
ar
X

iv
:2

10
5.

10
68

7v
1

 [
cs

.P
L

]
 2

2
M

ay
 2

02
1

Normalising Lustre Preserves Security

Sanjiva Prasad and R. Madhukar Yerraguntla

Indian Institute of Technology Delhi, INDIA
{sanjiva,madhukar.yr}@cse.iitd.ac.in

Abstract. The synchronous reactive data flow language Lustre is an
expressive language, equipped with a suite of tools for modelling, sim-
ulating and model-checking a wide variety of safety-critical systems. A
critical intermediate step in the formally certified compilation of Lus-

tre involves translation to a well-behaved sub-language called “Nor-
malised Lustre” (NLustre). Recently, we proposed a simple Denning-
style lattice-based secure information flow type system for NLustre,
and proved its soundness by establishing that security-typed programs
are non-interfering with respect to the co-inductive stream semantics.
In this paper, we propose a similar security type system for unrestricted
Lustre, and show that Bourke et al.’s semantics-preserving normalisa-
tion transformations from Lustre to NLustre are security-preserving
as well. A novelty is the use of refinement security types for node calls.
The main result is the preservation of security types by the normalisation
transformations. The soundness of our security typing rules is shown by
establishing that well-security-typed programs are non-interfering, via a
reduction to type-preservation (here), semantics-preservation (Bourke et
al.) and our previous result of non-interference for NLustre.

Keywords: Synchronous reactive data flow, Lustre, Compiler transfor-
mation, Security type system, Non-interference, Security preservation.

1 Introduction

The synchronous reactive data flow language Lustre [6,10] is an expressive
language with an elegant formal semantics. Its underlying deterministic, clocked
model makes it a versatile programming paradigm, with diverse applications
such as distributed embedded controllers, numerical computations, and complex
Scade 6 [7] safety-critical systems. It is also equipped with a suite of tools,
comprising: (a) a certified compilation framework from the high-level model into
lower-level imperative languages [2,3]; (b) model-checkers [16,12] (c) simulation
tools [11] for program development.

The development of a formally certified compiler from Lustre to an im-
perative language is the subject of active research [2,3]. A critical intermediate
step involves the translation from Lustre to a well-behaved sub-language called
“Normalised Lustre” (NLustre), presented in [3]. A recent paper (in French)
defines the normalisation transformations from Lustre to NLustre, and es-
tablishes formally that they are semantics-preserving with respect to the stream
semantics [4] (see Theorems 2 and 3).

http://arxiv.org/abs/2105.10687v1

2 Sanjiva Prasad and R. Madhukar Yerraguntla

Recently we proposed a Denning-style lattice-based secure information flow
(SIF) type system for NLustre, and proved its soundness by establishing that
securely-typed programs are non-interfering with respect to the co-inductive
stream semantics [15]. The main ideas underlying the security type system are (i)
that each stream is assigned (w.r.t. assumptions on variables) a symbolic security
type, (ii) equations induce constraints on security types of the defined variables
and of the defining expressions, and (iii) the output streams from a node have se-
curity levels at least as high as those of the input streams on which they depend.
The symbolic constraint-based formulations allows us to infer constraints that
suffice to ensure security. The rules are simple, intuitive and amenable to being
incorporated into the mechanised certified compilation [14] already developed for
Lustre [5]. In this paper, we propose a similar secure-information-flow type sys-
tem for unrestricted Lustre (§3). The main innovation is formulating symbolic
constraint-based refinement (sub)types. These are necessitated by the presence
in Lustre of nested node calls (in NLustre, directed nesting is disallowed).

The security type system is shown by reduction to be sound with respect to
Lustre’s co-inductive stream semantics. While it is possible to do so directly
by establishing that well-security-typed programs exhibit non-interference [9]
using exactly the approach in [15], here we do so via a sound compiler transfor-
mation: We show that the semantics-preserving normalisation transformations
(de-nesting and distribution, and explicit initialisation of fby) from Lustre to
NLustre proposed in [4] preserve security types as well (Theorem 1 in §4). In
particular, there is a strong correspondence at the level of node definitions. The
preservation of security signatures of node definitions is established via Lemma 3
in §3. The main idea is to remove local variable types via a substitution procedure
simplify (Figure 9), showing that this maintains satisfiability of type constraints.
Since these transformations preserve operational behaviour as well as security
types of nodes, and since we have already established non-interference for the
target language NLustre [15, Theorem 5], non-interference holds for source
Lustre as well (Theorem 5 in §5).

Although the paper is intimately dependent on results of earlier work, we
have endeavoured to keep it self-contained. The reader interested in the complete
stream semantics of Lustre may refer to the appendices.

Related Work. We mention only the immediately relevant work here; a fuller
discussion on related work can be found in [15]. The formalisation of Lustre

semantics and its certified compilation are discussed in detail in [1,2,3]. The
normalisation transformations examined here are proposed in [4]. Our lattice-
based SIF framework harks back to Denning’s seminal work [8]. The idea of type
systems for SIF can be found in e.g., [18]. That work also expressed soundness of a
SIF type system in terms of the notion of non-interference [9]. Our previous work
[15] adapted that framework to a declarative data flow setting, showing that it
is possible to infer minimal partial-ordering constraints between symbolic types.
The idea of type-preservation under the rewriting of programs is commonplace
in logic and proof systems (“subject reduction”).

Normalising Lustre Preserves Security 3

2 Lustre and NLustre

e := (expr)

| c (cnst)

| x (var)

| ⋄ e (unop)

| e⊕ e (binop)

| #»e when x = k (whn)

| merge x #»e #»e (mrg)

| if e then #»e else #»e (ite)

| #»e fby #»e (fby)

| f(#»e) (ncall)

eq := (equation)

| #»x = #»e (eq)

Fig. 1. Lustre syntax

e := (expr’)

| c (cnst)

| x (var)

| ⋄ e (unop)

| e⊕ e (binop)

| e when x = k (whn’)

ce := (cntrl expr)

| e (expr’)

| merge x ce ce (mrg’)

| if e then ce else ce (ite’)

eq := (equation)

| x =ck ce (eq’)

| x =ck c fby e (fby’)

| #»x =ck f(#»e) (ncall’)

Fig. 2. NLustre syntax

ck := (clock)

| base (base)

| ck on (x = k) (on)

d := (node declr)

| node f(
»

xck) returns
»

yck

var #»z let # »eqn tel

G :=
#»

d (program)

Fig. 3. Common syntax of nodes and clocks

A Lustre program describes a synchronous network with clocked streams of
data flowing between operators and nodes. A program consists of a set of node
definitions, each parameterised by clocked input and output flows. A clock is a
boolean stream – either a base clock or one derived from another clock when a
variable takes a specific (boolean) value (on x = k, where k ∈ {T, F}).

Each node comprises a set of (possibly mutually recursive) equations, which
define local variables and output flows in terms of flow expressions. Such defini-
tions are unique, and may appear in any order. Lustre satisfies the definition
and substitution principles, namely that the context does not determine the
meaning of an expression and that referential transparency holds. Nodes do not
have free variables. Nodes cannot make recursive calls; therefore, the dependency

4 Sanjiva Prasad and R. Madhukar Yerraguntla

order on nodes forms a DAG. All expressions and equations can be annotated
with a clock, following a static analysis to determine clock dependencies.

Figures 1–3 present the syntax of Lustre and NLustre.
Lustre expressions (Figure 1) include flows described by constants, vari-

ables, unary and binary operations on flows, as well as the flows obtained by
sampling when a variable takes a particular boolean value (when), interpolation
based on a boolean variable flow (merge), and conditional combinations of flows
(if_then_else). Of particular interest are flows involving guarded delays (fby)
and those involving node calls.

NLustre is a sub-language into which Lustre can be translated, from which
subsequent compilation is easier. The main differences between between Lustre

and NLustre are (i) the former supports lists of flows (written #»e) for concise-
ness, whereas in the latter all flows are single streams; (ii) NLustre requires
that conditional and merge “control” expressions are not nested below unary
and binary operators or sampling; (iii) node call and delayed flows (fby) are
treated as first-class expressions, whereas in NLustre, they can appear only in
the context of equations; (iv) Lustre permits nested node calls, whereas there
is no nesting in NLustre; (v) finally, the first argument of fby expressions in
NLustre must be a constant, to enable a well-defined initialisation that can be
easily implemented.

The translation from Lustre to NLustre [4] involves distributing constructs
over the individual components of lists of expressions, and de-nesting expressions
by introducing fresh local variables (See §4). The reader can see an example,
adapted from [4], of a Lustre program and its translation into NLustre in
Figure 12 (ignoring for the moment the security type annotations therein).

2.1 Stream Semantics

The semantics of Lustre and NLustre programs are synchronous : Each vari-
able and expression defines a data stream which pulses with respect to a clock. A
clock is a stream of booleans (CompCert/Coq’s true and false in Vélus). A flow
takes its nth value on the nth clock tick, i.e., some value, written ‹v›, is present
at instants when the clock value is true, and none (written ‹›) when it is false.
The temporal operators when, merge and fby are used to express the complex
clock-changing and clock-dependent behaviours of sampling, interpolation and
delay respectively.

Formally the stream semantics is defined using predicates over the program
graph G, a (co-inductive) stream history (H∗ : Ident → value Stream) that as-
sociates value streams to variables, and a clock bs [3,15,4]. Semantic operations
on (lists of) streams are written in blue sans serif typeface. Streams are written
in red, with lists of streams usually written in bold face. All these stream oper-
ators, defined co-inductively, enforce the clocking regime, ensuring the presence
of a value when the clock is true, and absence when false.

The predicate G,H∗, bs ⊢ e ⇓e es relates an expression e to a list of streams,
written es. A list consisting of only a single stream es is explicitly denoted as
[es]. The semantics of equations are expressed using the predicate G,H∗, bs ⊢

»eqi,

Normalising Lustre Preserves Security 5

which requires consistency between the assumed and defined stream histories in
H∗ for the program variables, as induced by the equations. Finally, the semantics
of nodes is given as a stream history transformer predicate G s f̂(xs)u ys.

We discuss here only some constructs which relate to the normalisation trans-
formations. Appendices B and C present a complete account of the stream se-
mantics for Lustre and NLustre, consistent with [5].

H∗(x) = xs
(LSvar)

G,H∗, bs ⊢ x ⇓e [xs]

Rule (LSvar) associates a variable x to the stream given by H∗(x).

∀i : G,H∗, bs ⊢ e0i ⇓e e0si ∀j : G,H∗, bs ⊢ ej ⇓e esj

f̂byL (♭(
»

e0si)) (♭(
»esj)) = os

(LSfby)
G,H∗, bs ⊢

»

e0i fby
#»ej ⇓e os

A delay operation is implemented by e0 fby e. The rule (LSfby) is to be read as
follows. Let each expression e0i denote a list of streams e0si, and each expression

ej denote a list of streams esj. The predicate f̂byL maps the predicate fbyL to
act on the corresponding components of lists of streams, i.e.,

f̂byL xs ys = zs abbreviates
∧

i∈[1,m]

fbyL xsi ysi = zsi

(Similarly for the predicates ŵhen, m̂erge, and îte.) The operation ♭(_) flattens a
list of lists (of possibly different lengths) into a single list. Flattening is required
since expression ei may in general denote a list of streams esi. The output list of
streams os consists of streams whose first elements are taken from each stream
in ♭(

»

e0si) with the rest taken from the corresponding component of ♭(# »esj).

∀i ∈ [1, .., k] G,H∗, bs ⊢ ei ⇓e esi [H∗(x1), . . . , H∗(xn)] = ♭(# »esi)
(LSeq)

G,H∗, bs ⊢
#»xj =

#»ei

The rule (LSeq) for equations checks the consistency between the assumed mean-
ings for the defined variables xj according to the history H∗ with the correspond-
ing components of the tuple of streams ♭(# »esi) to which a tuple of right-hand side
expressions evaluates.

{
name = f; in = #»x ; var = #»z ;

out = #»y ; eqs = # »eqn

}
∈ G H∗(g.in) = xs

H∗(g.out) = ys base-ofxs = bs ∀eq ∈ #»eq : G,H∗, bs ⊢ eq
(LSndef)

G s f̂(xs)u ys

The rule (LSndef) presents the meaning given to the definition named f of a
node g ∈ G as a stream list transformer. If history H∗ assigns lists of streams to

6 Sanjiva Prasad and R. Madhukar Yerraguntla

the input and output variables for a node in a manner such that the semantics of
the equations in the node are satisfied, then the semantic function f̂ transforms
input stream list xs to output stream list ys. The operation base-of finds an
appropriate base clock with respect to which a given list of value streams pulse.

G,H∗, bs ⊢
#»ei ⇓e xs G s f̂(xs)u ys

(LSncall)
G,H∗, bs ⊢ f(#»ei) ⇓e ys

The rule (LSncall) applies the stream transformer semantic function f̂ to the
stream list xs corresponding to the tuple of arguments #»ei, and returns the stream
list ys.

Stream semantics for NLustre. The semantic relations for NLustre are
either identical to (as in constants, variables, unary and binary operations) or
else the singleton cases of the rules for Lustre (as in merge, ite, when). The
main differences are in the occurrence of fby (now in a restricted form) and
node call only in the context of equations, (which are clock-annotated).

H∗, bs ⊢ e :: ck ⇓e [vs] fbyNL c vs = H∗(x)
(NSfby’)

G,H∗, bs ⊢ x =ck c fby e

{
name = f; in = #»x ; var = #»z ;

out = #»y ; eqs = # »eqn

}
∈ G H∗(n.in) = xs base-ofxs = bs

respects-clockH∗ bs H∗(n.out) = ys ∀eq ∈ #»eq : G,H∗, bs ⊢ eq
(NSndef’)

G s f̂(xs)u ys

H∗, bs ⊢ #»e ⇓e vs H∗, bs ⊢ ck ⇓ck base-ofvs G s f̂(vs)u
»

H∗(xi)
(NSncall’)

G,H∗, bs ⊢
#»x =ck f(#»e)

Fig. 4. Stream semantics of NLustre nodes and equations

The (NSfby’) rule for fby in an equational context uses the semantic opera-
tion fbyNL, which differs from fbyL in that it requires its first argument to be a
constant rather than a stream. The (NSndef’) rule only differs from (LSndef) in
that after clock alignment during transcription, we have an additional require-
ment of H∗ being in accordance with the base clock bs, enforced by respects-clock.
Finally, the rule rule (NSncall’) for node call, now in an equational context, is
similar to (LSncall) except that it constrains the clock modulating the equation
to be the base clock of the input flows.

Normalising Lustre Preserves Security 7

3 A Security Type System for Lustre

We define a symbolic secure information flow type system, where under security-
level type assumptions for program variables, Lustre expressions are given a
security type, and Lustre equations induce a set of ordering constraints over
security types.

Security type expressions (α, β) for Lustre are either (i) type variables (writ-
ten δ) drawn from a set STV, or (ii) constructed using a join operator (written
α ⊔ β). (iii) The identity element of the associative, commutative and idempotent
monoid operation ⊔ is ⊥. While the above suffice for NLustre, for Lustrewe
introduce (iv) refinement types α{|ρ|}, where symbolic constraint ρ modulates
type expression α. Constraints on security types, typically ρ, are (conjunctions
of) relations of the form α⊑β. Since security types are to be interpreted with
respect to a complete lattice, we have α⊑β exactly when α ⊔ β = β. Our pro-
posed security types and their equational theory are presented in Figure 5. The
security types for NLustre and their equational theory [15] are highlighted in
grey within the diagram. This congruence on NLustre types (henceforth ≡NL),
which is given in the highlighted second line of Figure 5, is significantly simpler
since it does not involve refinement types!

Types: α, β, γ, θ ::= ⊥ | δ ∈ STV | α ⊔ β | α{|ρ|} Constraints: ρ ::= (θ ⊑ α)∗

(α ⊔ β) ⊔ θ = α ⊔ (β ⊔ θ), α ⊔ α = α, α ⊔ β = β ⊔ α, α ⊔ ⊥ = α = ⊥ ⊔ α,

α{||} = α, α1{|ρ1|} ⊔ α2{|ρ2|} = (α1 ⊔ α2){|ρ1∪ρ2|}, α{|ρ1|}{|ρ2|} = α{|ρ1∪ρ2|},

#»αi{|ρ|} =
»

αi{|ρ|}, {α{|ρ1|} ⊑ β{|ρ2|}} = {α⊑β}∪ρ1∪ρ2,
»αj [θi/δi] =

»

αj [θi/δi] ,

α{|ρ|}[θi/δi] = α[θi/δi]{|ρ[θi/δi]|}, (α⊑β)[θi/δi] = α[θi/δi] ⊑ β[θi/δi] .

Fig. 5. Security types, constraints and their properties

We write α[θi/δi] for i = 1, . . . , k to denote the (simultaneous) substitution
of security types θi for security type variables δi in security type α. The notation
extends to substitutions on tuples (#»α) and constraints (α⊑β).

Constraints are interpreted in a security class lattice SC by the homomor-
phic extension of a ground instantiation s : STV → SC, such that s(⊥) = ⊥,

s(α ⊔ β) = s(α) ⊔ s(β), s(#»α) =
»

s(αi), s(α⊑β) = s(α) ⊑ s(β), and s(α{|ρ|}) =
s(α) if s(ρ) holds in SC, i.e., if “s satisfies ρ” (else undefined). To make sense,
refinement type α{|ρ|} requires the satisfaction of constraint ρ.

Lemma 1 (Soundness). The equational theory induced by the equalities in
Figure 5 is sound with respect to any ground instantiation s, i.e., (i) α = β
implies s(α) = s(β), and (ii) ρ1 = ρ2 implies s(ρ1) is satisfied iff s(ρ2) is.

8 Sanjiva Prasad and R. Madhukar Yerraguntla

Lemma 2 (Confluence). All equations other than those of associativity and
commutativity (AC) can be oriented left-to-right into rewriting rules. The rewrit-
ing system is confluent modulo AC. Equal types (respectively, equal constraints)
can be rewritten to a common form modulo AC.

Proof sketch. The equational theory≡NL is decidable, since it is a convergent
rewriting system modulo AC. The rules in lines 3 and 4 can all be oriented left to
right. We use completion [13] to introduce rule α1{|ρ1|} ⊔ α2 −→ (α1 ⊔ α2){|ρ1|},
when α2 is not a refinement type. We use the theory of strongly coherent rewrit-
ing modulo AC [17], to efficiently decide type equality. �.

3.1 Security Typing Rules

Assume typing environment Γ : Ident → ST, a partial function associating a
security type to each free variable x in a Lustre program phrase. Expressions

and clocks are type-checked with the predicates: Γ
e

⊢e : #»α and Γ
ck

⊢ck : α respec-
tively. These are read as “under the context Γ mapping variables to security
types, e, ck have security type(s) α”. The types for tupled expressions are tuples
of the types of the component expressions. For equations, we use the predicate:

Γ
eqn

⊢ eq :> ρ, which states that under the context Γ , equation eq when type-
elaborated generates constraints ρ. Elementary constraints for equations are of
the form α ⊑ β, where β is the security type of the defined variable, and α
the security type obtained from that of the defining expression joined with the
clock’s security type. Since every flow in Lustre is defined exactly once, by the
Definition Principle, no further security constraints apply.

The security typing rules for Lustre are presented in Figures 6 – 8, plus the
rules for node definition and node call. These rules generalise those in [15] to
handle expressions representing lists of flows, and nested node calls. The rules
for NLustre expressions other than node call and fby are just the singleton
cases. Node call and fby are handled by the rule for equations.

Γ (base) = γ
(LTbase)

Γ
ck

⊢base : γ

Γ (x) = γ1 Γ
ck

⊢ck : γ2
(LTon)

Γ
ck

⊢ck on x = k : γ1 ⊔ γ2

Fig. 6. Lustre security typing rules for clocks

In (LTbase), we assume Γ maps the base clock base to some security variable
(γ by convention). In (LTon), the security type of the derived clock is the join
of the security types of the clock ck and that of the variable x.

Constants have security type ⊥, irrespective of the context (rule (LTcnst)).
For variables, in rule (LTvar), we look up their security type in the context Γ .
Unary operations preserve the type of their arguments (rule (LTunop)). Binary

Normalising Lustre Preserves Security 9

Γ (x) = α
(LTvar)

Γ
e

⊢x : α

Γ
e

⊢e : α
(LTunop)

Γ
e

⊢⋄ e : α

Γ
e

⊢e1 : α1 Γ
e

⊢e2 : α2
(LTbinop)

Γ
e

⊢e1 ⊕ e2 : α1 ⊔ α2

θ = Γ (x) Γ
e

⊢ #»et :
#»α Γ

e

⊢ #»ef :
#»

β
(LTmrg)

Γ
e

⊢merge x #»et
#»ef :

»

(θ ⊔ αi ⊔ βi)i

(LTcnst)
Γ

e

⊢c : ⊥

Γ
e

⊢e : θ Γ
e

⊢ #»et :
#»α Γ

e

⊢ #»ef :
#»

β
(LTite)

Γ
ce

⊢if e then #»et else #»ef :
»

(θ ⊔ αi ⊔ βi)i

Γ
e

⊢ #»e0 : #»α Γ
e

⊢ #»e :
#»

β
(LTfby)

Γ
e

⊢ #»e0 fbyl
#»e :

»

(αi ⊔ βi)i

Γ
e

⊢e1 : α1 . . . Γ
e

⊢en : αn Γ (x) = γ
(LTwh)

Γ
e

⊢ #»e when x = k :
»

(αi ⊔ γ)i

Fig. 7. Lustre Security Typing Rules for Expressions

#»

β = Γ (#»x) Γ
e

⊢ #»e : #»α Γ
ck

⊢ck : γ
(LTeq)

Γ
eqn

⊢ #»x ck = #»e :> {(γ ⊔ αi ⊑ βi)i}

Γ
eqn

⊢ eq :> ρ Γ
eqn

⊢ eqs :> ρ′
(LTeqs)

Γ
eqn

⊢ eq; eqs :> ρ ∪ ρ′

Fig. 8. Lustre security typing rules for equations

(⊕,when and fby) and ternary (if-then-else and merge) operations on flows
generate a flow with a security type that is the join of the types of the operand
flows (rules (LTbinop), (LTwhn), (LTmrg), (LTite), and (LTfby). In operations
on lists of flows, the security types are computed component-wise. There is an
implicit dependency on the security level of the common clock of the operand
flows for these operators. This dependence on the security level of the clock is
made explicit in the rule for equations. In general, the security type for any
constructed expression is the join of those of its components (and of the clock).

Node call. Node calls assume that we have a security signature for the node
definition (described below). We can then securely type node calls by instanti-
ating the security signature with the types of the actual arguments (and that
of the base clock). Note the rule (LTncall) creates refinement types consisting
of the output types βi modulated with ρ′, the instantiated set of constraints ρ
taken from the node signature:

Node

⊢ Node f (#»α)γ
ρ
−→

#»

β Γ
e

⊢#»e :
#»

α′ Γ (base) = γ′ ρ′ = ρ[γ′/γ][
#»

α′/ #»α]
(LTncall)

Γ
e

⊢f(#»e) :
#»

β {|ρ′|}

Node definition. A node definition is given a signature
Node

⊢ Node f (#»α)γ
ρ
−→

#»

β ,
which is to be read as saying that the node named f relates the security types #»α

10 Sanjiva Prasad and R. Madhukar Yerraguntla

of the input variables (and γ, that of the base clock) to the types of the output

variables
#»

β , via the constraints ρ.

Let α1, . . . , αn, δ1, . . . δk, β1, . . . βm, γ be distinct fresh type variables. Assume
these to be the types of the input, local and output variables, and that of the
base clock. We compute the constraints over these variables induced by the nodes
equations. Finally, we eliminate, via substitution, the type variables given to the
local program variables, since these should not appear in the node’s interface.
The security signature of a node definition is thus given as:

G(f) = n : {in = #»x , out = #»y , var = #»z , eqn = #»eq}

ΓF := { #»x 7→ #»α, #»y 7→
#»

β , base 7→ γ} ΓL := { #»z 7→
#»

δ }

ΓF ∪ ΓL

eqn

⊢ #»eq :> ρ′ (_, ρ) = simplify (_, ρ′)
#»

δ
(LTndef)

Node

⊢ Node f (#»α)γ
ρ
−→

#»

β

The node signature (and call) rules can be formulated in this step-wise and
modular manner since Lustre does not allow recursive node calls and cyclic
dependencies. Further, all variables in a node definition are explicitly accounted
for as input and output parameters or local variables, so no extra contextual
information is required.

(#»α, ρ) = simplify (#»α, ρ) []

(
#»

α′, ρ′) = simplify (#»α [ν/δ], ρ[ν/δ])
#»

δ

(
#»

α′, ρ′) = simplify (#»α, ρ ∪ {ν ⊑ δ}) (δ ::
#»

δ)
δ not in ν

(
#»

α′, ρ′) = simplify (#»α [ν/δ], ρ[ν/δ])
#»

δ

(
#»

α′, ρ′) = simplify (#»α, ρ ∪ {ν ⊔ δ ⊑ δ}) (δ ::
#»

δ)
δ not in ν

Fig. 9. Eliminating local variables’ security type constraints

Observe that in the (LTndef) rule, δi are fresh security type variables assigned
to the local variables in a node. Since there will be exactly one defining equation
for any local variable zi, note that in constraints ρ′, there will be exactly one
constraint in which δi is on the right, and this is of the form νi⊑δi. Procedure
simplify (Figure 9) serially (in some arbitrary but fixed order) eliminates such
type variables via substitution in the types and type constraints. Our definition
of simplify here generalises that given for the types of NLustre in [15].

Lemma 3 (Correctness of simplify (#»α, ρ)
#»

δ). Let ρ be a set of constraints
such that for a security type variable δ, there is at most one constraint of the
form µ ⊑ δ. Let s be a ground instantiation of security type variables in a security
class lattice SC such that ρ is satisfied by s.

Normalising Lustre Preserves Security 11

1. If ρ = ρ1 ∪ {ν ⊑ δ}, where variable δ is not in ν, then ρ1[ν/δ] is satisfied by
s. (Assume disjoint union.)

2. If ρ = ρ1 ∪{ν ⊔ δ ⊑ δ}, where variable δ is not in ν, then ρ1[ν/δ] is satisfied
by s. (Assume disjoint union.)

Lemma 3 is central to establishing that the type signature of a node does not
change in the normalisation transformations of §4, which introduce equations
involving fresh local program variables.

Revisiting Figure 12, the reader can see the type system at work, with the
security types and constraints annotated. Also shown is the simplification of
constraints using simplify.

4 Normalisation

We now present Bourke et al.’s “normalisation transformations” , which de-nest
and distribute operators over lists (tuples) of expressions, and finally transform
fby expressions to a form where the first argument is a constant.

Normalising an n-tuple of Lustre expressions yields an m-tuple of Lustre

expressions without tupling and nesting, and a set of equations, defining fresh
local variables (Figure 10). We denote the transformation as

([e′1, . . . , e
′
m]α1,...,αm , eqsρ)← ⌊e1, ..., en⌋

where we have additionally decorated the transformations of [4] with security
types for each member of the tuple of expressions, and with a set of type con-
straints for the generated equations. We show that the normalisation transfor-
mations are indeed typed transformations. Our type annotations indicate why
security types and constraints of well-security-typed Lustre programs are pre-
served (modulo satisfaction), as in Theorem 1.

The rules (Xcnst)-(Xbinop) for constants, variables, unary and binary op-
erators are obvious, generating no new equations. In rule (Xwhn), where the
sampling condition is distributed over the members of the tuple, the security
type for each expression is obtained by taking a join of the security type αi of
the expression e′i with γ, i.e., that of the variable x.

Of primary interest are the rules (Xfby) for fby and (Xncall) for node call,
where fresh variables xi and their defining equations are introduced. In these
cases, we introduce fresh security type variables δi for the xi, and add appropri-
ate constraints. The rules (Xite) and (Xmrg) resemble (Xfby) in most respects.
In rule (Xncall), the constraints are obtained from the node signature via sub-
stitution.

The rules (Xbase) and (Xon) for clocks also introduce no equations. The
rules (Xtup) for tuples (lists) of expressions and (Xeqs) for equations regroup the
resulting expressions appropriately. The translation of node definitions involves
translating the equations, and adding the fresh local variables.

Theorem 1 (Preservation of security types). Let g ∈ G be a node in Lus-

tre program G. If the node signature for g in G is
Node

⊢ Node f (#»α)γ
ρ
−→

#»

β ,

12 Sanjiva Prasad and R. Madhukar Yerraguntla

⌊c⌋ = ([c⊥], []∅) Xcnst

⌊xα⌋ = ([x]α, []∅) Xvar

⌊⋄ e1⌋ = let ([e′]α, eqsρ)← ⌊e⌋ Xunop
in ([⋄ e′1]

α, eqsρ)

⌊e1 ⊕ e2⌋ = let ([e′1]
α1 , eqsρ11)← ⌊e1⌋ and ([e′2]

α2 , eqsρ22)← ⌊e2⌋ Xbinop
in ([e′1 ⊕ e′2]

α1⊔α2 , (eqs1 ∪ eqs2)
ρ1∪ρ2)

⌊ #»e when xγ = k⌋ = let ([e′1
α1 , . . . , e′m

αm], eqsρ)← ⌊ #»e ⌋ Xwhn
in ([e′1 when x = kα1⊔γ , . . . , e′m when x = kαm⊔γ], eqsρ)

⌊ #»e0 fby #»e1⌋ = let (
#»

e′0
#»α , eqsρ00)← ⌊ #»e0⌋ and (

#»

e′1
#»

β , eqsρ11)← ⌊ #»e1⌋ Xfby

in (#»x
#»

δ , ({(xi = e′0i fby e′1i)
k
i=1} ∪ eqs0 ∪ eqs1)

ρ)
where ρ = {(αi ⊔ βi⊑δi)

k
i=1} ∪ ρ0 ∪ ρ1

⌊merge xγ #»e1
#»e2⌋ = let (

#»

e′1
#»α , eqsρ11)← ⌊ #»e1⌋ and (

#»

e′2
#»

β , eqsρ22)← ⌊ #»e2⌋ Xmrg

in (#»x
#»

δ , ({(xi = merge x e′1i e
′
2i)

k
i=1} ∪ eqs1 ∪ eqs2)

ρ)
where ρ = {(γ ⊔ αi ⊔ βi⊑δi)

k
i=1} ∪ ρ1 ∪ ρ2

⌊if e then #»et

else #»ef⌋ = let (e′κ, eqsρcc)← ⌊e⌋ and (
#»

e′t
#»α , eqsρtt)← ⌊ #»et⌋ Xite

and (
#»

e′f
#»

β , eqs
ρf
f)← ⌊ #»ef⌋ in

(#»x
#»

δ , ({(xi = if e′ then e′ti else e′fi)
k
i=1} ∪ eqs)ρ)

where eqs = eqsc ∪ eqst ∪ eqsf
ρ = (κ ⊔ αi ⊔ βi⊑δi)

k
i=1 ∪ ρc ∪ ρt ∪ ρf

⌊f(e1, ..., en)⌋ = let ([e′1, ..., e
′
m]

#»

α′

, eqsρ1)← ⌊e1, ..., en⌋ Xncall

in ([x1
δ1 , ..., xk

δk],
({(x1, ..., xk) = f(e′1, ..., e

′
m)} ∪ eqs)ρ2)

where ρ2 = ρ[
#»

α′/ #»α][
#»

δ /
#»

β][γ′/γ] ∪ ρ1

given
Node

⊢ Node f (#»α)γ
ρ
−→

#»

β and γ′ = Γ (base)

⌊[e1, . . . , en]⌋ = let for i ∈ {1, . . . , n} : Xtup
([e′i1

αi1 , . . . , e′imi

αimi], eqsρii)← ⌊ei⌋
in ([e′11

α11 , . . . , e′1m1

α1m1 , . . . , e′k1
αk1 . . . , e′kmk

αkmk],
(
⋃

i=1..k eqsi)
∪iρi)

⌊base⌋ = base Xbase
⌊ck on x = k⌋ = ⌊ck⌋ on x = k Xon

⌊ #»x
#»

β =ckγ
#»e ⌋ = let (

#»

e′
#»α , eqsρ)← ⌊ #»e ⌋ Xeqs

in ({(#»x j =ck e′j)
m
j=1} ∪ eqs){(γ⊔αi⊑βi)

k
i=1

}∪ρ

Fig. 10. Lustre to NLustre normalisation

Normalising Lustre Preserves Security 13

⌊xθ =ckγ eα0 fbyl e
β⌋fby =

xinitδ1 =ckγ true⊥ fbynl false
⊥ ⊥ ⊔ γ ⊑ δ1

pxδ2 =ckγ c⊥ fbynl e
β γ ⊔ β ⊑ δ2

xθ =ckγ if xinitδ1then eα0 γ ⊔ δ1 ⊔ α ⊔ δ2 ⊑ θ

else pxδ2

Fig. 11. Explicit fby initialisation

correspondingly in ⌊G⌋ it is
Node

⊢ Node f (#»α)γ
ρ′

−→
#»

β , and for any ground in-
stantiation s, s(ρ) implies s(ρ′).

The proof is on the DAG structure of G. Here we rely on the modularity of
nodes, and the correctness of simplify (Lemma 3). The proof employs induction
on the structure of expressions. For the further explicit initialisation of fby

(Figure 11), the preservation of security via simplify is easy to see.

Semantics preservation. We recall the important results from [4], which establish
the preservation of stream semantics by the transformations.

Theorem 2 (Preservation of semantics. Theorem 2 of [4]). De-nesting
and distribution preserve the semantics of Lustre programs. (La passe de désim-
brication et distributivité préserve la sémantique des programmes.)

∀G f xs ys : G s f̂(xs)u ys =⇒ ⌊G⌋ s f̂(xs)u ys

Theorem 3 (Preservation of semantics. Theorem 3 of [4]). The explicit
initialisations of fby preserve the semantics of the programs. (L’explicitation des
initialisations préserve la sémantique des programmes.)

∀G f xs ys : G s f̂(xs)u ys =⇒ ⌊G⌋fby s f̂(xs)u ys

4.1 Example

We adapt an example from [4] to illustrate the translation and security-type
preservation. The re_trig node in Figure 12 uses the cnt_dn node (Figure 21)
to implement a count-down timer that is explicitly triggered whenever there is
a rising edge (represented by edge) on i. If the count v expires to 0 before a T

on i, the counter isn’t allowed restart the count. Output o represents an active
count in progress.

We annotate the program with security types (superscripts) and constraints
for each equation (as comments), according to the typing rules. cnt_dn is as-

sumed to have security signature
Node

⊢ Node cnt_dn (α1, α2)
γ {γ⊔α1⊔α2 ⊑ β}
−−−−−−−−−−−→ β.

Eliminating the security types δ′1, δ
′
2, δ

′
3, and δ′6, of the local variables edge, c,

v and nested call to cnt_dn respectively, we get the constraint {γ′ ⊔ α′
1 ⊔ α′

2⊑β
′}.

14 Sanjiva Prasad and R. Madhukar Yerraguntla

Normalisation introduces local variables (v21,v22,v24) with security types
δ′4, δ

′
5, δ

′
6. (Identical names have been used to show the correspondence.) The δ′i

are eliminated by simplify, and the refinement type δ′6{|ρ
′|} for the node call in

the Lustre version becomes an explicit constraint ρ5 in NLustre. Observe that
the security signature remains the same across the translation.

node re_trig (iα′
1 :bool; nα′

2 :int)

returns (oβ′

: bool)

var edgeδ′
1 , cδ′

2 :bool ,

vδ′
3 :int;

let

(edgeck)δ
′γ′

1 = iα′
1 and

(false⊥ fby (not iα′
1));

-- ρ1L = {⊥ ⊔ α′
1 ⊔ ⊥ ⊔ α′

1 ⊑ δ′1}

(cck)δ
′γ′

2 = edgeδ′
1 or

(false⊥ fby oβ′

);

-- ρ2L = {γ′ ⊔ δ′1 ⊔ ⊥ ⊔ β′ ⊑ δ′2}

(vc)δ
′δ′

2

3 = merge cδ′
2

(cnt_dn ((edgeδ′
1 , nα′

2)

when cδ′
2))δ′

6
{|ρ′|}δ

′
2

(0 when not cδ′
2);

-- ρ′ = {δ′2 ⊔ (δ′1 ⊔ δ′2) ⊔ (α′
2 ⊔ δ′2) ⊑ δ′6}

-- ρ3L = {δ′2 ⊔ δ′2 ⊔ δ′6 ⊔ ⊥ ⊔ δ′2 ⊑ δ′3} ∪ ρ′

(oc)β
′δ′

2

= vδ′
3 > 0⊥;

-- ρ4L = {δ′2 ⊔ δ′3 ⊔ ⊥ ⊑ β′}
tel

node re_trig (iα′
1 :bool; nα′

2 :int)

returns (oβ′

: bool)

var edgeδ′
1 , ckδ′

2 :bool , vδ′
3 :int ,

v22δ′
4 :bool , v21δ′

5 :bool ,

v24δ′
6 :int when ck;

let

v22δ4 =δ′
2

false⊥ fby

(not iα′
1);

-- ρ1 = {δ′2 ⊔ ⊥ ⊔ α′
1 ⊑ δ′4}

edgeδ′
1 =⊥ iα′

1 and v22δ′
4 ;

-- ρ2 = {⊥ ⊔ α′
1 ⊔ δ′4 ⊑ δ′1}

v21δ′
5 =⊥ false⊥ fby oβ′

;

-- ρ3 = {⊥ ⊔ ⊥ ⊔ β′ ⊑ δ′5}

ckδ′
2 =γ′ edgeδ′

1 or v21δ′
5 ;

-- ρ4 = {⊥ ⊔ δ′1 ⊔ δ′5 ⊑ δ′2}

v24δ′
6 =δ′

2
cnt_dn(

edgeδ′
1 when ckδ′

2 ,

nα′
2 when ckδ′

2);

-- ρ5 = {δ′2 ⊔ (δ′1 ⊔ δ′2) ⊔ (α′
2 ⊔ δ′2) ⊑ δ′6}

vδ′
3 =δ′

2
merge ckδ′

2 v24δ′
6

(0⊥ when not ckδ′
2);

-- ρ6 = {δ′2 ⊔ δ′2 ⊔ δ′6 ⊔ ⊥ ⊔ δ′2 ⊑ δ′3}

oβ′

=δ′
2 vδ′

3 >0⊥;

-- ρ7 = {δ′2 ⊔ δ′3 ⊔ ⊥ ⊑ β′}
tel

simplifyL (β′, {ρ1L ∪ ρ2L ∪ ρ3L ∪ ρ4L}) {δ
′
1, δ

′
2, δ

′
3, δ

′
6} = (β′, {γ′ ⊔ α′

1 ⊔ α′
2 ⊑ β′})

simplifyNL (β′, {ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4 ∪ ρ5 ∪ ρ6 ∪ ρ7}) {δ
′
1, δ

′
2, δ

′
3, δ

′
4, δ

′
5, δ

′
6}

= (β′, {γ′ ⊔ α′
1 ⊔ α′

2 ⊑ β′})

Fig. 12. Example: Security analysis and normalisation. when c and when not c abbre-
viate when c = T and when c = F.

Normalising Lustre Preserves Security 15

5 Security and Non-Interference

We first recall and adapt concepts from our previous work [15].

Lemma 4 (Security of Node Calls; cf. Lemma 3 in [15]). Assume the
following, for a call to a node with the given security signature

Node

⊢ Node f (#»α)γ
ρ
−→

#»

β Γ
e

⊢#»e :
#»

α′ Γ
e

⊢f(#»e) :
#»

β′ Γ
ck

⊢ck : γ

where ck is the base clock underlying the argument streams #»e . Let s be a ground
instantiation of type variables such that for some security classes

#»

t , w ∈ SC:

s(
#»

α′) =
#»

t and s(γ) = w.

Now, if ρ is satisfied by the ground instantiation { #»α 7→
#»

t ,
#»

β 7→ #»u, γ 7→ w}, then

the s(
#»

β′) are defined, and s(
#»

β′) ⊑ s(
#»

β {|ρ|}).

Lemma 4 relates the satisfaction of constraints on security types generated dur-
ing a node call to satisfaction in a security lattice via a ground instantiation.
Again we rely on the modularity of nodes — that no recursive calls are permitted,
and nodes do not have free variables.

Definition 1 (Node Security; Definition III.1 in [15]). Let g be a node

in the program graph G with security signature
Node

⊢ Node f (#»α)γ
ρ
−→

#»

β . Let
s be a ground instantiation that maps the security type variables in the set
{(α1, . . . αn)} ∪ {(β1, . . . βm)} ∪ {γ} to the security class lattice SC.
Node g is secure with respect to s if (i) ρ is satisfied by s; (ii) For each node
g′ on which g is directly dependent, g′ is secure with respect to the appropriate
ground instantiations for each call to g′ in g as given by Lemma 4.

This definition captures the intuition of node security in that all the constraints
generated for the equations within the node must be satisfied, and that each
internal node call should also be secure.

The notion of non-interference requires limiting observation to streams whose
security level is at most a given security level t.

Definition 2 ((⊑ t)-projected Stream; Definition IV.1 in [15]). Suppose
t ∈ SC is a security class. Let X be a set of program variables, Γ be security type
assumptions for variables in X, and s be a ground instantiation, i.e., Γ ◦s maps
variables in X to security classes in SC. Let us define X⊑t = {x ∈ X | (Γ ◦
s)(x) ⊑ t}. Let H∗ be a Stream history such that X ⊆ dom(H∗). Define H∗|X⊑t

as the projection of H∗ to X⊑t, i.e., restricted to those variables that are at
security level t or lower:

H∗|X⊑t
(x) = H∗(x) for x ∈ X⊑t.

Theorem 4 (Non-interference for NLustre; Theorem 5 in [15]). Let
g ∈ G be a node with security signature

Node

⊢ Node f #»αγ ρ
−→

#»

β

16 Sanjiva Prasad and R. Madhukar Yerraguntla

which is secure with respect to ground instantiation s of the type variables.
Let eqs be the set of equations in g. Let X = fv(eqs) − dv(eqs), i.e., the input
variables in eqs.
Let V = fv(eqs) ∪ dv(eqs), i.e., the input, output and local variables.

Let Γ (and s) be such that Γ
eqn

⊢ eqs :> ρ and ρ is satisfied by s. Let t ∈ SC be
any security level. Let bs be a given (base) clock stream.
Let H∗ and H ′

∗ be such that

1. for all eq ∈ eqs: G,H∗, bs ⊢ eq and G,H ′
∗, bs ⊢ eq, i.e., both H∗ and H ′

∗ are
consistent Stream histories on each of the equations.

2. H∗|X⊑t
= H ′

∗|X⊑t
, i.e., H∗ and H ′

∗ agree on the input variables which are at
a security level t or below.

Then H∗|V⊑t
= H ′

∗|V⊑t
, i.e, H∗ and H ′

∗ agree on all variables of the node that
are given a security level t or below.

Theorem 5 (Non-interference for Lustre). If program G is well-security-
typed in Lustre, then it exhibits non-interference with respect to Lustre’s
stream semantics.

Proof sketch. Let G be well-security-typed in Lustre. This means that
each node g ∈ G is well-security-typed. By induction on the DAG structure of
G, using Theorem 1, ⌊G⌋ is well-security-typed. By Theorem 4, ⌊G⌋ exhibits
non-interference. By Theorems 2 and 3, ⌊G⌋ and G have the same extensional
semantics for each node. Therefore, G exhibits non-interference.

6 Conclusions

We have presented a novel security type system for Lustre using the notion
of constraint-based refinement (sub)types. Using security-type preservation and
earlier results, we have shown its semantic soundness, expressed in terms of
non-interference, with respect to the language’s stream semantics.

We are developing mechanised proofs of these results, which can be integrated
into the Velús verified compiler framework [5].

While Lustre’s value type system is quite jejune, this security type system
is not. It is therefore satisfying to see that it satisfies a subject reduction prop-
erty1. A difficult aspect encountered during the transcription phase [4] concerns
alignment of clocks in the presence of complex clock dependencies. We clarify
that our type system, being static, only considers security levels of clocks, not
actual clock behaviour, and therefore is free from such complications. Further,
the clocks induce no timing side-channels since the typing rules enforce, a for-
tiori, that the security type of any (clocked) expression is at least as high as that
of its clock.

1 At SYNCHRON 2020, De Simone asked Jeanmaire and Pesin whether the termi-
nology “normalisation” used in their work [4] was related in any way to notions of
normalisation seen in, e.g., the λ-calculus. It is!

Normalising Lustre Preserves Security 17

References

1. Auger, C. Certified compilation of SCADE / LUSTRE. Theses, Université Paris
Sud - Paris XI, Feb. 2013.

2. Bourke, T., Brun, L., Dagand, P.-E., Leroy, X., Pouzet, M., and Rieg,

L. A Formally Verified Compiler for Lustre. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(New York, NY, USA, 2017), PLDI 2017, Association for Computing Machinery,
p. 586–601.

3. Bourke, T., Brun, L., and Pouzet, M. Mechanized Semantics and Verified
Compilation for a Dataflow Synchronous Language with Reset. Proc. ACM Pro-
gram. Lang. 4, POPL (Dec. 2019).

4. Bourke, T., Jeanmaire, P., Pesin, B., and Pouzet, M. Normalisation vérifiée
du langage lustre. In 32ièmes Journées Francophones des Langages Applicatifs
(JFLA 2021) (online, Apr. 2021), Y. Regis-Gianas and C. Keller, Eds.

5. Brun, L., Bourke, T., and Pouzet, M. Vélus compiler repository.
https://github.com/INRIA/velus, 2020. Accessed: 2020-01-20.

6. Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. LUSTRE: A Declar-
ative Language for Programming Synchronous Systems. In Proc. 14th Symposium
on Principles of Programming Languages (POPL’87). ACM (1987).

7. Colaço, J., Pagano, B., and Pouzet, M. SCADE 6: A Formal Language for
Embedded Critical Software Development (invited paper). In 2017 International
Symposium on Theoretical Aspects of Software Engineering (TASE) (Sep. 2017),
pp. 1–11.

8. Denning, D. E. A Lattice Model of Secure Information Flow. Commun. ACM
19, 5 (May 1976), 236–243.

9. Goguen, J. A., and Meseguer, J. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28,
1982 (1982), IEEE Computer Society, pp. 11–20.

10. Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The Synchronous
Data Flow Programming Language LUSTRE. Proceedings of the IEEE 79, 9 (Sep.
1991), 1305–1320.

11. Jahier, E. The Lurette V2 User guide, V2 ed. Verimag, October 2015.
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lurette-man.pdf.

12. Kind 2 group. Kind 2 User Documentation, version 1.2.0 ed. De-
partment of Computer Science, The University of Iowa, April 2020.
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf.

13. Knuth, D. E., and Bendix, P. B. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra, J. LEECH, Ed. Pergamon, 1970,
pp. 263–297.

14. Leroy, X. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009),
107–115.

15. Prasad, S., Yerraguntla, R. M., and Sharma, S. Security types for syn-
chronous data flow systems. In 2020 18th ACM-IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE) (2020), pp. 1–12.

16. Raymond, P. Synchronous Program Verification with Lustre/Lesar. Wiley, 2010,
pp. 171 – 206.

17. Viry, P. Equational rules for rewriting logic. Theor. Comput. Sci. 285, 2 (2002),
487–517.

18. Volpano, D., Irvine, C., and Smith, G. A Sound Type System for Secure Flow
Analysis. J. Comput. Secur. 4, 2–3 (Jan. 1996), 167–187.

https://github.com/INRIA/velus
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lurette-man.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf

18 Sanjiva Prasad and R. Madhukar Yerraguntla

A Free Variable Definitions

The definitions of free variables (fv) in expressions and equations, and defined
variables (dv) in equations are given in Figure 13 and Figure 14.

fv(c) = {}
fv(x) = {x}

fv(⋄ e) = fv(e)
fv(e1 ⊕ e2) = fv(e1) ∪ fv(e2)

fv(#»e when x = k) = fv(#»e) ∪ {x}
fv(merge x #»e1

#»e2) = {x} ∪ fv(#»e1) ∪ fv(#»e2)
fv(#»e1 fby #»e2) = fv(#»e1) ∪ fv(#»e2)

fv(if e1 then #»e2 else #»e3) = fv(e1) ∪ fv(#»e2) ∪ fv(#»e3)
fv(f(#»e)) =

⋃
i fv(

#»ei)

fv(base) = {base}
fv(ck on x = k) = fv(ck) ∪ {x}

fv(#»e) =
⋃

i fv(ei)

fv(e :: ck) = fv(e) ∪ fv(ck)

Fig. 13. Free variables for expressions

fv(#»x = #»e) = fv(#»e) \ { #»x }

dv(#»x = #»e) = { #»x}

fv(x =ck ce) = fv(ck) ∪ fv(ce) \ {x}
fv(x =ck c fby e) = fv(ck) ∪ fv(e) \ {x}
fv(#»x =ck f(#»e)) = fv(ck) ∪ fv(#»e) \ { #»x}

dv(x =ck ce) = {x}
dv(x =ck c fby e) = {x}
dv(#»x =ck f(#»e)) = { #»x }

Fig. 14. Free and defined variables for equations

B Stream Semantics

We present here a specification of core Lustre’s co-inductive stream seman-
tics, with some commentary and intuition. This consolidates various earlier pre-

Normalising Lustre Preserves Security 19

sentations of rules [2,3,15,4], and can be seen as an abstract Coq-independent
specification of the semantics encoded in the Vélus development.

The semantics of Lustre and NLustre programs are synchronous : Each
variable and expression defines a data stream which pulses with respect to a clock.
A clock is a stream of booleans (CompCert/Coq’s true and false in Velus). A flow
takes its nth value on the nth clock tick, i.e., some value, written ‹v›, is present
at instants when the clock value is true, and none (written ‹›) when it is false.
The temporal operators when, merge and fby are used to express the complex
clock-changing and clock-dependent behaviours of sampling, interpolation and
delay respectively.

Formally the stream semantics is defined using predicates over the program
graph G, a (co-inductive) stream history (H∗ : Ident → value Stream) that as-
sociates value streams to variables, and a clock bs [3,15,4]. Semantic operations
on (lists of) streams are written in blue sans serif typeface. Streams are written
in red, with lists of streams usually written in bold face. All these stream oper-
ators, defined co-inductively, enforce the clocking regime, ensuring the presence
of a value when the clock is true, and absence when false.

The predicate G,H∗, bs ⊢ e ⇓e es relates an expression e to a list of streams,
written es. A list consisting of only a single stream es is explicitly denoted as
[es]. The semantics of equations are expressed using the predicate G,H∗, bs ⊢

»eqi,
which requires consistency between the assumed and defined stream histories in
H∗ for the program variables, as induced by the equations. Finally, the semantics
of nodes is given as a stream history transformer predicate G s f̂(xs)u ys.

Figure 15 presents the stream semantics for Lustre. While rules for some
constructs have been variously presented [2,3,15,4], our presentation can be con-
sidered as a definitive consolidated specification of the operational semantics of
Lustre, consistent with the Vélus compiler encoding [5].

Rule (LScnst) states that a constant c denotes a constant stream of the value
‹c› pulsed according to given clock bs. This is effected by the semantic operator
const. Rule (LSvar) associates a variable x to the stream given by H∗(x). In rule
(LSunop), ⋄̂ denotes the operation ⋄ lifted to apply instant-wise to the stream
denoted by expression e. Likewise in rule (LSbinop), the binary operation ⊕
is applied paired point-wise to the streams denoted by the two sub-expressions
(which should both pulse according to the same clock). In all these rules, an
expression is associated with a single stream.

The rule (LSwhn) describes sampling whenever a variable x takes the boolean
value k, from the flows arising from a list of expressions #»ei, returning a list of

streams of such sampled values. The predicate ŵhen maps the predicate when to
act on the corresponding components of lists of streams, i.e.,

ŵhen k xs [es1, . . . , esk] = [os1, . . . , osk] abbreviates
∧

i∈[1,k]

when k xs esi = osi.

(Similarly for the predicates m̂erge, îte, and f̂byL. The operation ♭(_) flattens a
list of lists (of possibly different lengths) into a single list. Flattening is required
since expression ei may in general denote a list of streams esi.

20 Sanjiva Prasad and R. Madhukar Yerraguntla

const c bs = cs
(LScnst)

G,H∗, bs ⊢ c ⇓e [cs]

H∗(x) = xs
(LSvar)

G,H∗, bs ⊢ x ⇓e [xs]

G,H∗, bs ⊢ e ⇓e [es] ⋄̂ es = os
(LSunop)

G,H∗, bs ⊢ ⋄ e ⇓e [os]

G,H∗, bs ⊢ e1 ⇓e [es1] G,H∗, bs ⊢ e2 ⇓e [es2] es1⊕̂es2 = os
(LSbinop)

G,H∗, bs ⊢ e1 ⊕ e2 ⇓e [os]

∀i G,H∗, bs ⊢ ei ⇓e esi H∗(x) = xs ∀i : ŵhen k xs esi = osi
(LSwhn)

G,H∗, bs ⊢
#»ei when x = k ⇓e ♭(

»osi)

G,H∗, bs ⊢ e ⇓e [es] ∀i : G,H∗, bs ⊢ eti ⇓e etsi

∀j : G,H∗, bs ⊢ efj ⇓e efsj îte es (♭(
»

etsi)) (♭(
»

efsj)) = os
(LSite)

G,H∗, bs ⊢ if e then
»

eti else
»

efj ⇓e os

H∗(x) = xs ∀i : G,H∗, bs ⊢ eti ⇓e etsi

∀j : G,H∗, bs ⊢ efj ⇓e efsj m̂erge xs (♭(
»

etsi)) (♭(
»

efsj)) = os
(LSmrg)

G,H∗, bs ⊢ merge x
»

eti
»

efj ⇓e os

∀i : G,H∗, bs ⊢ e0i ⇓e e0si ∀j : G,H∗, bs ⊢ ej ⇓e esj

f̂byL (♭(
»

e0si)) (♭(
»esj)) = os

(LSfby)
G,H∗, bs ⊢

»

e0i fby
#»ej ⇓e os

∀i ∈ [1, k] G,H∗, bs ⊢ ei ⇓e esi [H∗(x1), . . . , H∗(xn)] = ♭(# »esi)
(LSeq)

G,H∗, bs ⊢
#»xj = #»ei

{
name = f; in = #»x ; var = #»z ;

out = #»y ; eqs = # »eqn

}
∈ G H∗(n.in) = xs base-ofxs = bs

H∗(n.out) = ys ∀eq ∈ #»eq : G,H∗, bs ⊢ eq
(LSndef)

G s f̂(xs)u ys

G,H∗, bs ⊢
#»ei ⇓e xs G s f̂(xs)u ys

(LSncall)
G,H∗, bs ⊢ f(#»ei) ⇓e ys

Fig. 15. Stream semantics of Lustre

Normalising Lustre Preserves Security 21

The expression merge x
#»

eti
»

ef j achieves (lists of) streams on a faster clock.
The semantics in rule (LSmrg) assume that for each pair of corresponding com-
ponent streams from ♭(etsi) and ♭(efsj), a value is present in the first stream
and absent in the second at those instances where x has a true value ‹T ›, and
complementarily, a value is present in the second stream and absent in the first
when x has a false value ‹F ›. Both values must be absent when x’s value is ab-
sent. These conditions are enforced by the auxiliary semantic operation merge.
In contrast, the conditional expression if e then

#»

et else
»

ef requires that all
three argument streams es, and the corresponding components from ♭(

»

etsi) and

♭(
»

efsj) pulse to the same clock. Again, values are selected from the first or sec-
ond component streams depending on whether the stream es has the value ‹T ›
or ‹F › at a particular instant. These conditions are enforced by the auxiliary
semantic operation ite. A delay operation is implemented by e0 fby e. The rule
(LSfby) is to be read as follows. Let each expression e0i denote a list of streams
e0si, and each expression ej denote a list of streams esj. The output list of
streams consists of streams whose first elements are taken from the each stream
in ♭(

»

e0si) with the rest taken from the corresponding component of ♭(# »esj). These
are achieved using the semantic operation fbyL.

The rule (LSeq) for equations checks the consistency between the assumed
meanings for the defined variables xj according to the history H∗ with the corre-
sponding components of the list of streams ♭(# »esi) to which a tuple of right-hand
side expressions evaluates.

The rule (LSndef) presents the meaning given to the definition named f of a

node as a stream list transformer f̂ . If history H∗ assigns lists of streams to the
input and output variables for a node in a manner such that the semantics of
the equations in the node are satisfied, then the semantic funnction f̂ transforms
input stream list xs to output stream list ys. The operation base-of finds an
appropriate base clock with respect to which a given list of value streams pulse.
The rule (LSncall) applies the stream transformer semantic function f̂ to the
stream list xs corresponding to the tuple of arguments #»ei, and returns the stream
list ys.

Clocks and clock-annotated expressions. We next present rules for clocks. Fur-
ther, we assume that all (NLustre) expressions in equations can be clock-
annotated, and present the corresponding rules.

The predicate H∗, bs ⊢ ck ⇓ck bs′ in Figure 16 defines the meaning of a
NLustre clock expression ck with respect to a given history H∗ and a clock
bs to be the resultant clock bs′. The on construct lets us define coarser clocks
derived from a given clock — whenever a variable x has the desired value k and
the given clock is true. The rules (LSonT), (LSonA1), and (LSonA2) present the
three cases: respectively when variable x has the desired value k and clock is
true; the clock is false; and the program variable x has the complementary value
and the clock is true. The auxiliary operations tl and htl, give the tail of a stream,
and the tails of streams for each variable according to a given history H∗. Rules
(NSaeA)-(NSae) describe the semantics of clock-annotated expressions, where
the output stream carries a value exactly when the clock is true.

22 Sanjiva Prasad and R. Madhukar Yerraguntla

(LSbase)
H∗, bs ⊢ base ⇓ck bs

H∗, bs ⊢ ck ⇓ck (true · bk) H∗(x) = (‹k› · xs)

(htl H∗), (tl bs) ⊢ ck on x = k ⇓ck bs′
(LSonT)

H∗, bs ⊢ ck on x = k ⇓ck (true · bs′)
H∗, bs ⊢ ck ⇓ck (false · bk) H∗(x) = (‹› · xs)

(htl H∗), (tl bs) ⊢ ck on x = k ⇓ck bs′
(LSonA1)

H∗, bs ⊢ ck on x = k ⇓ck (false · bs′)
H∗, bs ⊢ ck ⇓ck (true · bk) H∗(x) = (‹k› · xs)

(htl H∗), (tl bs) ⊢ ck on x = ¬k ⇓ck bs′
(LSonA2)

H∗, bs ⊢ ck on x = ¬k ⇓ck (false · bs′)

H∗, bs ⊢ e ⇓e [‹› · es]

H∗, bs ⊢ ck ⇓ck false · cs
(NSaeA)

H∗, bs ⊢ e :: ck ⇓e [‹› · es]

H∗, bs ⊢ e ⇓e [‹v› · es]

H∗, bs ⊢ ck ⇓ck true · cs
(NSae)

H∗, bs ⊢ e :: ck ⇓e [‹v› · es]

Fig. 16. Stream semantics of clocks and annotated expressions

Stream semantics for NLustre. The semantic relations for NLustre are
either identical to (as in constants, variables, unary and binary operations) or
else the (simple) singleton cases of the rules given for Lustre (as in merge, ite,
when).

The significant differences are in treatment of fby, and the occurrence of fby
and node call only in the context of equations.

The (NSndef’) rule only differs from (LSndef) in that post-transcription clock
alignment, we have an additional requirement of H∗ being in accordance with the
base clock bs, enforced by respects-clock. The (NSeq) rule for simple equations
mentions the clock that annotates the defining expression, checking that it is
consistent with the assumed history for the defined variable x. The (NSfby’)
rule for fby in an equational context uses the semantic operation fby, which
differs from fbyL in that it requires its first argument to be a constant rather
than a stream. Finally, the rule rule (NSncall’) for node call, now in an equational
context, is similar to (LSncall) except that it constrains the clock modulating
the equation to be the base clock of the input flows.

C Auxiliary Predicate Definitions

The definitions of the auxiliary semantic stream predicates when, const, merge,
ite are given in Figure 18. All predicates except fbyL and fbyNL (defined in
Figure 20) are reused to define semantics of both Lustre and NLustre.

All auxiliary stream operators are defined to behave according to the clocking
regime. For example, the rule (DcnstF) ensures the absence of a value when the
clock is false. Likewise the unary and binary operators lifted to stream operations

Normalising Lustre Preserves Security 23

{
name = f; in = #»x ; var = #»z ;

out = #»y ; eqs = # »eqn

}
∈ G H∗(n.in) = xs base-ofxs = bs

respects-clockH∗ bs H∗(n.out) = ys ∀eq ∈ #»eq : G,H∗, bs ⊢ eq
(NSndef’)

G s f̂(xs)u ys

H∗, bs ⊢ e :: ck ⇓e H∗(x)
(NSeq)

G,H∗, bs ⊢ x =ck e
H∗, bs ⊢ e :: ck ⇓e [vs] fbyNL c vs = H∗(x)

(NSfby’)
G,H∗, bs ⊢ x =ck c fby e

H∗, bs ⊢
#»e ⇓e vs H∗, bs ⊢ ck ⇓ck base-ofvs G s f̂(vs)u

»

H∗(xi)
(NSncall’)

G,H∗, bs ⊢ #»x =ck f(#»e)

Fig. 17. Stream semantics of NLustre nodes and equations

⋄̂ and ⊕̂ operate only when the argument streams have values present, as in
(Dunop) and (Dbinop), and mark absence when the argument streams’ values
are absent, as shown in (DunopA) and (DbinopA). The rules (Dtl) and (Dhtl)
are obvious.

Note that in the rules (DmrgT) and (DmrgF) for merge, a value is present on
one of the two streams being merged and absent on the other. When a value is
absent on the stream corresponding to the boolean variable, values are absent on
all streams (DmrgA). The rules for ite require all streams to have values present,
i.e., (DiteT) and (DiteF), or all absent, i.e., (DiteA). We have already discussed
the when operation in some detail earlier.

The fbyNL operation is a bit subtle, and rule (Dfby) may look non-intuitive.
However, its formulation corresponds exactly to the Vélus formalisation, ensur-
ing that a value from the first argument stream is prepended exactly when a
leading value would have been present on the second argument stream. The op-
eration base-of converts a value stream to a clock, i.e., a boolean stream. The
operation respects-clock is formulated corresponding to the Vélus definition.

The main difference between fbyL and fbyNL is that the former takes a
stream while the latter takes a constant value. The fbyNL predicate assigns
the currently saved constant as the stream value and delays the current operand
stream by storing its current value for the next clock cycle (effectively function-
ing as an initialized D-flip flop). fbyL on the other hand extracts the 0th tick
value of the first operand stream and uses the predicate fbydl for delaying.

D Example: A More Detailed Analysis

We adapt the examples given in [4] of translation from Lustre to NLustre,
and show how our typing rules and security analysis works. We also illustrate

24 Sanjiva Prasad and R. Madhukar Yerraguntla

const bs′ c = cs′
(DcnstT)

const (true · bs′) c = ‹c› · cs′
const bs′ c = cs′

(DcnstF)
const (false · bs′) c = ‹› · cs′

⋄̂ es′ = os′ v′ = ⋄ v
(Dunop)

⋄̂ (‹v› · es′) = ‹v′› · os′
⋄̂ es′ = os′

(DunopA)
⋄̂ (‹› · es′) = ‹› · os′

es = v · es′
(Dtl)

(tl es) = es′
es′1⊕̂es

′
2 = os′ v1 ⊕ v2 = v

(Dbinop)
(‹v1› · es

′
1)⊕̂(‹v2› · es

′
2) = ‹v› · os′

x ∈ dom(H∗)
(Dhtl)

(htl H∗)(x) = (tl H∗(x))

es′1⊕̂es
′
2 = os′

(DbinopA)
(‹› · es′1)⊕̂(‹› · es

′
2) = ‹› · os′

respects-clockH∗ bs vs
(DresA)

respects-clockH∗ (false · bs) (‹› · vs)

base-of vs = bs
(Dbase1)

base-of (v · vs) = true · bs

respects-clockH∗ bs vs
(Dres)

respects-clockH∗ (true · bs) (‹v› · vs)

base-of vs = bs
(Dbase2)

base-of (‹› · vs) = false · bs

Fig. 18. Definitions of auxiliary predicates-1

the preservation of the security types during the translation. We annotate the
programs with security types (as superscripts) and constraints on them for each
equation (as comments), according to the typing rules.

The node cnt_dn implements a count down timer cpt which is initialized
with the value of n on 0th tick and whenever there is a T on reset res. Changing
the value of n when the reset is F doesn’t affect the count.

We assign security types α1 to input res, and α2 to input n. The output
cpt is assigned security type β, and the clock ck the type γ. There are no local
variables. Based on the rules (LTvar), (LTbinop), (LTfby) and (LTite), we get
constraint ρL. After simplification, the resultant security signature of cnt_dn is
given by:

Node

⊢ Node cnt_dn (α1, α2)
γ {γ⊔α1⊔α2 ⊑ β}
−−−−−−−−−−−→ β

The normalisation pass de-nests the fby expression and explicitly initial-
izes it into 3 different local streams (v14,v24,v25). These have security types
δ1, δ2, δ3. The local variables generate constraints ρ1, ρ2, ρ3 which are eliminated
by simplify.

The resultant signature of cnt_dn in the translated program is also given by:

Node

⊢ Node cnt_dn (α1, α2)
γ {γ⊔α1⊔α2 ⊑ β}
−−−−−−−−−−−→ β

The re_trig node in Figure 22 uses the cnt_dn node (Figure 21) to imple-
ment a count-down timer that is explicitly triggered whenever there is a rising
edge (represented by edge) on i. If the count v expires to 0 before a T on i, the

Normalising Lustre Preserves Security 25

merge xs′ ts′ fs′ = os′
(DmrgT)

merge (‹T› · xs′) (‹vt› · ts
′) (‹› · fs′) = ‹vt› · os

′

merge xs′ ts′ fs′ = os′
(DmrgF)

merge (‹F › · xs′) (‹› · ts′) (‹vf› · fs′) = ‹vf› · os′

merge xs′ ts′ fs′ = os′
(DmrgA)

merge (‹› · xs′) (‹› · ts′) (‹› · fs′) = ‹› · os′

ite es′ ts′ fs′ = os′
(DiteT)

ite (‹T› · es′) (‹vt› · ts
′) (‹vf› · fs′) = ‹vt› · os

′

ite es′ ts′ fs′ = os′
(DiteF)

ite (‹F › · es′) (‹vt› · ts
′) (‹vf› · fs′) = ‹vf› · os′

ite es′ ts′ fs′ = os′
(DiteA)

ite (‹› · es′) (‹› · ts′) (‹› · fs′) = ‹› · os′

when k xs′ es′ = os′
(DwhA1)

when k (‹¬k› · xs′) (‹v› · es′) = ‹› · os′

fbyNL v xs = ys
(Dfby)

fbyNL c (‹v› · xs) = ‹c› · ys

when k xs′ es′ = os′
(Dwhk)

when k (‹k› · xs′) (‹v› · es′) = ‹v› · os′

fbyNL c xs = ys
(DfbyA)

fbyNL c (‹› · xs) = ‹› · ys

when k xs′ es′ = os′
(DwhA2)

when k (‹› · xs′) (‹› · es′) = ‹› · os′

Fig. 19. Definitions of auxiliary predicates-2

fbyL xs ys = os

fbyL (‹› · xs) (‹› · ys) = ‹› · os

fbydl y xs ys = os

fbyL (‹x› · xs) (‹y› · ys) = ‹x› · os

fbydl v xs ys = os

fbydl v (‹› · xs) (‹› · ys) = ‹› · os

fbydl y xs ys = os

fbydl v (‹x› · xs) (‹y› · ys) = ‹v› · os

Fig. 20. Lustre’s fby semantic predicates

26 Sanjiva Prasad and R. Madhukar Yerraguntla

node cnt_dn

(resα1 : bool; nα2 : int)

returns (cptβ: int);

let

(cptck)βγ

= if resα1 then nα2

else (nα2 fby (cptβ -1));

-- ρL = {γ ⊔ α1 ⊔ α2 ⊔ α2 ⊔ β ⊔ ⊥⊑β}
tel

simplifyL (β, ρL) {} = (β, {γ ⊔ α1 ⊔ α2 ⊑ β})

simplifyNL (β, (ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4))
#»

δ

= (β, {γ ⊔ α1 ⊔ α2 ⊑ β})

where
#»

δ = {{δ1, δ2, δ3}}

node cnt_dn

(resα1 : bool ; nα2 : int)

returns (cptβ: int);

var v14δ1 , v24δ2 , v25δ3 :int;

let

v24δ2 =γ true fby false;

-- ρ1 = {γ ⊔ ⊥ ⊔⊥ ⊑ δ2}

v25δ3 =γ 0 fby (cptβ -1);

-- ρ2 = {γ ⊔ β ⊔ ⊥ ⊑ δ3}

v14δ1 =γ if v24δ2 then n

else v25δ3 ;

-- ρ3 = {γ ⊔ δ2 ⊔ δ3 ⊑ δ1}

cptβ =γ if resα1 then nα2

else v14δ1 ;

-- ρ4 = {γ ⊔ α1 ⊔ α2 ⊔ δ1⊑β}
tel

Fig. 21. Example of normalisation with security analysis

counter isn’t allowed restart the count. Output o represents an active count in
progress.

Eliminating the security types δ′1, δ
′
2, δ

′
3, and δ′6, of the local variables edge, c,

v and nested call to cnt_dn respectively, we get the constraint {γ′ ⊔ α′
1 ⊔ α′

2⊑β
′}.

Normalisation introduces local variables (v21,v22,v24) with security types
δ′4, δ

′
5, δ

′
6. (Identical names have been used to show the correspondence.) The δ′i

are eliminated by simplify, and the refinement type δ′6{|ρ
′|} for the node call in

the Lustre version becomes an explicit constraint ρ5 in NLustre. We see that
the security signature of re_trig remains the same.

Normalising Lustre Preserves Security 27

node re_trig (iα′
1 :bool; nα′

2 :int)

returns (oβ′

: bool)

var edgeδ′
1 , cδ′

2 :bool ,

vδ′
3 :int;

let

(edgeck)δ
′γ′

1 = iα′
1 and

(false⊥ fby (not iα′
1));

-- ρ1L = {⊥ ⊔ α′
1 ⊔ ⊥ ⊔ α′

1 ⊑ δ′1}

(cck)δ
′γ′

2 = edgeδ′
1 or

(false⊥ fby oβ′

);

-- ρ2L = {γ′ ⊔ δ′1 ⊔ ⊥ ⊔ β′ ⊑ δ′2}

(vc)δ
′δ′

2
3 = merge cδ′

2

(cnt_dn ((edgeδ′
1 , nα′

2)

when cδ′
2))δ′

6
{|ρ′|}δ

′
2

(0 when not cδ′
2);

-- ρ′ = {δ′2 ⊔ (δ′1 ⊔ δ′2) ⊔ (α′
2 ⊔ δ′2) ⊑ δ′6}

-- ρ3L = {δ′2 ⊔ δ′2 ⊔ δ′6 ⊔ ⊥ ⊔ δ′2 ⊑ δ′3} ∪ ρ′

(oc)β
′δ′

2

= vδ′
3 > 0⊥;

-- ρ4L = {δ′2 ⊔ δ′3 ⊔ ⊥ ⊑ β′}
tel

node re_trig (iα′
1 :bool; nα′

2 :int)

returns (oβ′

: bool)

var edgeδ′
1 , ckδ′

2 :bool , vδ′
3 :int ,

v22δ′
4 :bool , v21δ′

5 :bool ,

v24δ′
6 :int when ck;

let

v22δ4 =δ′
2

false⊥ fby

(not iα′
1);

-- ρ1 = {δ′2 ⊔ ⊥ ⊔ α′
1 ⊑ δ′4}

edgeδ′
1 =⊥ iα′

1 and v22δ′
4 ;

-- ρ2 = {⊥ ⊔ α′
1 ⊔ δ′4 ⊑ δ′1}

v21δ′
5 =⊥ false⊥ fby oβ′

;

-- ρ3 = {⊥ ⊔ ⊥ ⊔ β′ ⊑ δ′5}

ckδ′
2 =γ′ edgeδ′

1 or v21δ′
5 ;

-- ρ4 = {⊥ ⊔ δ′1 ⊔ δ′5 ⊑ δ′2}

v24δ′
6 =δ′

2
cnt_dn(

edgeδ′
1 when ckδ′

2 ,

nα′
2 when ckδ′

2);

-- ρ5 = {δ′2 ⊔ (δ′1 ⊔ δ′2) ⊔ (α′
2 ⊔ δ′2) ⊑ δ′6}

vδ′
3 =δ′

2
merge ckδ′

2 v24δ′
6

(0⊥ when not ckδ′
2);

-- ρ6 = {δ′2 ⊔ δ′2 ⊔ δ′6 ⊔ ⊥ ⊔ δ′2 ⊑ δ′3}

oβ′

=δ′
2 vδ′

3 >0⊥;

-- ρ7 = {δ′2 ⊔ δ′3 ⊔ ⊥ ⊑ β′}
tel

simplifyL (β′, {ρ1L ∪ ρ2L ∪ ρ3L ∪ ρ4L}) {δ
′
1, δ

′
2, δ

′
3, δ

′
6} = (β′, {γ′ ⊔ α′

1 ⊔ α′
2 ⊑ β′})

simplifyNL (β′, {ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4 ∪ ρ5 ∪ ρ6 ∪ ρ7}) {δ
′
1, δ

′
2, δ

′
3, δ

′
4, δ

′
5, δ

′
6}

= (β′, {γ′ ⊔ α′
1 ⊔ α′

2 ⊑ β′})

Fig. 22. Example: Security analysis and normalisation

	Normalising Lustre Preserves Security

