance of 560 GFlops. The ThunderX2 nodes have 256 GB of DDR4 RAM and
a 480 GB solid-state drive for node-local storage. All nodes are connected with Enhanced Data Rate InfiniBand (100
Gbit/s). The compilers on the system are the ARM 20.3 compilers and the Clang upstream compiler, which is based on
Clang 12. The scientific libraries available on Wombat are the ARM Performance Libraries (APL) version 20.3.

2.2 DCA++

Quantum Monte Carlo (QMC) solver applications are popular tools essential to the US Department of Energy-supported
scientific software. This paper studies one cutting-edge QMC application called the DCA++ algorithm. DCA++ [1]
implements quantum cluster algorithms to solve quantum many-body problems in condensed matter physics. DCA++
is a highly scalable and performant scientific software written in modern C++ and has been ported to various high-
performance computing architectures, including IBM Power9, x86_64, ThunderX2, and ARM A64FX [2]. The DCA++
software currently integrates three different programming models—message passing interface (MPI), Compute Unified
Device Architecture (CUDA), and High Performance ParalleX (HPX)/C++ threading—together with numerical libraries
(e.g., Basic Linear Algebra Subprograms [BLAS], Linear Algebra Package [LAPACK], and MAGMA) to expose the
parallel computation structure.

Wei et al. [2] reported that DCA++ with the HPX run time system [3] has produced a 20% run time speedup over the
one with C++ standard threading support. The speedup is primarily due to the faster thread context switching and
reduced scheduler synchronization overheads in the HPX run time. Moreover, Autonomic Performance Environment
for Exascale (APEX) [4] is an in situ profiling and adaptive tuning framework to the HPX run time system that can
capture operating system and hardware system performance data through various interfaces, such as Performance
Application Programming Interface (PAPI) [5]. Because APEX is highly integrated into the HPX run time, for HPX-
supported applications, users can easily capture PAPI counter information (e.g., level 2 data cache misses, vector/SIMD
instructions, floating point instructions) through HPX function annotation. The overhead introduced by APEX profiling
is as low as ∼1% [6] compared with the overall application run time.

In DCA++, the QMC solver is the most computation-intensive unit that models strongly correlated electron systems [2].
Computation on the QMC solver is parallelized by using a multithreading scheme that comprises walker (i.e., producer)
and accumulator (i.e., consumer) tasks. Each task runs on an independent thread. There are multiple walkers running
concurrently. Each walker is responsible for a Monte Carlo (MC) update (sampling from the Markov chain), and then
an accumulator is popped from the head of the accumulator waiting queue to compute an MC measurement
from the walker. When each accumulator finishes its accumulation measurement, it is pushed back to the end
of the queue. The walker-accumulator synchronization is managed by the synchronization primitives mutex and
conditional_variable.

2.3 Baseline Performance

The following experiments compare DCA++’s performance on Wombat by using its A64FX and ThunderX2 nodes.
The performance is measured using 48 accumulators and 48 walkers and using 100,000 measurements, which is a
representative scientific simulation case in production. On A64FX, DCA++ is built with two different configuration
settings: SVE vectorization and SVE-disabled. The SVE vectorization version of DCA++ means that DCA++ is built
with SVE compiler flags enabled and vectorized loops, and it uses the APL optimized for SVE (i.e., LAPACK, BLAS,

1Wombat: www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

2

www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

A PREPRINT - JUNE 29, 2021

vectorization walltime (seconds) ±
standard deviation speedup Gflop/s

no 488.42±3.09 - 17
yes 246.98±0.48 1.98 78
no 1336.61±178.09 - 14
yes 805.53±24.06 1.66 27

A64fx

ThunderX2

Figure 1: DCA++ execution time.

Fastest Fourier Transform in the West [FFTW]). The SVE compiler flags are set to “-DNDEBUG -fsimdmath -fopenmp
-O3 -mcpu=a64fx” The SVE-disabled version means that DCA++ is built with original DCA++ code and open-source
scientific libraries, including Netlib-LAPACK and FFTW. Similarly, on ThunderX2, DCA++ is built with two different
configurations: with NEON and NEON disabled.

Figure 1 shows DCA++ execution time on A64FX and ThunderX2 architectures. On A64FX, the SVE vectorization
version of DCA++ performs ∼2× faster than the SVE-disabled version. On ThunderX2, the NEON version of DCA++
is observed to be ∼1.66× faster than the NEON-disabled version. Noticeably, the SVE vectorization version of DCA++
on A64FX has ∼3.3× speedup over the NEON version on ThunderX2. Meanwhile, the NEON version on ThunderX2 is
measured to have ∼27 GFlops, and the SVE vectorization version of DCA++ on A64FX reached ∼78 GFlops (∼2.8×).

Thes results show the performance gains of DCA++ due to the peak performance improvements of the A64FX processor
(e.g., 500 GFlops for ThunderX2 vs. 2.5 TFlops for A64FX).

Figure 2 shows the breakdown of DCA++ execution time into four categories: application, scientific libraries, HPX run
time, and other activities. Each category only considers functions that have more than 1% overhead shown in the final
profiling report generated from perf, a Linux built-in performance profiling tool. The application category includes
custom modules developed in the DCA++ source code. The HPX run time category represents necessary scheduling
and coordination efforts in HPX threads manager. The scientific libraries category captures routines from external
numerical libraries, such as BLAS, LAPACK, FFTW, and math routines. The other activities category summarizes all
other functions that have less than 1% overhead in the final profiling report.

Several observations were made from the timing breakdown shown in Fig. 2.

1. With SVE vectorization or NEON optimization, the dominant percentage of the overall execution time is
shifted from the external scientific libraries to the application source code. For example, on A64FX, the
percentage of application time in the SVE-disabled vectorization version of DCA++ is 26%, whereas the
percentage of application time in the SVE version is 57%. A similar percentage shift is also observed on
ThunderX2 comparisons. In other words, with APL (SVE vectorization on A64FX or NEON optimization
on ThunderX2), less time is spent on scientific libraries because APL are particularly optimized on targeting
platforms.

2. The HPX run time library imposes minimal overhead to the overall program execution. The overhead is
primarily due to a lack of sufficient parallelism from the application so that some HPX worker threads in the
kernel level are spinning and waiting for user-level tasks.

Further investigation using hardware performance counters is shown in Fig. 3. Here, hpx::annotated_function()
is used to wrap accumulator and walker tasks so that their activities (i.e., timing information and PAPI counters) can
be distinguished in the final profiling report generated from the HPX-APEX profiling tool. Figure 3 shows that the
total execution time of accumulator and walker takes the majority of the overall program execution time (∼93.00%
in the SVE-disabled version and ∼91.25% in SVE vectorization version). Several observations were made from Fig. 3.

1. The SVE-disabled version of DCA++ on A64FX has nearly ∼40× higher VEC_INC, 2× higher TOT_CYC,
and 1.2× higher FP_INS than the SVE vectorization version, where VEC_INC is vector/SIMD instructions,
TOT_CYC is total cycles, and FP_INC is floating point instructions. The authors noticed that by using the
optimized libraries, the application uses less vector and floating point SVE instructions. Because SVE has
wider 512 bit width, fewer vector instructions are needed in the computation than NEON, which has 128 bit
width. Also, the SVE has a more powerful instruction set that uses fewer instructions for the same operation.

2. The L2_DCM (L2 data cache misses) does not change with the SVE optimized version because the SVE
optimization does not impact overall memory access patterns. Access to HBM2 remained constant in both
versions.

3

A PREPRINT - JUNE 29, 2021

Figure 2: DCA++ timing breakdown.

3. Using SVE vectorization on DCA++ shifts timing percentages between accumulator and walker in overall
program execution. To perform efficient matrix-related operations, the implementation of walker extensively
uses DGEMM routines, which are provided by the scientific libraries. The timing percentage of walker is
62.15% with the SVE-disabled version of DCA++ in overall program execution and is reduced to 40.14% with
the SVE vectorization version. The percentage reduction of walker is similar to the percentage reduction of
scientific libraries observed in Fig. 2.

The results show that to further improve the DCA++ application, the focus must be on tuning the application source code,
particularly the accumulator code, to determine which loops need further optimization and which were successfully
vectorized by the compiler. This requires significant interaction with the LLVM tools to understand the application hot
spots and the opportunities for SVE optimizations.

3 An LLVM Tool Methodology to Generate Efficient Vectorization

A64FX performance is highly dependent on how well the source can be mapped to SVE instructions. It is important to
determine which application loops are not being vectorized and their impact on the application’s overall performance.
The ARM C/C++ compiler is based on the LLVM/Clang compiler, which is also the basis for the authors’ exploration
and automation toward vectorizing the most important loops in an application.

Like most modern compilers, LLVM/Clang and its derivatives support profile guided optimization (PGO). The idea
is that the compiler inserts profiling instructions into the target binary to collect information when the application is
run. During application shutdown, profiling information is stored on the disk for later use. When the application is
recompiled in the future, the collected profiling information is used to drive heuristics (e.g., to determine a suitable
unroll count for loops). Such profiling also allows the compiler to approximate how much time was spent in a certain
portion of code, also referred to as code hotness. The latter makes PGO especially interesting to filter optimization

4

A PREPRINT - JUNE 29, 2021

Accumulator % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 30.86 9.29E+09 6.05E+11 1.29E+13 2.73E+12

standard deviation 0.30 4.27E+07 0.00E+00 2.24E+10 0.00E+00
SVE vectorization 51.11 9.88E+09 6.53E+10 1.09E+13 2.62E+12
standard deviation 0.17 3.59E+07 0.00E+00 0.00E+00 0.00E+00

Walker % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 62.15 6.15E+10 3.99E+12 2.61E+13 8.37E+11

standard deviation 0.61 2.03E+08 0.00E+00 4.70E+10 0.00E+00
SVE vectorization 40.14 6.27E+10 5.05E+10 8.56E+12 3.45E+11
standard deviation 0.14 1.11E+08 0.00E+00 8.87E+09 0.00E+00

Total (Acc. + Walker) % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 93.00 7.08E+10 4.60E+12 3.90E+13 3.57E+12

standard deviation 0.90 2.46E+08 0.00E+00 6.94E+10 0.00E+00
SVE vectorization 91.25 7.26E+10 1.16E+11 1.95E+13 2.97E+12
standard deviation 0.31 1.46E+08 0.00E+00 8.87E+09 0.00E+00

Figure 3: PAPI counter for DCA++ runs on A64FX.

remarks because it allows users to only view remarks emitted for hot code regions. Thus, with PGO, users can be
guided toward the loops that would benefit the most from vectorization and avoid overloading them with a plethora of
uninteresting remarks.

The authors manually analyzed several loops in the DCA++ application by using the aforementioned method described
to determine what was hindering loop vectorization. Some loops required a simple change in vectorization flags, and
others required user intervention (e.g., vectorization directives, such as OpenMP SIMD) to assist the compiler. The
authors also identified loops that required transformations to make the vectorization more efficient. The following
sections present a brief discussion for four hot loops that the compiler was unable to vectorize without user intervention.

3.1 OpenMP SIMD

When optimizing any loops, the compiler’s vectorization pass must preserve the semantics of the original source code.
This usually requires static analyses to verify that the transformation is legal. However, it is not uncommon for a
transformation to be correct but unable to be statically verified by the compiler. Since OpenMP 4.0, OpenMP has added
support for the SIMD directive, which provides a cross-platform method for statically asserting information about the
program’s semantics to the compiler’s vectorization pass [7]. In DCA++, various loops require additional information
to be successfully vectorized.

Figure 4 shows a classical reduction loop. Because x_val is a floating point value, any reordering of the iterations
(e.g., as part of vectorization) would break strict Institute of Electrical and Electronics Engineers (IEEE) floating point
compliance and might introduce errors in the result. By default, LLVM/Clang will not vectorize the loop but will
instead emit a remark (lower part) that explains how ffast-math or vectorization pragmas can be used to overwrite the
IEEE floating point semantics. The Clang pragmas are a less feature-rich variant of the cross-platform OpenMP SIMD
directives, but both explicitly tell the compiler to allow vector execution for a loop. In the OpenMP variant, users should
make the parallel reduction explicit. Additionally, the authors used the aligned clause to pass alignment information to
the compiler, which can lead to improved performance due to specialized memory instructions.

In line 6 of Figure 5, there is a noncontinuous memory load—a gather. ARM’s SVE supports fast gathering operations;
however, the compiler cannot vectorize this loop without manual intervention because the accessed arrays M_ij_, M,
config_left_ , and config_right_ might alias and hence overlap. In these situations, the compiler is often able to version

the loop and generate a vectorized variant guarded by a run time alias check to verify that the accessed ranges of the
arrays do not overlap at run time. However, the support for such run time alias checks in LLVM/Clang is limited to the
case in which the accessed bounds are known statically [8]. Because the index into the M array is based on the values
loaded from the configuration arrays, the access range cannot be bound statically. The compiler remark shown below
the loop nest summarizes this discussion in a way that is difficult or impossible for application developers to understand.

5

A PREPRINT - JUNE 29, 2021

1 #pragma omp simd reduction(−:x_val) aligned (x_val , G_ptr : 64)
2 for (int i = 0; i < j ; i++)
3 x_val −= x_ptr [i] * G_ptr[i];

remark: loop not vectorized : cannot prove it is safe to reorder floating −point operations ; allow reordering by
specifying ’#pragma clang loop vectorize (enable) ’ before the loop or by providing the compiler option
’− ffast −math’

Figure 4: A loop performing a parallel reduction that is not vectorized automatically.

Using OpenMP SIMD effectively tells the compiler that there are no overlapping accesses, allowing the loop to be
vectorized. Care must be taken to ensure that no aliasing actually occurs, otherwise this will result in incorrect results.

1 for (int j = start_index_right_ [orb_j]; j < end_index_right_ [orb_j]; ++j) {
2 const int out_j = j − start_index_right_ [orb_j];
3 #pragma omp simd
4 for (int i = start_index_left_ [orb_i]; i < end_index_left_ [orb_i]; ++i) {
5 const int out_i = i − start_index_left_ [orb_i];
6 M_ij_(out_i , out_j) = M(config_left_ [i]. idx , config_right_ [j]. idx) ;
7 }
8 }

remark: loop not vectorized : Unknown array bounds

Figure 5: A loop performing a memory gather that requires OpenMP SIMD to be vectorized by the ARM compiler.

3.2 Using the Correct Compiler Flags

Some loops require additional compiler flags to be vectorized. The code shown in Figure 6 has two run time calls,
line 5 and 6, which prevent the compiler from automatically vectorizing it. A function call usually requires an explicit
vector version of the function and compiler support to allow vectorized execution. The ARM compiler provides an
optimized math library that includes vector variants of common math functions. Users must explicitly enable such
a vector library because it will disturb the precision of the result, similar to the floating point reordering. The ARM
compiler provides the fsimdmath option to use its performance libraries, whereas standard Clang requires fveclib to be
set to the desired vectorized library. ffast-math or fno-math-errno will allow the compiler to execute the loop out of
order, but no vectorized math library is used. This means that the vector lanes are effectively unpacked before the call,
and the math function is executed once per vector lane.

Another issue is that the application uses a custom matrix class that performs bounds checking by using assertions in the
overloaded access operators. Although assertions are a good software engineering practice, their “complex” semantics
must be preserved by the compiler. The problem is that no code is executed after a violated assertion. Thus, if assertions
are enabled and present in a loop, the compiler must verify that the assertion cannot trigger to execute any side effects
succeeding the assertion (e.g., from the next iteration). To disable assertions completely, NDEBUG can be defined
during compilation; however this will cause a tension between “debug” and “release” builds that is often not desirable.
For developers to identify issues that stem from assertions and other errors in handling code, the authors added a new
remark to the LLVM vectorizer, which is shown below the code. For these experiments, the authors disabled assertions,
provided a vectorized math library, and added OpenMP SIMD to allow vectorization, even in the presence of possibly
aliasing accesses.

3.3 Loop Transformations

The loop in Fig. 7 contains gathers from memory at lines 11 and 18. More importantly, the code uses a column-major
layout for all its matrices while this loop iterates across a row. This will require expensive scattering operations
to distribute the stores to discontinuous memory addresses. This loop can be transformed to better exploit SIMD
parallelism. Each iteration of this loop is independent, and the matrices are guaranteed to be square in the code, so this
loop can safely be transposed to improve memory accesses. This transformation will also improve performance without
vectorizing the loop.

This loop contains conditional expressions that must be transformed into masks to be vectorized. This requires
calculating the result of each branch and conditionally moving it into the final register by using a mask. In this case, the

6

A PREPRINT - JUNE 29, 2021

1 for (int j = 0; j < n_v; ++j) {
2 #pragma omp simd
3 for (int i = 0; i < n_w; ++i) {
4 const ScalarType x = configuration [j]. get_tau () * w_[i];
5 T_[0](i , j) = std :: cos(x) ;
6 T_[1](i , j) = std :: sin (x) ;
7 }
8 }

remark: loop not vectorized : loop exit block contains control flow that does not return
remark: loop not vectorized : library call cannot be vectorized . Try compiling with −fno−math−errno, − ffast −math,
or similar flags

Figure 6: A code block using the math library functions cos and sin.

1 for (int i = 0; i < Gamma.Rows(); i++) {
2 for (int j = 0; j < Gamma.Cols(); j++) {
3 int spin_idx_i = random_vertex_vector[i];
4 int spin_idx_j = random_vertex_vector[j];
5
6 if (spin_idx_j < vertex_index) {
7 Real delta = (spin_idx_i == spin_idx_j)
8 ? 1.
9 : 0.;

10 Real N_ij = N(spin_idx_i , spin_idx_j) ;
11 Gamma(i, j) =
12 (N_ij * exp_V[j] − delta) /
13 (exp_V[j] − 1.) ;
14 } else
15 Gamma(i, j) = G_precomputed(
16 spin_idx_i ,
17 spin_idx_j − vertex_index) ;
18 if (i == j) {
19 Real gamma_k = exp_delta_V[j];
20 Gamma(i, j) −=
21 (gamma_k) / (gamma_k − 1.);
22 }
23 }
24 }

for (int j = 0; j < Gamma.Cols(); j++) {
#pragma omp simd

for (int i = 0; i < Gamma.Rows(); i++) {
int spin_idx_i = random_vertex_vector[i];
int spin_idx_j = random_vertex_vector[j];

if (spin_idx_j < vertex_index) {
Real delta = (spin_idx_i == spin_idx_j)

? 1.
: 0.;

Real N_ij = N(spin_idx_i , spin_idx_j) ;
Gamma(i, j) =

(N_ij * exp_V[j] − delta) /
(exp_V[j] − 1.) ;

} else
Gamma(i, j) = G_precomputed(

spin_idx_i ,
spin_idx_j − vertex_index) ;

}

Real gamma_k = exp_delta_V[j];
Gamma(j, j) −=

(gamma_k) / (gamma_k − 1.);
}

remark: loop not vectorized : control flow cannot be substituted for a select
remark: loop not vectorized : cannot identify array bounds

Figure 7: A loop requiring a source transformation and OpenMP SIMD (left) and its transformed version (right).

true condition of the loop at line 6 is much more computationally expensive than the false condition. If the result was
not needed, then this will be calculated at each iteration of the loop, only to be thrown away. This problem is even worse
for the final update across the diagonal at line 17, which will only be needed once every iteration of the inner loop but
calculated every iteration. This conditional update can be hoisted from the loop to improve performance significantly.

Another issue is the division at line 14. This could cause a division-by-zero error that can block vectorization if regular
error handling semantics are maintained. This can be disabled with fast math, but in some cases, the compiler is able to
vectorize it by using masked division instructions. This would be a good application of the assume directive added in
OpenMP 5.1 to assert to the compiler that the division will never cause an error.

3.4 Results

The overall impact of these transformations is shown in Fig. 8, which shows a significant speedup in most cases. The
loop in Fig. 6 had the largest improvement when using ARM’s vector math support. The reduction loop in Fig. 4 yielded
no improvement. Upon further investigation, this was because the loop’s trip count was very small in the average case,
so the majority of the time was spent doing the final reduction, and work was rarely done in parallel. The other loops
saw reasonable improvements, but their performance was limited by the gathering instructions required to vectorize
them.

7

A PREPRINT - JUNE 29, 2021

Figure 8: The loops in Figs. 6, 5, 7, and 4, respectively, before and after the barriers to SVE execution were remedied.
Performance is measured as the total time spent by all the threads in a run using 24 accumulators/walker threads over
100, 000 measurements.

4 Automating the Process: The OpenMP Advisor

It is unrealistic but unfortunately still common practice to optimize code and add support for new platforms and features
by manually inspecting and modifying the application. Given the increasing complexity when it comes to hardware and
the requirement to support multiple heterogeneous platforms simultaneously, the authors must rethink their software
engineering practices to ensure that the code is not only correct but also performant and portable. To automate this
manual process and boost programmers’ productivity, the authors began developing the OpenMP Advisor. Based on
the portable OpenMP directive language, we hope to evolve the OpenMP Advisor over time into a valuable software
engineering tool by using and extending LLVM capabilities. During the porting effort of the DCA++ application
described here, the authors experienced various issues that require interpretation to derive actionable advice. Using
their experience, the authors began automating the parts of the process and improving the compiler remarks that were
missing or misleading. As a result, the OpenMP Advisor the authors develop as part of the LLVM compiler framework
will use optimization remarks from multiple optimization passes to report the most performance-critical problems in the
code based on the available profiling data.

5 Related Work

There are several other tools that analyze source code or provide support for parallelization but with limited support
that automatically inserts SIMD directives in the code. These include: CAPO [9] for automatic OpenMP work-sharing
directives generation, which supports Fortran 77 and some F90 extensions; Appentra’s Parallware [10], which focuses
on parallelizing C/C++ applications by using OpenMP and OpenACC for multicores and accelerators; and Cray
Reveal [11], which helps autoscope OpenMP variables and generate OpenMP work-sharing for Fortran and C/C++ for
multicore and accelerators. Intel Inspector focuses on OpenMP semantic checking for data race detection. Foresys [12]
and the Dragon Analysis tool [13] are legacy tools that supported the maintenance of Fortran code and help with
parallelization with OpenMP.

6 Conclusion

Porting the DCA++ application to the A64FX processor requires the use of optimized scientific libraries and vectorizing
the application hot spots. This process can be overwhelming to users, and tools are needed to automate this process.
This work shows that by using LLVM tools, users can easily detect hot spots, determine why loops are not vectorized,
and correct the issues by applying the correct compiler flags, transforming the code, or applying OpenMP directives.

Currently, authors are working an OpenMP Advisor tool that is built on top of existing and newly introduced LLVM
tooling to automate this process. Ultimately, the authors want to enable application developers to navigate and handle
compiler-generated information productively. Optimization reports should pinpoint important opportunities to tune the
code (e.g., non-vectorized loops) and simultaneously provide sufficient information and suggestions to allow informed

8

A PREPRINT - JUNE 29, 2021

decisions without elaborate studies of compiler and programming language theory. The authors believe that tools can
recommend portable annotations, such as OpenMP SIMD directives, when they inform users about the requirements
for correctness. Furthermore, compiler analysis and optimizations can directly target the recently proposed OpenMP
assume directive to request user feedback. In other words, OpenMP assume directives and the authors’ implementation
in the LLVM compiler will enable analyses and transformations to request high-level information from users naturally.
The OpenMP Advisor will improve communication in the other direction to present users with important requests and
remarks, together with information and examples that translate “compiler language” to “application language.”

Acknowledgment

The authors would like to thank Manuel Arenaz (Appentra Solutions), Hartmut Kaiser (Louisiana State University), and
Kevin Huck (University of Oregon) for their guidance and feedback on this work.

This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by
US Department of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) and Basic Energy
Sciences (BES) Division of Materials Sciences and Engineering. This research was also supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy Office of Science and the
National Nuclear Security Administration, in particular its subproject on Scaling OpenMP with LLVM for Exascale
performance and portability (SOLLVE).

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-819815).

References

[1] Urs R Hähner, Gonzalo Alvarez, Thomas A Maier, Raffaele Solcà, Peter Staar, Michael S Summers, and Thomas C
Schulthess. Dca++: A software framework to solve correlated electron problems with modern quantum cluster
methods. Computer Physics Communications, 246:106709, 2020.

[2] Weile Wei, Arghya Chatterjee, Kevin Huck, Oscar Hernandez, and Hartmut Kaiser. Performance analysis of a
quantum monte carlo application on multiple hardware architectures using the hpx runtime. In 2020 IEEE/ACM
11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), pages 77–84. IEEE,
2020.

[3] Hartmut Kaiser, Patrick Diehl, Adrian S. Lemoine, Bryce Adelstein Lelbach, Parsa Amini, Agustín Berge, John
Biddiscombe, Steven R. Brandt, Nikunj Gupta, Thomas Heller, Kevin Huck, Zahra Khatami, Alireza Kheirkhahan,
Auriane Reverdell, Shahrzad Shirzad, Mikael Simberg, Bibek Wagle, Weile Wei, and Tianyi Zhang. Hpx - the c++
standard library for parallelism and concurrency. Journal of Open Source Software, 5(53):2352, 2020.

[4] Kevin A Huck, Allan Porterfield, Nick Chaimov, Hartmut Kaiser, Allen D Malony, Thomas Sterling, and Rob
Fowler. An autonomic performance environment for exascale. Supercomputing frontiers and innovations,
2(3):49–66, 2015.

[5] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data with papi-c. In Tools
for High Performance Computing 2009, pages 157–173. Springer, 2010.

[6] Patrick Diehl, Dominic Marcello, Parsa Armini, Hartmut Kaiser, Sagiv Shiber, Geoffrey C. Clayton, Juhan Frank,
Gregor Daiß, Dirk Pflüger, David Eder, Alice Koniges, and Kevin Huck. Performance measurements within
asynchronous task-based runtime systems: A double white dwarf merger as an application, 2021.

[7] Joseph N. Huber, Oscar R. Hernandez, and Matthew Graham Lopez. Effective vectorization with openmp 4.5. 3
2017.

[8] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias Grosser, Fabrice Rastello, and
Fernando Magno Quintão Pereira. Runtime pointer disambiguation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, page 589–606, New York, NY, USA, 2015. Association for Computing Machinery.

9

http://energy.gov/downloads/doe-public-access-plan

A PREPRINT - JUNE 29, 2021

[9] C.S. Ierotheou, H. Jin, G. Matthews, S.P. Johnson, and R. Hood. Generating openmp code using an interactive
parallelization environment. Parallel Computing, 31(10):999–1012, 2005. OpenMP.

[10] Manuel Arenaz and Xavier Martorell. Parallelware tools: An experimental evaluation on power systems. In
Michèle Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode, editors, High Performance Computing, pages
352–360, Cham, 2019. Springer International Publishing.

[11] Luiz DeRose, Heidi Poxon, James Beyer, and Alistair Hart. A high level programming environment for accelerator-
based systems. Procedia Computer Science, 29:1480–1490, 2014. 2014 International Conference on Computa-
tional Science.

[12] Jean-Louis Pazat. Tools for high performance fortran: A survey, pages 134–158. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

[13] B. Chapman, O. Hernandez, Lei Huang, Tien-hsiung Weng, Zhenying Liu, L. Adhianto, and Yi Wen. Dragon: an
open64-based interactive program analysis tool for large applications. In Proceedings of the Fourth International
Conference on Parallel and Distributed Computing, Applications and Technologies, pages 792–796, 2003.

10

	1 Introduction
	2 Case Study: Porting DCA++ to Wombat
	2.1 Evaluation Environment
	2.2 DCA++
	2.3 Baseline Performance

	3 An LLVM Tool Methodology to Generate Efficient Vectorization
	3.1 OpenMP SIMD
	3.2 Using the Correct Compiler Flags
	3.3 Loop Transformations
	3.4 Results

	4 Automating the Process: The OpenMP Advisor
	5 Related Work
	6 Conclusion

