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Abstract

Term pattern matching is the problem of finding all pattern matches in a sub-
ject term, given a set of patterns. Finding efficient algorithms for this problem is an
important direction for research [19]. We present a new set automaton solution for
the term pattern matching problem that is based on match set derivatives where
each function symbol in the subject pattern is visited exactly once. The algorithm
allows for various traversal patterns over the subject term and is particularly suited
to search the subject term in parallel.

1 Introduction

Given a set of term patterns and a subject term, we are interested in the subterm
matching problem, which is to find all locations in the subject term where a pattern
matches. In term rewriting this corresponds to the act of finding all redexes. Typically,
the matching operation must be performed for many subject terms using the same pat-
tern set, which makes it desirable that matching is efficient. The costs of preprocessing
the pattern set is less important as it is only done once.

The subterm pattern matching problem should not be confused with the root (pat-
tern) matching problem. In the latter, only the matches at a specific position in the
subject term are needed. There are many solutions to the root matching problem that
are designed to efficiently deal with sets of patterns [19]. Moreover these solutions have
been compared in a the practical setting of theorem proving [18]. A solution for the root
matching problem can be applied to solve the subterm matching problem by applying it
to every position in a subject term. But this solution can be expensive as many function
symbols in the subject term will be inspected multiple times.

In contrast to the root matching problem, efficient solutions to the subterm matching
problem are generally restricted to only a single pattern, and not to a set as is common
in term rewriting. More seriously, they avoid the use of an automaton construction
and process both the pattern and the subject term, which is expensive if the matching
problem needs to be solved for a huge number of subject terms. Existing solutions
for pattern sets are reductions from stringpath matching, which requires the resulting
stringpaths to be merged in order to yield a conclusive answer. The algorithm that
we propose is a mixture of an automaton and the match set approach. It is explicitly
formulated for an arbitrary number of patterns, operates directly on the subject term
in a top-down fashion, and directly outputs pattern-position pairs instead of stringpath
matches.
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We present a solution using a so-called set automaton. In a set automaton interme-
diate results are stored in a set and these stored results can be processed independently
using the same automaton. This is similar to a pushdown automaton where intermedi-
ate results are stored on a stack to be processed at a later moment. A set automaton
allows for massive parallel processing. This is interesting given the prediction that the
next boost in computing comes from developing algorithms that are more parallel in
nature [17].

Given a pattern set L, we construct a deterministic automaton that prescribes a
traversal of subject terms t. The automaton is executed at some position p in t, initially
at the root. In each state a next transition is chosen based on the function symbol f in
t at a prescribed position, which is a sub-position of p. Every function symbol of t is
only inspected once. Each transition is labelled with zero or more outputs of the form
ℓ@p′, announcing a match of pattern ℓ at some position p′ in the subject term.

Each transition ends in a set of next state/position pairs that must be processed
further. In case the resulting set always consists of one single state/position, the
set automaton behaves as an ordinary automaton. The order in which the resulting
state/position pairs need to be processed is undetermined, hence the name set automa-
ton. In a sequential implementation a stack or queue could be used to store these
pairs giving depth-first or breadth-first strategies. But more interestingly, the new
state/position pairs can be taken up by independent processors, exploring the subject
term t in parallel. Note that also when running in parallel the algorithm adheres to its
main asset, namely that every function symbol of t will only be inspected once.

The set automaton is generated by taking function symbol/position derivatives of
match goal sets, similar to how Brzozowski derivatives work for regular expressions [2].
The derivatives are partitioned into independent classes, giving rise to the set of next
states. By shifting the match goal sets back, the relative displacement through the
subject term is derived allowing to calculate the position where the next state must be
evaluated. This keeps the automaton finite.

The paper is organized as follows. After some preliminaries we informally discuss
an example set automaton that matches associativity patterns in Section 3. Section 4
is dedicated to the set automaton construction. In Sections 5 we show that the con-
struction is a well-defined and terminating procedure, and in Section 6 we prove that
the obtained set automaton is indeed a correct and efficient solution to the subterm
matching problem. In Section 7 we discuss the complexity of applying a set automaton
and briefly discuss some preliminary experiments on the size of set automata. Lastly in
Section 8 we share our thoughts on future work.

1.1 Related work

Many solutions for the subterm pattern matching problem focus on the time complexity
or benchmarking of matching one pattern against one subject term. See for example
[4, 8, 22, 9]. These methods are typically inefficient if there is a large pattern set,
and the subject terms that need to be matched against the pattern set outnumber the
subject term size and pattern size by orders of magnitude. Especially in model checking
tools that use term rewriting to manipulate data [3, 10], the pattern set size is usually
a fixed parameter whereas the amount of terms that need to be rewritten blows up
according to state space explosion. A better solution is to preprocess the pattern set
into an automaton-like data structure. Even though the preprocessing step is usually
expensive, the size of the pattern set is removed as a parameter from the time complexity
of the matching time. This makes the subterm matching problem efficiently solvable
against a vast number of subject terms. To our knowledge, our approach is the first
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top-down solution of this kind, that achieves this efficiency.
A literature study on related solutions is found in the taxonomy of [6, 5]. Hoffmann

and O’Donnell [16] convert a pattern into a set of stringpaths, after which they create an
Aho-Corasick automaton [1] that accepts this set of stringpaths. Cleophas, Hemerik and
Zwaan report that this algorithm is closely related to their algorithm, which constructs
a tree automaton from a single pattern [7]. In [5], Algorithm 6.7.9, there is a version of
this algorithm that supports multiple patterns. The disadvantage of both approaches
is that a subject term is scanned for matching stringpaths, rather than term pattern
matches. In order to yield a conclusive answer to the term pattern matching problem,
it is required to keep track which stringpaths match for every pattern, at every position
in the subject term. Our set automata are built directly on the pattern set, which
allows us to output pattern-position pairs directly and avoid the postprocessing step of
merging stringpath matches.

Flouri et al. create a push-down automaton in [11] from a single pattern. This
approach is very similar to the construction of our set automaton in the sense that
match-sets are used in the automaton construction. This yields the same complexity as
Hoffman and O’Donnell’s bottom-up algorithm [16].

The notation and the fact that set automaton states are labelled with positions,
have much in common with Adaptive Pattern Matching Automata [21], which form a
solution to the root pattern matching problem.

2 Preliminaries

A signature is a sequence of disjoint, finite sets of function symbols F0,F1,. . . ,Fn where
Fi consists of function symbols of arity i. We denote the arity of f by #f . The set
of constants is F0, the entire signature is defined by F =

⋃n

i=0 Fi and the set of non-
constants is denoted by F>0 =

⋃n
i=1 Fi Let T(F) be the set of terms over F, defined

as the smallest set that contains the variable ω, every constant, and for all f ∈ F>0,
whenever t1, . . . , t#f ∈ T(F), then also f(t1, . . . , t#f ) ∈ T(F). The set of closed terms
TC(F) is defined similarly, but without the clause ω ∈ TC(F). Since we only deal with
linear patterns, that is, patterns in which no variable occurs twice, it is unnecessary to
distinguish between the terms f(x) and f(y). Therefore we only use one variable ω.

A pattern over the signature F is a term in T(F) \ {ω}. We use ℓ to range over
patterns. A pattern is typically the ‘left-hand side’ of a rewrite rule. Given a pattern
ℓ = f(t1, . . . , tn), its head symbol is given by hd(ℓ) = f . A pattern set is a finite, non-
empty set of patterns. Throughout this paper we use an arbitrary pattern set denoted
by L.

A position is a list of positive natural numbers. We use P to denote the set of all
positions and we use ǫ to denote the empty list; it is referred to as the root position.i
Given two positions p, q their concatenation is denoted by p.q. The root position acts
as a unit with respect to concatenation.

To alleviate the notation, we often denote a pair (x, p) in some set X ×P by x@p so
that the pair may be read as ‘x at position p’. The term domain function D : T(F) →
P(P) maps a term to a set of positions. That is, D(ω) = {ǫ}, for all a ∈ F0 we have
D(a) = {ǫ}, and for all f ∈ Fn with n > 0 we have D(f(t1, . . . , tn)) = {ǫ} ∪

⋃
i≤n{i.p |

p ∈ D(ti)}.
Given a term t and a position p ∈ D(t), the subterm of t at position p is denoted by

t[p]. A pattern ℓ matches term t on position p iff for all p′ ∈ D(ℓ) such that ℓ[p′] 6= ω
we have that hd(t[p.p′]) = hd(ℓ[p′]).

Let sub(t) be the subpatterns of t, given by {t[p] | p ∈ D(t) and t[p] 6= ω}. Since ω
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f, ℓ1@ǫ

↓ 1

↓ 2

f, ℓ2@ǫ

↓ 2

s1

1

s2

2

↓ 1

s0

ǫ

f

a

aa
∅

∅

∅

↓ ǫ↓ ǫ

Figure 1: A set automaton for the associativity patterns.

is not a pattern, it is excluded from this set on purpose. We extend D and sub to sets
of terms by pointwise union. That is, D(L) =

⋃
ℓ∈LD(ℓ), and similarly for sub.

3 An example set automaton

In this section we informally discuss the example set automaton in Figure 1. It solves
the term matching problem for the associativity patterns ℓ1 = f(f(ω, ω), ω) and ℓ2 =
f(ω, f(ω, ω)). We work in a setting with one binary function symbol f and one constant
a.

We explain this automaton by applying it to the term t = f(f(a, f(a, a)), a). The
evaluation is done in a semi-top-down fashion. That is, in order to inspect position
p.i we need to have inspected position p before. We execute the automaton given a
state and a position pointer p, which is initially state s0 at the root position. The
automaton tells us which position in t to inspect, which pattern matches are given as
an output at which positions, and it tells at which state/position pairs the evaluation
of the automaton must be continued.

The initial state s0 is labelled with the root position in the box on top of it. This
means that we have to inspect the function symbol in t at position ǫ relative to the
position pointer p. Since the position pointer is initially ǫ, we inspect the head symbol
at t[ǫ.ǫ] which is f . There are two f -transitions from state s0 in the automaton, which
have been depicted graphically as an f -labelled arrow, going to a black dot with two
outgoing arrows. If a match is found, the transition is labelled with ℓ@p′ to indicate that
pattern ℓ matches at position p′ relative to the position pointer p. In this case, no such
label is present on the f -labelled transition. Therefore no pattern match is reported.
Furthermore, the arrows from the black dots are labelled with a relative displacement p′′

indicating that the next state must be evaluated at position pointer p.p′′. In this case,
the displacement annotation ↓ ǫ prescribes that we continue the evaluation at position
pointer ǫ.ǫ. The two transitions for f go to states s1 and s2 indicating that both states
must be evaluated independently at position ǫ. This can be done in parallel, but for
simplicity we do a sequential traversal and continue in state s1.

We are in state s1 and the position pointer is still ǫ. The state label of s1 is 1, so
we look at position 1 relative to the position pointer. In term t = f(f(a, f(a, a)), a) we
observe hd(t[ǫ.1]) = f , so we take both f -transitions from s1. The arrow labelled by f ,
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is accompanied by the label ℓ1@ǫ. This means that we announce a match for pattern
ℓ1 at position ǫ relative to the position pointer. Since the position pointer is still ǫ, we
announce that ℓ1 matches t at position ǫ. From the black dot there are two outgoing
arrows with the label ↓ 1. This means that we continue in states s1 and s2 with the
position pointer changed to ǫ.1.

Continuing the evaluation in state s2 at position pointer 1, we find the state label
2 on top. So, we inspect t at position 2 relative to the position pointer and find that
hd(t[1.2]) = f . We again follow both outgoing f -transitions. First we announce a match
for pattern ℓ2 at position ǫ relative to the position pointer, so we get that t matches ℓ2 at
position 1. Following the arrows from the bottom black dot, we continue the evaluation
in s1 and s2 with position pointer 1.2.

Now the following state/position pairs still remain to be evaluated: s2 at position
pointer ǫ, s1 at 1, and s1 and s2 both at position pointer 1.2. Inspecting t at each
position p.L(s) where p is the position pointer and L(s) is the state label, we find the
constant a. Following any a-transition, the evaluation ends up in the final state, denoted
by ∅, which means that no new state/positions pairs need to be added for evaluation.

The algorithm provides the following answer to the question “at which positions do
the patterns ℓ1 = f(f(ω, ω), ω) and ℓ2 = f(ω, f(ω, ω)) match the term t = f(f(a, f(a, a)), a)?”.
The pattern ℓ1 matches t at the root position and ℓ2 matches t at position 1. Observe
that the algorithm inspected every position of t exactly once. The construction of the
automaton guarantees this efficiency, even though at every inspection occurrence of a
symbol f two independent evaluations of the automaton were started.

4 Automaton construction

We describe how to create a set automaton based on position-/function symbol deriva-
tives. To this end we first formally define the automaton, and in particular, what kind
of information should be encoded by states.

The sets of match obligations MO and match announcements MA are respectively
defined by

MO = P(sub(L)× P) \ {∅} MA = L × P .

A match goal is a match obligation paired with a match announcement. To limit the
amount of parentheses, we often denote a match goal, i.e. a pair in MO × MA, by
ℓ1@p1, . . . , ℓn@pn → ℓ@p. Such a match goal should be read as: “in order to announce
a match for pattern ℓ at position p, we are obliged to observe the (sub)pattern ℓi on
position pi, for all 1 ≤ i ≤ n”. We denote the positions of a match obligation mo by
pos(mo), defined by pos(mo) = {p ∈ P | (t, p) ∈ mo}.

A set automaton for the pattern set L is a tuple (S, s0, L, δ, η) where

• S ⊆ P(MO ×MA) \ {∅} is a finite set of states;

• s0 ∈ S is the initial state;

• L : S → P is a state labelling function;

• δ : S × F → P(S × P) is a transition function;

• η : S × F → P(L × P) is an output function.

The empty set serves as a final state, but it has no outgoing transitions and no output.
Furthermore, a match goal of the form ℓ@p → ℓ@p is called fresh, and a match goal of
the form mo → ℓ@ǫ is called a root goal.
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Example 4.1. Consider the pattern ℓ = f(f(ω, g(ω)), g(ω)). Figure 2 is a set automa-
ton for the singleton pattern set {ℓ}. It serves as a running example throughout this
section and the next. The state labels are given in the small boxes on the top left of
every state, and on the top right of every state there is an identifier. We have L(s0) = ǫ
and L(s3) = 1.2. Formally we have δ(s3, f) = {(s0, 1.1), (s1, 1.2)}, which is depicted
graphically as an f -labelled arrow going to the black dot, with two outgoing position-
labelled arrows to s0 and s2. The only non-empty output set is η(s3, g) = {ℓ@ǫ}. For all
other state/symbol pairs (s, h) we have η(s, h) = ∅. The final state ∅ has two incoming
transitions. For graphical purposes it is displayed twice.

g

f(ω, g(ω))@1, g(ω)@2 → ℓ@ǫ

f(f(ω, g(ω)), g(ω))@1 → ℓ@1
f(f(ω, g(ω)), g(ω))@2 → ℓ@2

2 s1

f(f(ω, g(ω)), g(ω))@ǫ → ℓ@ǫ

ǫ s0

↓ 1

f

↓ ǫ

f(ω, g(ω))@1 → ℓ@ǫ

f(f(ω, g(ω)), g(ω))@1 → ℓ@1

1 s2

1.2

g(ω)@1.2 → ℓ@ǫ

f(ω, g(ω))@1.1, g(ω)@1.2 → ℓ@1
f(f(ω, g(ω)), g(ω))@1.1 → ℓ@1.1
f(f(ω, g(ω)), g(ω))@1.2 → ℓ@1.2

s3

g

↓ 2.1

↓ ǫ

f
↓ 2

↓ 1

a

↓ 1 ↓ 1.1

g f

↓ ǫg, ℓ@ǫ

↓ 1

↓ 1.2.1

f

↓ 1.2

↓ 1.1a

↓ 1.1

∅

∅

a

a

Figure 2: A set automaton for ℓ = f(f(ω, g(ω)), g(ω)).

4.1 Initial state

Let L be a pattern set. We construct the automaton M = (S, s0, L, δ, η) by starting
with the initial state. It is labelled with the root position and its match goals are all
possible fresh root goals:

s0 = {ℓ@ǫ → ℓ@ǫ | ℓ ∈ L} and L(s0) = ǫ .

4.2 Function symbol-position derivatives

To determine the transition relation, we introduce function symbol-position derivatives.
This terminology is borrowed from Brzozowski derivatives of regular expressions [2].
From a state s with L(s) = p, and a symbol f , we determine the f -p-derivative of
s by computing the reduced match obligations of s and adding the fresh match goal
ℓ@p.i → ℓ@p.i for every argument i of f and every pattern ℓ ∈ L. Based on observing
function symbol f at position p, the match obligation ℓ1@p1, . . . , ℓn@pn can be altered
in one of four ways.

• p = p1, n = 1 and ℓ1 = f(ω, . . . , ω). Then f@p is the last observation that was
needed, so the obligation is fulfilled. The match announcement paired with this
obligation is presented as a pattern match.
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• p = pi for some i and hd(ℓi) 6= f . Then f@p contradicts with an expected
observation, so the match obligation is discarded.

• p 6= pi for all i. Then f@p is unrelated, so the obligation remains unchanged by
this observation.

• otherwise p = pi for some i and hd(ℓi) = f , but f@p is only one of the many
expected observations. Then ℓi@pi is removed and the arguments of ℓi are added
as new match obligations.

Formally, the mapping reduce : MO × F × P → MO ∪ {∅} alters the match obligation
mo after the observation f@p by

reduce(mo, f, p) ={ℓ@q ∈ mo | q 6= p} ∪

{ℓ[i]@p.i | ℓ@p ∈ mo ∧ 1 ≤ i ≤ #f ∧ ℓ[i] 6= ω} .

Using the mapping reduce, we can define the f -derivative of state s by

deriv(s, f) = unchanged ∪ reduced ∪ fresh ,where

unchanged = {mo → ma ∈ s | L(s) /∈ pos(mo)}

reduced = {reduce(mo, f, L(s)) → ma | mo → ma ∈ s ∧

∃ℓ[ℓ@L(s) ∈ mo ∧ hd(ℓ) = f ] ∧ reduce(mo, f, L(s)) 6= ∅}

fresh = {ℓ@L(s).i → ℓ@L(s).i | ℓ ∈ L ∧ 1 ≤ i ≤ #f}

Example 4.2. Recall the pattern ℓ = f(f(ω, g(ω)), g(ω)) and the set automaton in
Figure 2. Consider state s1. The parts of deriv(s1, g) are computed as follows:

unchanged = {f(f(ω, g(ω)), g(ω))@1 → ℓ@1}

reduced = {f(ω, g(ω))@1 → ℓ@ǫ}

fresh = {f(f(ω, g(ω)), g(ω))@2.1 → ℓ@2.1} .

Note that the goal f(f(ω, g(ω)), g(ω))@2 → ℓ@2 disappears completely since there is a
mismatch with the expected symbol g at position 2.

4.3 Derivative partitioning

One application of deriv creates new match obligations with strictly lower positions.
Repeated application of deriv therefore results in an automaton with an infinite amount
of states. To solve this problem we take two more steps after computing the derivative.
First, we partition the derivative into independent equivalence classes. Then, in every
equivalence class, we lower the positions of all match goals as much as possible. These
two measures suffice to create a finite set automaton.

Note from Example 4.2 that the derivative has two match obligations at position 1,
and one match obligation at position 2.1. To obtain an efficient matching algorithm, it
is important that goals with overlapping positions stay together to obtain an efficient
matching algorithm. Conversely, sets of goals that are independent from each other
can be separated to form a new state with fewer match goals. When evaluating a set
automaton this creates the possibility of exploring parts of the subject term indepen-
dently.

Given a finite subset of match obligations X ⊆ MO , define the direct dependency
relation R on X for all mo1,mo2 ∈ X by mo1 R mo2, iff pos(mo1) ∩ pos(mo2) 6= ∅.

7



Note that R is reflexive (since MO excludes the empty set) and symmetric. But R is
not transitive, since for the obligations

mo1 = {t1@1} mo2 = {t1@1, t2@2} mo3 = {t2@2}

we have mo1 R mo2 R mo3, but not mo1 R mo3. Denote the dependency relation on
X by ∼X , defined as the transitive closure of R. Two match obligations are said to
be dependent iff mo1 ∼X mo2. We extend ∼X to match goals by (mo1 → ma1) ∼X

(mo2 → ma2) iff mo1 ∼X mo2. The subscript X is mostly omitted if the set is clear
from the context, but note that it is necessary to define this relation separately on every
state. Defining it on the set of all match obligations will simply result in the full relation
MO ×MO .

To determine the outgoing transitions we partition deriv(s, f) into equivalence classes
with respect to dependency ∼ on the match obligations. Each equivalence class then
corresponds to a new state. The set of equivalence classes of the derivative is denoted
by [deriv(s, f)]∼. We use the letter K to range over equivalence classes.

Example 4.3. Consider the computed g-derivative in Example 4.2. Partitioning yields

K1 = {f(f(ω, g(ω)), g(ω))@1 → ℓ@1f(ω, g(ω))@1 → ℓ@ǫ}

K2 = {f(f(ω, g(ω)), g(ω))@2.1 → ℓ@2.1}

Example 4.4. Consider the f -derivative of s2, which is exactly s3. Note that the goals
g(ω)@1.2 → ℓ@ǫ and f(f(ω, g(ω)), g(ω))@1.1 → ℓ@1.1 are not directly dependent, but
the goal f(ω, g(ω))@1.1, g(ω)@1.2→ ℓ@1 is directly dependent to both goals. Therefore
we obtain a singleton partition.

4.4 Lifting the positions of classes

Partitioning into smaller states is not enough to obtain a finite state machine since
the positions of match goals are increasing. As the last part of the construction, we
shorten the positions of every equivalence class. This can be done due to the following
observation. Suppose that we are looking at term t on position ǫ. If all match goals say
something about position 1 or lower, we can remove the prefix 1 everywhere, and start
to look at term t from position 1. Inspecting position 1.p from the root is the same as
inspecting p from position 1.

Let posMA(K) denote the positions of the match announcements of K. We want
to ‘lift’ every position in every goal of K by the greatest common prefix of posMA(K),
which we denote by gcp(posMA(K)). To ease the notation we write gcp(K) instead of
gcp(posMA(K)). Since all positions in a state are of the form gcp(K).p′, we can replace
them by p′. Define lift(s) by lift(s) = {(lift(mo), ℓ@p′) | (mo, ℓ@gcp(s).p′) ∈ s} where
lift(mo) = {ℓ@p′ | ℓ@gcp(s).p′ ∈ mo}.

This concludes the construction of the transition relation. For a state s and a
function symbol f , we fix δ(s, f) = {(lift(K), gcp(K)) | K ∈ [deriv(s, f)]∼}. Note that
gcp(K) is also recorded in each transition since it tells us how to traverse the term.

Example 4.5. Continuing in Example 4.3, we compute the greatest common prefix and
corresponding transition for the two equivalence classes. For K1 we have gcp(K1) =
gcp({1, ǫ}) = ǫ. Then lift(K1) = K1 = s2, and therefore (s2, ǫ) ∈ δ(s1, g). Class K2 has
one goal with gcp(K2) = gcp({2.1}) = 2.1. Then lift(K2) = {f(f(ω, g(ω)), g(ω))@ǫ →
ℓ@ǫ}, which yields the transition (s0, 2.1) ∈ δ(s1, g).

8



4.5 Output patterns

The output patterns after an f -transition are simply the match announcements that
accompany the match obligations that reduce to ∅:

η(s, f) = {ma ∈ MA | f(ω, . . . , ω)@L(s) → ma ∈ s} .

Example 4.6. Consider state s3 in Figure 2. The goal g(ω)@1.2 → ℓ@ǫ can be com-
pleted upon observing g at position 1.2, so we fix η(s3, g) = {ℓ@ǫ}.

4.6 Position labels

For every state s there must be a position label L(s) in order to construct the transitions
from s. It makes sense to only choose a position from one of the match obligations. We
demand the extra constraint that this position should be part of a root match goal. The
construction guarantees that every state has a root goal, which we prove in detail in
the next section. Similar to Adaptive Pattern Matching Automata [21], there might be
multiple positions available to choose from. Any of such positions can be chosen in the
construction of the automaton, but this position needs to be fixed when s is created.

4.7 Summary

The following is a summary of the construction of the set automaton.

• s0 = {ℓ@ǫ → ℓ@ǫ | ℓ ∈ L};

• δ(s, f) = {(lift(K), gcp(K)) | K ∈ [deriv(s.f)]∼};

• η(s, f) = {ma ∈ MA | f(ω, . . . , ω)@L(s) → ma ∈ s}; and

• L(s) can be any p ∈ pos(mo) for some root match goal mo → ℓ@ǫ ∈ s.

5 Validity of the construction

In order to see that the construction algorithm of the set automaton works we need to
know whether the following two properties hold. Firstly, it is necessary that L(s) is a
position in the match obligation of some root goal, but it is not immediately clear that
every state has a root goal. Secondly, the algorithm needs to terminate. In this section
we show that these properties are valid.

First we need some extra preliminaries. In the previous section we used gcp(P ) to
denote the greatest common prefix in a set of positions. This is a lattice construct that
requires more elaboration to do proofs.

Definition 5.1 (Position join-semilattice). Position p is said to be below position q,
denoted by p ≤ q, iff there is a position q′ such that p = q.q′. Position p is strictly below
q, denoted by p < q, if in addition q′ 6= ǫ. This definition makes the structure (P,≤)
a join-semilattice. That is, ≤ is reflexive, transitive and antisymmetric, and for each
finite, non-empty set of positions P there is a unique join

∨
P , which satisfies p ≤

∨
P

for all p ∈ P and whenever p ≤ r for all p ∈ P then also
∨
P ≤ r. We call this join the

greatest common prefix gcp(P ). We denote the join of two positions p and q by p ∨ q.
Two positions p, q are comparable if p ≤ q or q ≤ p.

Proposition 5.2. The following properties hold for (sets of) positions.

9



• For all p, q, r ∈ P we have p.q ≤ p.r ⇔ q ≤ r;

• For all p ∈ P, for all i ∈ N
+ we have p 6≤ p.i;

• For all p, q, r ∈ P, if p ≤ q and p ≤ r then q and r are comparable;

• For all p, q ∈ P, if p and q are comparable then p ∨ q = p or p ∨ q = q; and

• For all finite P,Q ⊆ P we have gcp(P ∪Q) = gcp(P ) ∨ gcp(Q).

Lastly, consider the straightforward notion of reachable state. A state s is reachable
if there is a sequence of transitions to it from s0. That is, s0 is reachable and whenever
s is reachable and (s′, p) ∈ δ(s, f), then s′ is also reachable. The following claims are
useful in many places of the correctness proof.

Proposition 5.3. Let s be a reachable state.

• For all goals ℓ1@p1, . . . , ℓn@pn → ℓ@p in s we have that pi ≤ p for all i.

• For all distinct p, q ∈ posMO(s) the positions p and q are incomparable.

• For all distinct p, q ∈ posMO(deriv(s, f)) the positions p and q are incomparable.

First, we show that every reachable state always has an available root goal. By
definition of the transition function, the positions of all match goals in a class K get
shortened by gcp(K) after partitioning. The partitioning allows us to show that gcp(K)
is always in posMA(K).

Lemma 5.4. Let s be a reachable state. Then for all f ∈ F, if K ∈ [deriv(s, f)]∼ then
there is a goal mo → ℓ@gcp(K) in K.

The details of the proof can be found in the appendix; we give a sketch here. The
proof is by induction on the size of K. The base case is trivial, and if |K| ≥ 2 then
K can be split into two non-empty classes with a dependency between them. By using
Propositions 5.2 and 5.3, and the induction hypothesis we can show that one of the two
smaller classes has a goal of the right form.

Corollary 5.5. Every reachable state has a root goal.

Next, we show that the construction terminates. There are two key observations
to termination. Firstly, the lift operation always shortens the positions of derivative
partitions with respect to ≤. Secondly, every state label is a match obligation position
of some root goal in that state. This allows us to prove that reachable states can only
have match positions in some finite set.

Lemma 5.6. Let N be the largest arity of any function symbol in F, and define the set
of reachable positions by R = {p ∈ P | ∃q, r, i : q ∈ D(L)∧r ∈ P∧1 ≤ i ≤ N∧r.p = q.i}.
Then for all reachable states s we have that posMO(s) ⊆ R.

The proof can be found in the appendix. Intuitively, since there are only finitely
many state labels, the longest position in any match obligation is of the form L(s).i
where i is bounded by N .

Corollary 5.7. There are finitely many reachable states.
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6 Correctness of the evaluation

The informal evaluation that was discussed in Section 3 describes how to apply an
automatonM to a subject term. Formally this procedure can be defined by the mapping
evalM : S × P× T(F) → P(L × P) given by

evalM (s, p, t) = {ℓ@p.q | ℓ@q ∈ η(s, f)} ∪
⋃

(s′,p′)∈δ(s,f)

eval(s′, p.p′, t)

where f = hd(t[p.L(s)]). Finding all pattern matches in a term t is the invocation of
evalM (s0, ǫ, t). The desired correctness property can then be stated as follows:

evalM (s0, ǫ, t) = {ℓ@p ∈ L × P | ℓ matches t at p} .

This property cannot be shown by a straightforward structural induction on t. In
this section we take a detour and prove an equivalent correctness claim. The proof is
sketched as follows. First, we add explicit structure to the evaluation by computing an
evaluation tree ETM (t) of a term t. We prove a one-to-one correspondence between the
nodes of ETM (t) and t. It follows that this method of pattern matching is efficient in
the sense that every position of t is inspected exactly once. Soundness and completeness
is shown at the end of the section.

6.1 Evaluation trees

Definition 6.1. An evaluation tree for an automaton M = (S, s0, L, δ, η) is a tuple
(N,→) where N ⊆ S × P is a set of nodes, and → ⊆ N ×N is a set of directed edges.
With a closed term t we associate an evaluation tree ETM (t) = (N,→) defined as the
smallest evaluation tree such that

• there is a root (s0, ǫ) ∈ N ; and

• whenever (s, p) ∈ N and hd(t[p.L(s)]) = f then for every (s′, p′) ∈ δ(s, f) there is
an edge (s, p) → (s′, p.p′) with (s′, p′) ∈ N .

The successors of a node n are given by Suc(n) = {n′ ∈ N | n → n′}.

Example 6.2. Figure 3 shows the term t = f(g(a), f(f(a, g(a)), g(a))) and its eval-
uation tree ETM (t), given the set automaton M of Figure 2. There is a one-to-one
correspondence between the positions of t and the nodes of the evaluation tree.

We prove that ETM (t) indeed corresponds to t in general. To this end, we define for
every node the set of positions that still has to be inspected. That is, the set of work
that still has to be done.

Definition 6.3. Define the mapping W : N → P(D(t)) by

W(s, p) = {p.q ∈ D(t) | ∃r : r ∈ posMO(s) ∧ q ≤ r} .

By definition of s0 we have W(s0, ǫ) = D(t). Intuitively this makes sense, since at
the beginning of the evaluation, no work is done and all the positions still have to be
inspected. The mapping W fixes a correspondence between an evaluation tree and the
strict subset ordering (D(t),⊂). This follows from the following lemma. A detailed
proof can be found in the appendix.

Lemma 6.4. Let ETM (t) = (N,→) and consider an arbitrary node (s, p) ∈ N . Then
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Figure 3: The term t = f(g(a), f(f(a, g(a)), g(a))) on the left and its evaluation tree
ETM (t) on the right.

1. For all successors (s′, p.p′) ∈ Suc(s, p) we have that p.L(s) /∈ W(s′, p.p′).

2. For all distinct successors (s1, p.p1), (s2, p.p2) ∈ Suc(s, p) the sets W(s1, p.p1) and
W(s2, p.p2) are disjoint.

3. We have that W(s, p) = {p.L(s)} ∪
⋃

n∈Suc(s,p) W(n).

By combining these properties, we get the following two corollaries.

Corollary 6.5. For all terms t, we have that ETM (t) = (N,→) is a finite tree.

Corollary 6.6. Define ϕ : N → D(t) by ϕ(s, p) = p.L(s). Then ϕ is a bijection.

It follows that the evaluation of a term terminates, and every position is inspected
exactly once. Whenever an evaluation tree node has multiple outgoing edges, it means
that parallellism is possible. This parallellism preserves the efficiency of no observation
being made twice.

6.2 Soundness and completeness

First, consider the following evaluation function that takes an evaluation tree node and
traverses it until a leaf node is reached.

Definition 6.7. Given ETM (t) = (N,→), define evalM : N → P(L × P) by

evalM (s, p) = {ℓ@p.q | ℓ@q ∈ η(s, hd(t[p.L(s)]))} ∪
⋃

(s′,p.p′)∈Suc(s,p)

evalM (s′, p.p′) .

By Corollary 6.6, applying eval on the initial state from the root position is the same
as retrieving the output at every level of the evaluation tree.

evalM (s0, ǫ) =
⋃

(s,p)∈N

{ℓ@p.q | ℓ@q ∈ η(s, hd(t[p.L(s)]))} . (1)

Theorem 6.12 (Correctness). For all closed terms t,

evalM (s0, ǫ) = {ℓ@p ∈ L ×D(t) | ℓ matches t at p} .
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We show both inclusions at the end of this section. The inclusion from left to right is
the soundness claim. When the evaluation yields an output, then it is indeed a correct
match. The inclusion from right to left is the completeness claim. When some pattern
matches at some position, then the evaluation will output it at some point.

To understand soundness, consider that match goals carry history. Intuitively, a
match goal a@1, b@2 → f(a, b)@ǫ has a history of having seen f already. A state with
this goal can only be reached by evaluating a term with symbol f . This notion can be
formalised as follows.

Definition 6.8. The history of an evaluation tree node (s, p) respects t iff for all goals
mo → ℓ@q ∈ s, for all r ∈ D(ℓ) such that ℓ[r] 6= ω, if there is some r′ ∈ pos(mo) with
r 6≤ r′ then hd(t[p.r]) = hd(ℓ[r]).

With this definition, the following invariant is the key to soundness. A proof can be
found in the appendix.

Lemma 6.9. Let ETM (t) = (N,→). The history of every node (s, p) respects t.

To understand completeness, observe that upon taking derivatives a fresh match
obligation is added for every new position. The partitioning then takes care of grouping
the fresh goals with other goals that have the same positions.

Proposition 6.10. Whenever a state has a match obligation on position p, then it has
the fresh match goal ℓ@p → ℓ@p for all ℓ ∈ L as well.

The following invariant connects to Proposition 6.10. Intuitively, if a term matches
pattern ℓ at position p.q, and the evaluation tree reaches a state with some goal mo →
ℓ@q is a match announcement, then this announcement belongs to some goal in some
state visited by eval, until it is given as an output. A detailed proof can be found in the
appendix.

Lemma 6.11. If ℓ matches t at p.q and there is a node (s, p) and a match goal mo →
ℓ@q ∈ s then either ℓ@q ∈ η(s, hd(t[p.L(s)]) or there is a node (s′, p.p′) ∈ Suc(s, p) such
that s′ has some goal mo′ → ℓ@q′ with q = p′.q′.

Theorem 6.12 (Correctness). For all closed terms t,

evalM (s0, ǫ) = {ℓ@p ∈ L ×D(t) | ℓ matches t at p} .

Proof. As mentioned before, we show soundness and completeness.

⊆ By Equation 1 it suffices to show that for all nodes (s, p), whenever ℓ@q ∈
η(s, hd(t[p.L(s)])) then ℓ matches t at p.q. Consider that hd(t[p.L(s)]) = f .
By definition of η, see Section 4.5, we have f(ω, . . . , ω)@L(s) → ℓ@q ∈ s. By
Lemma A.1, the history of node (s, p) respects t. Then for all positions r ∈ D(ℓ)
with ℓ[r] 6= ω and r 6= L(s) we have that hd(t[p.r]) = hd(ℓ[r]). From the additional
observation hd(ℓ[L(s)]) = f = hd(t[p.L(s)]) and Proposition 5.3 it follows that ℓ
matches t at p.q.

⊇ Consider that ℓ matches t at p. By Corollary 6.6, consider the node ϕ−1(p) =
(s, q). By definition of ϕ we have q.L(s) = p. Since L(s) ∈ posMO(s), the fresh
goal ℓ@L(s) → ℓ@L(s) is s by Proposition 6.10. Then the repeated application of
Lemma 6.11 yields a node (s′, q.q′) such that s′ has some goal mo′ → ℓ@r with
L(s) = q′.r and ℓ@r ∈ η(s′, hd(t[q.q′.L(s′)])). Then ℓ@q.q′.r ∈ eval(s′, q.q′) by
definition of eval. Since q.q′.r = q.L(s) = p it follows that ℓ@p ∈ eval(s′, q.q′). By
Equation 1 we conclude ℓ@p ∈ eval(s0, ǫ).
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Specification Signature size Amount of patterns Amount of states
int 22 50 27
pos 15 46 45
nat 37 91 117
fset 15 28 23
set 20 40 24
list 16 26 24
bool 9 27 14
bag 29 44 32
fbag 18 30 25
real 30 31 31

Table 1: The set automaton sizes for parts of the default mCRL2 specification

7 Complexity and automaton size

Given an automaton M of pattern set L, the matching algorithm evalM (s0, t) runs in
O(d(n+m)) time where n is the number of function symbols in t, and m is the amount
of pattern matches in t, and d is the maximal depth of any pattern in L. The factor d
is due to the fact that observing a function symbol on position L(s) takes |L(s)| time
in general.

The size of a set automaton is exponential in the worst case, which is not surpris-
ing due to similar observations concerning the root pattern matching problem. Gräf
observed that a left-to-right pattern matching automaton is exponentially large in the
worst case [13]. Sekar et al. observed that adaptive pattern matching automata are
exponentially big in the worst case as well, although a good traversal can reduce the
automaton size exponentially in some cases [21].

However, practical experiments with pattern sets show that the automaton size is
small, which is in line with other forms of automaton based matching. We generated set
automata to match the left hand sides of rewrite systems used in mCRL2 [14, Appendix
B], see Table 1. In almost all cases the amount of states in the set automaton does not
exceed the number of patterns.

The degree of freedom in the choice of state labels strongly influences the set au-
tomaton size. Consider for example the set of terms {tn}n∈N given by t0 = ω and
tn+1 = f(tn, g(ω)). The set automaton in Example 4.1 is generated for pattern set {t2}.
We found that the choice of state labels influences the automaton size by a quadratic
factor. By choosing the right-most available position one obtains an automaton of size
2n for the pattern set {tn}. A left-most strategy yields an automaton of size n2 + n for
{tn}.

8 Future work

The original motivation for this work is to construct a high performance term rewriter
suited for parallel processing, which can both work on a single large term as well as on
many small terms, repeatedly. This means that the matching effort must be minimal,
which is provided by the automaton, and it also requires that the subject term is
not transformed before matching commences. To enable term rewriting, our matching
algorithm must still be extended with term rewriting along lines set out in [15]. We
want to employ that we know the structure of the right-hand side of a rewrite step,
minimizing inspecting known parts of a newly constructed term. Fokkink et al. have a
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similar approach in [12], based on Hoffmann and O’Donnell’s algorithm from [16].
Our algorithm has freedom in the position of the function symbol to be selected, as

well as in the next state/position pair that the evaluator chooses. It is interesting to see
whether with knowledge about the distribution of function symbols in subject terms,
this freedom can be exploited to construct a most efficient set automaton. For instance,
we may want to generate the first match as quickly as possible. This is particularly
interesting in combination with rewriting where some sub-terms do not have to be
inspected as they will be removed by the rewriting rules.

Observe that the algorithm as it stands does not employ non-linear patterns in
line with matching algorithms such as [20]. But in term rewriting non-linear patterns
do occur and therefore an extension to support them is desired. An extension that
provides all matches in a setting where some symbols are known to be associative and/or
commutative would also be interesting.
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A Appendix

A.1 Proof for Lemma 5.4

Lemma 5.4. Let s be a reachable state. Then for all f ∈ F, if K ∈ [deriv(s, f)]∼ then
there is a goal mo → ℓ@gcp(K) in K.

Proof. By induction. If |K| = 1 then the claim follows trivially. If |K| ≥ 2, then by
virtue of ∼ being a transitive closure, we can partition K into subsets K1,K2 ⊆ K such
that

• there are match goals mo1 → ℓ1@p1 ∈ K1 and mo2 → ℓ2@p2 ∈ K2 such that
pos(mo1) ∩ pos(mo2) 6= ∅; and

• partitioning K1 and K2 with respect to ∼K1
and ∼K2

respectively yields K1 and
K2.

Pick a position p with p ∈ pos(mo1) and p ∈ pos(mo2). By Proposition 5.3 we know
that p ≤ p1 and p ≤ p2. By the induction hypothesis there are two match goals
mo′1 → ℓ′1@gcp(K1) ∈ K1 and mo′2 → ℓ′2@gcp(K2) ∈ K2. By properties of gcp, it
follows that p1 ≤ gcp(K1) and p2 ≤ gcp(K2). By transitivity we get p ≤ gcp(K1) and
p ≤ gcp(K2). Then by Proposition 5.2, gcp(K1) and gcp(K2) are comparable. Since

gcp(K) = gcp(posMA(K1) ∪ posMA(K2)) = gcp(posMA(K1)) ∨ gcp(posMA(K2)) ,

by adding the syntactic sugar for gcp(K1) and gcp(K2), and by applying position prop-
erties, it follows that gcp(K) = gcp(K1) or gcp(K) = gcp(K2). Since both match goals
mo′1 → ℓ′1@gcp(K1) ∈ K1 and mo′2 → ℓ′2@gcp(K2) ∈ K2 are in K, we conclude the
proof.

A.2 Proof for Lemma 5.6

Lemma 5.6. Let N be the largest arity of any function symbol in F, and define the set
of reachable positions by R = {p ∈ P | ∃q, r, i : q ∈ D(L)∧r ∈ P∧1 ≤ i ≤ N∧r.p = q.i}.
Then for all reachable states s we have that posMO(s) ⊆ R.

Proof. The initial state easily satisfies the claim. We show that the claim is an invariant
over the production of a transition.

Let s be a reachable state and suppose that posMO(s) ⊆ R. Let f ∈ F and consider
that (s′, p′) ∈ δ(s, f). By definition s′ = lift(K) and p′ = gcp(K) for some K ∈
[deriv(s, f)]∼. We have to show that posMO(lift(K)) ⊆ R.

Consider some position p ∈ posMO(lift(K)). By definition of deriv and lift, we have
that gcp(K).p ∈ posMO(K). Observe that R is upward closed under the position prefix
ordering ≤. That is, whenever x ∈ R and x ≤ y then y ∈ R. Therefore we can ignore
gcp(K); it suffices to show that p ∈ R.

If p is the position of an unchanged pair in some match obligation of K, then p ∈ R
by assumption. If p is a position in a changed pair of some fresh or reduced match
obligation, then it suffices to show that L(s).i ∈ R for all i ≤ #f . By construction,
L(s) is the position of a root goal in s. Therefore, L(s) ∈ D(L). Since #f ≤ N , we
have that i ≤ N as well. Hence, L(s).i ∈ R.
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A.3 Proof for Lemma 6.4

Lemma 6.4. Let ETM (t) = (N,→) and consider an arbitrary node (s, p) ∈ N . Then

1. For all successors (s′, p.p′) ∈ Suc(s, p) we have that p.L(s) /∈ W(s′, p.p′).

2. For all distinct successors (s1, p.p1), (s2, p.p2) ∈ Suc(s, p) the sets W(s1, p.p1) and
W(s2, p.p2) are disjoint.

3. We have that W(s, p) = {p.L(s)} ∪
⋃

n∈Suc(s,p) W(n).

Proof. Consider that hd(t[p.L(s)]) = f . By construction of M and ETM (t), we can
characterise the successors of node (s, p) by

Suc(s, p) = {(lift(K), p.gcp(K)) ∈ S × P | K ∈ [deriv(s, f)]∼} . (2)

1. Towards a contradiction, using Equation 2, pick an equivalence classK ∈ [deriv(s, f)]∼
and assume that p.L(s) ∈ W(lift(K), p.gcp(K)). By definition of W , there is a
pair ℓ@p in some match obligation in lift(K) and some q ≤ p such that p.L(s) =
p.gcp(K).q. From the position properties it follows that L(s) = gcp(K).q. From
q ≤ p it follows that gcp(K).q ≤ gcp(K).p.

Since ℓ@p is part of a match obligation in lift(K), by definition ℓ@gcp(K).p is part
of a match obligation in K. Since K ⊆ deriv(s, f), there are two possibilities.

• If ℓ@gcp(K).p = ℓ@L(s).i then it is part of a reduced or fresh match goal.
Then gcp(K).p = L(s).i for some index 1 ≤ i ≤ #f . But then by

L(s) = gcp(K).q ≤ gcp(K).p = L(s).i ,

we have L(s) ≤ L(s).i, which contradicts Proposition 5.2.

• Otherwise ℓ@gcp(K).p is also part of a match obligation in s. But since
L(s) ≤ gcp(K).p and L(s) ∈ posMO(s), it must be that L(s) = gcp(K).p by
Proposition 5.3. Then, by definition of reduce it cannot be that ℓ@gcp(K).p
is a match obligation of K, a contradiction.

2. By Equation 2, let K1,K2 ∈ [deriv(s, f)]∼ such that s1 = lift(K1) and s2 =
lift(K2), and p1 = gcp(K1) and p2 = gcp(K2).

Towards a contradiction, pick a position q such that that q ∈ W(lift(K1), p.gcp(K1))
and q ∈ W(lift(K2), p.gcp(K2)). By definition of W there are pairs ℓ1@q1 and
ℓ2@q2 that are part of some match obligation in lift(K1) and lift(K2) respectively,
and there are two positions q′1 ≤ q1 and q′2 ≤ q2 such that q = p.gcp(K1).q

′
1 and

q = p.gcp(K2).q
′
2. Then it follows that gcp(K1).q

′
1 = gcp(K2).q

′
2,

By definition of lift, the pairs ℓ1@gcp(K1).q1 and ℓ2@gcp(K2).q2 are part of some
match obligation inK1 andK2 respectively. But then from gcp(K1).q

′
1 ≤ gcp(K1).q1

and gcp(K1).q
′
1 ≤ gcp(K2).q2 it must be that gcp(K1).q1 and gcp(K2).q2 are com-

parable. Since ℓ1@gcp(K1).q1 and ℓ2@gcp(K2).q2 are both elements of deriv(s, f),
by Proposition 5.3 it follows that gcp(K1).q1 = gcp(K2).q2, which violates the
assumption that K1 and K2 are distinct equivalence classes.

3. Let hd(t[p.L(s)]) = f . By Equation 2 we should show that

W(s, p) = {p.L(s)} ∪
⋃

K∈[deriv(s,f)]∼

W(lift(K), p.gcp(K)) .

We prove both inclusions.
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⊇ For the singleton set, it follows from L(s) ∈ posMO(s) and the definition of
W that p.L(s) ∈ W(s, p). For the big union, consider some K ∈ [deriv(s, f)]∼
and a position p.gcp(K).q ∈ W(lift(K), p.gcp(K)). By definition of W there
is a pair ℓ@r which is part of some match obligation in lift(K) such that
q ≤ r. Then ℓ@gcp(K).r ∈ mo′ with mo′ a match obligation in K.

From K ∈ [deriv(s, f)]∼ there are two cases. If ℓ@gcp(K).r is in some match
obligation in s, then p.gcp(K).q ∈ W(s, p) by virtue of gcp(K).q ≤ r and r ∈
posMO(s). Otherwise, gcp(K).r = L(s).i for some i ≤ #f and ℓ@gcp(K).r
is part of a fresh or reduced match obligation. Since L(s) ∈ posMO (s) there
is a pair ℓ′@L(s) in s. Then p.gcp(K).q ∈ W(s, p) because gcp(K).q ≤
gcp(K).r = L(s).i ≤ L(s).

⊆ Let mo be a match obligation in s, let ℓ@r ∈ mo and consider a position
q with q ≤ r. We have to show that p.q ∈ {p.L(s)} or there is a K ∈
[deriv(s, f)]∼ with p.q ∈ W(lift(K), p.gcp(K)). It suffices to distinguish two
cases.

– In the case L(s) 6= r, then ℓ@r is a pair in some match obligation mo
in deriv(s, f). Then there is an equivalence class K such that ℓ@r is in
some match obligation of K. Then r = gcp(K).r′ for some r′ and ℓ@r′

is in the match obligation lift(mo′) of the state lift(K).
We have to show that p.q ∈ W(lift(K), p.gcp(K)). From q ≤ r and
r = gcp(K).r′ we get that q = gcp(K).r′.r′′ for some r′′. Then p.q =
p.gcp(K).r′.r′′. By definition of W and from ℓ@r′ being a match obliga-
tion in lift(K), it follows that p.q ∈ W(lift(K), p.gcp(K)).

– In the case r = L(s) then p.q ≤ p.L(s). If q = r = L(s) then p.q = p.L(s),
which is in the singleton set {p.L(s)}. Otherwise, q < L(s). Then there is
an index i such that q ≤ L(s).i. Since p.q ∈ D(t) and hd(t[p.L(s)]) = f
it must be that i ≤ #f . Then by definition of deriv(s, f) there is a
fresh match obligation ℓ@L(s).i → ℓ@L(s).i in K. By definition of lift
we have that gcp(K).r = L(s).i for some r and ℓ@r is a match obliga-
tion in lift(K). Then the proof obligation follows by p.q ≤ p.L(s).i =
p.gcp(K).r ∈ W(lift(K), gcp(K)).

A.4 Proof for Lemma A.1

Lemma A.1. Let ETM (t) = (N,→). The history of every node (s, p) respects t.

Proof. The history of (s0, ǫ) trivially respects t. Consider a node (s, p) whose history
respects t, and let f = hd(t[p.L(s)]). Consider a successor (lift(K), p.gcp(K)) ∈ Suc(s, p)
for some K ∈ [deriv(s, f)]∼. We show that the history of (lift(K), p.gcp(K)) respects t
as well.

Following the definition of deriv, we only look at the reduced match goals in lift(K).
By definition those are match goals mo → ma with some pair f(t1, . . . , tn)@L(s).
The history of the unchanged goals respects t by assumption and fresh match goals
have no history. Suppose that mo′ → ℓ@p is a reduced match goal. Then mo′ =
reduce(mo, f, L(s)) with mo → ma ∈ s. By definition of reduce we have that

mo′ = {ℓ@q ∈ mo | q 6= L(s)} ∪ {ℓ[i]@L(s).i | ℓ@L(s) ∈ mo ∧ 1 ≤ i ≤ #f ∧ ℓ[i] 6= ω}.

For all unchanged pairs ℓ@q with q 6= L(s) we do not have to prove anything. If
ℓ′@L(s) is a pair in mo then ℓ′[i]@L(s).i is a pair in mo′ for all i with ℓ′[i] 6= ω. Hence,
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L(s) ∈ D(ℓ), ℓ[L(s)] 6≤ r and L(s) 6≤ r for all goals ℓ′@p ∈ mo′. So, hd(t[p.L(s)]) =
hd(ℓ[L(s)]).

A.5 Proof of Lemma 6.11

Lemma 6.11. If ℓ matches t at p.q and there is a node (s, p) and a match goal mo →
ℓ@q ∈ s then either ℓ@q ∈ η(s, hd(t[p.L(s)]) or there is a node (s′, p.p′) ∈ Suc(s, p) such
that s′ has some goal mo′ → ℓ@q′ with q = p′.q′.

Proof. Suppose that hd(t[p.L(s)]) = f . We distinguish two cases.

• If mo = {f(ω, . . . , ω)@L(s)} then reduce(mo, f, L(s)) = ∅. By construction ℓ@q ∈
η(s, hd(t[p.L(s)]), as needed to conclude.

• Otherwise, let mo′ = mo if L(s) /∈ pos(mo) and mo′ = reduce(mo, f, L(s)) if
L(s) ∈ pos(mo). Note that if L(s) ∈ pos(mo) then reduce(mo, f, L(s)) is not
empty. Then mo′ → ℓ@q ∈ K for some K ∈ [deriv(s, f)]∼. By construc-
tion lift(mo′) → ℓ@q′ ∈ lift(K) for some q′ such that q = gcp(K).q′. Then
(lift(K), p.gcp(K)) is the node that we are looking for.
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