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Abstract. Business process management organizes work into several
interrelated “units of work”, fundamentally conceptualized as a task.
The classical concept of a task as a single step executed by a single
actor in a single case fails to capture more complex aspects of work that
occur in real-life processes. For instance, actors working together or the
processing of work in batches, where multiple actors and/or cases meet for
a number of steps. Established process mining and modeling techniques
lack concepts for dealing with these more complex manifestations of work.
We leverage event graphs as a data structure to model behavior along the
actor and the case perspective in an integrated model, revealing a variety
of fundamentally different types of task executions. We contribute a novel
taxonomy and interpretation of these task execution patterns as well
as techniques for detecting these in event graphs, complementing recent
research in identifying patterns of work and their changes in routine
dynamics. Our evaluation on two real-life event logs shows that these
non-classical task execution patterns not only exist, but make up for the
larger share of events in a process and reveal changes in how actors do
their work.

Keywords: Task execution patterns · Routines · Event graphs.

1 Introduction

A central goal of Business Process Management (BPM) is organizing into several
interrelated “units of work” to achieve shared goals. The formal foundations
of BPM, as used in process modeling and mining, conceptualize such a unit
of work as a task. Tasks are planned, scheduled, distributed to suitable actors
such that the overall work can be performed by a collaborating workforce. Most
Process-aware Information Systems (PAIS) support this goal by assuming that
work is performed in the context of a business process that is executed as a
sequence of task executions called a case. Each task is executed by a specific
actor and the BPM system is responsible that the correct tasks are performed
in the correct order. Thereby the actual work happens outside the PAIS itself
which only schedules tasks and checks completion [9].

However, this concept of a task in process modeling and mining in BPM
— a unit of work is a single step executed by a single actor in a single case —



2 E.L. Klijn et al.

fails to capture many facets of work that occur in practice. In organizations
research, a well-defined (atomic) step in a process is called an activity or action
[2,19]. In contrast, a task is considered a slightly larger “unit of work” that has
to be carried out to achieve an objective within the process, e.g., review CVs.
Completing or executing a task often requires to perform multiple actions (e.g.,
download, open, take notes), not necessarily limited to a single case (e.g., all CVs
received); these actions may be grouped differently depending on the actor(s) the
task is assigned to.

This also has been acknowledged in the BPM field from several perspectives.
Robotic Process Automation (RPA) uses task mining to identify how individual
actors perform tasks by recording their desktop interactions revealing tasks
spanning more than a single case, e.g., data entry from a spreadsheet to an
information system [15]. Individual actors may batch actions in multiple cases,
e.g., a manager reviewing and approving requests in different cases, which is
still poorly supported by many PAIS [22]. Finally, actors often do not act
independently from each other, multiple actors may perform work together even
across multiple cases, e.g., the collaborative grading of student reports, and across
multiple actions, e.g., delivering and installing a new washing machine. Despite
this acknowledgment and many years of BPM research, there is no generally
agreed definition of a task that captures such aspects of work in a process and that
is compatible with the established process modeling and process mining concepts.
In other words, the existing process mining and process modeling concepts are
too simplistic.

In this paper, we investigate how to conceptualize task executions beyond the
basic definition of an action performed by a single actor in isolated cases with
the goal of capturing the various facets of tasks. Our approach combines event
data analysis with conceptually modeling behavior in processes and actors as two
behavioral dimensions simultaneously [10]: (1) the sequence of events recorded
in a process case and (2) the sequence of events, across multiple process cases,
in which an actor is involved. We use event graphs as introduced in [10] as data
structure to model relations between events, cases, and actors as paths along
cases and along actors over the same events; thereby escaping limitations of
classical event logs (Sect. 3). In such a graph, a task execution emerges when a
path along an actor meets a path along a case over one or more events.

We then perform a systematic, theoretical analysis of the types of task
executions that can be expressed in an event graph depending on (1) how many
paths along cases meet (2) how many paths along actors for (3) how many events
(Sect. 4.1). From this theoretical analysis we derive a taxonomy of task execution
types characterized by 5 different parameters (Sect. 4.2); the taxonomy describes
23 task execution types, several have not been described in literature before.
We present methods for querying these task execution types in event graphs
(Sect. 5) and evaluate the existence of these task execution types in the BPIC’17
and BPIC’14 event logs (Sect. 6). We specifically found that non-trivial task
execution patterns over multiple steps, multiple cases, and even multiple actors
frequently occur in two real-life event logs, as well as occurrences of several
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previously unknown patterns. We also observe changes in frequency of task
execution patterns over time due to changes in the way actors do their work.

2 Related Work

Related research that also accounts for the more complex aspects of work beyond
isolated cases has been conducted from several perspectives.

Process modeling literature studies actors performing work in terms of “re-
sources” required for a task. Of the workflow resource patterns [23], only “Simul-
taneous Execution” and “Additional Resources” consider joint work by multiple
actors. Only recently, actor behavior across multiple cases came into focus un-
der batching across individual cases [22] and instance-spanning constraints [12].
Current BPM systems poorly support these phenomena and existing notations
(e.g., BPMN) require extensions [22,13] to support them; but actor behavior is
never modeled explicitly. Synchronous proclets [11] allow modeling individual
actor behavior across individual cases in a network of Petri nets, each describing
a process or an actor [6], that dynamically synchronize on single transition oc-
currences. The same synchronization principle has also been adopted for DCR
graphs [4]. We contribute to this stream of modeling research by showing that
actor-case interactions themselves form complex task execution patterns over
multiple actions, cases, and actors, that should be supported in modeling.

In process mining, social network mining [26] analyzes actor interactions
but excludes the control-flow perspective. Other approaches are mining of team
composition and work assignment [24], resource skills, utilization, and produc-
tivity [21] and resource availability [16]; these works assume tasks to be single
actions. Task executions by the same actor over multiple actions can be discovered
as local process models [5]. Task mining analyzes behavior that may transcend
multiple cases [15] by tapping into desktop interaction logs of actors. These
works are limited to single actors in isolated cases due to the use of event logs.
For analyzing instance spanning constraints [27], batch activities [17,18] and
scheduled processes [25] process mining methods have been extended to consider
inter-case relations; in these works actor behavior is described/modeled implicitly,
whereas we analyze actor behavior explicitly.

Routines research [20,14,19] studies “work” in terms of a narrative network of
actors interacting in an organization (of people and devices) to achieve their goals.
A narrative [19] thereby is a path in the narrative network, i.e., a “coherent, time-
ordered sequence of actions or interactions for accomplishing an organizational
task” [20,14]. An action pattern that occurs repeatedly at an individual actor
is called a habit ; a recurrent action pattern involving multiple actors is called
a routine [2]. Habits and routines capture how actors accomplish their tasks.
A central question in routine dynamics research is to identify such patterns
in the narrative network and how they change [14] and is approached through
observations, interviews, and archival materials in a field study.

Our work complements prior work by first transforming an event log into an
event graph which can be understood as data-based representation of a narrative
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network. We use graph theory to detect patterns of task executions (i.e., habits
and routines) and their changes over time. Our taxonomy of different types of
task executions extends and generalizes existing notions of tasks in BPM and
process mining that are tailored towards either isolate cases, e.g., [5], or towards
specific aspects of work behavior across cases, e.g., [12,13,15,17,18,22,27,25].

3 Preliminaries

We first discuss relevant concepts of the conventional, single-dimensional repre-
sentation of event data. We then show how these concepts can be translated to a
multi-dimensional representation using a general data model based on labeled
property graphs [10], which we use as a foundation for our work.

Single-Dimensional Representation of Event Data. A PAIS can record
an action execution as an event in an event log. Each event records multiple
attributes, including at least the action that occurred, the time of occurrence,
and an entity identifier indicating on which entity or case the action occurred.
Often, the actor executing the action is recorded as resource. Tab. 1 shows an
example event log containing 10 events occurring on the same day.

Process mining [1] analyzes event data by grouping events w.r.t. a chosen case
identifier attribute, e.g., a loan application document or a patient in a hospital.
Ordering all events of a case by time yields the trace as a sequence of events.
Grouping the events in Tab. 1 by Case yields the traces 〈e1, e2, e3, e4, e5〉 and
〈e6, e7, e8, e9, e10〉. A set of such traces is a traditional single-dimensional event
log along the case perspective [10].

Classically the Resource attribute in Tab. 1 is considered as event attribute
describing the event further. However, the resource (the actor) is an entity in
its own right and we can also study the sequence of events along each resource,
defining a second behavioral dimension in the data. Choosing Resource as case
identifier yields a second event log with traces 〈e1, e2, e6, e7, e8〉 (Resource 1),
〈e3, e4, e9, e10〉 (R. 5), and 〈e5〉 (R. 29).

Each event in Tab 1 is related to 2 entity identifiers: a case identifier and
resource identifier. Generally, an event can have multiple case identifiers and/or
multiple resource identifiers [10]. The relation of events to multiple entities results
in different behavioral dimensions between events that cannot be adequately
represented or analyzed using a single-dimensional event log representation.

Multi-Dimensional Representation of Event Data. We use a labeled prop-
erty graph (LPG) to represent multiple behavioral dimensions (case and resource)
together over a set of events.

Graph databases use LPGs [3, Ch.2] for modeling various entities (as nodes)
and various relationship (as edges) between them. An event graph [10] is a specific
LPG, which can be obtained from an event table: each event and each entity
(i.e., cases and resources) is represented by a node with label Event or Entity.
Event and entity nodes are connected through directed binary relationships: a
CORR relationship from e to n defines that event e is correlated to entity n. A
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DF relationship from e to e′ defines that event e′ directly follows e from the
perspective of a specific entity n to which e and e′ are correlated (i.e., e occurs
before e′ and there is no other event between them). Each node and relationship
can hold a number of key-value pairs referred to as properties, e.g., whether an
entity has Type = Case or Type = Resource. As short-hand notation we write
(e, e′)x for a DF -relationship in G from e to e′ of type x ∈ {c, r} (i.e., case or
resource). See [10] and App. A.1 for details.

The example in Fig. 1 shows the event graph derived from Tab. 1: each square
(white) node is an event node; each circle is an entity node of the corresponding
type (blue for Case, red for Resource). CORR relationships are shown as dashed
edges, e.g., e1, e2, e3, e4, e5 are correlated to case c3 and e1, e2, e6, e7, e8 are
correlated to resource r1. DF relationships are shown as solid edges. The DF-
relationships between the events correlated to the same entity form a DF-path
for that entity; the graph in Fig. 1 defines 2 DF-paths for case entities, e.g.,
σc3 = 〈(e1, e2)c, (e2, e3)c, (e3, e4)c, (e4, e5)c〉 and 3 DF-paths for resource entities,
e.g., σr1 = 〈(e1, e2)r, (e2, e6)r, (e6, e7)r, (e7, e8)r〉.

In the graph in Fig. 1, we observe which resource executed which action in
which case, e.g., r1 performed A in c3 (at event e1). However, we can also see
that DF-paths for case and resource “flow in parallel” over multiple actions, e.g.,
σc3 and σr1 both contain (e1, e2)x meaning r1 performed A and B consecutively
in c3 (events e1 and e2) forming a larger unit of work captured Fig. 1 as the
connected subgraph of events {e1, e2} and the two DF-relationships between them.
We can observe more such subgraphs in Fig. 1 where the same resource and case
are involved in consecutive events, i.e., larger units of work.

4 Task Execution Patterns

We observed in Sect. 3 that event graphs reveal “units of work” that are not just
individual events but are connected subgraphs where resources and case meet
along several subsequent events. In this section, we conceptualize these connected
subgraphs as task executions and explore in which forms they can manifest. We
explain our approach in Sect 4.1 and present a novel taxonomy of task execution

Table 1: Event table example

Event Action Time Case Resource

e1 A 12:02 3 1
e2 B 12:04 3 1
e3 E 14:38 3 5
e4 F 14:41 3 5
e5 C 16:21 3 29
e6 A 12:08 4 1
e7 B 12:09 4 1
e8 D 12:15 4 1
e9 E 14:54 4 5
e10 F 14:59 4 5
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Fig. 1: Event graph containing the events
and entities from Tab. 1
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patterns and their interpretation in Sect 4.2. We thereby make use of standard
graph theory concepts; the formal definitions are available in Appendix A at
reviewer discretion.

4.1 Exploring Event Graphs for Forms of Task Executions

In the event graph in Fig. 1, we initially observe two ways in which a task
execution manifests. (1) A resource follows a case over multiple events, e.g.,
e6, e7, e8; these event nodes form a subgraph induced by one DF-path σc of a
case entity and one DF-path σr of a resource entity as follows: σc and σr enter
the subgraph together (e.g., at e6) and leave the subgraph together (e.g., at e8)
and are both continuous in this subgraph (all events of the DF-path are within
the graph). (2) We also observe an execution of a classical task in the event graph
in Fig. 1 consisting of only a single event, e.g., e5; the path of the resource and
the path of the case synchronize for this step only, i.e., the subgraph is a single
node.

We explored whether other subgraphs can be characterized by searching for
different configurations of the following concepts in the subgraph: DF-path of a
resource, DF-path of a case and their synchronization. We identified the following
parameters and values:

1. The subgraphs in Fig. 1 contain at most one case DF-path. Are there
(meaningful) execution patterns which have multiple case DF-paths?

2. If multiple case DF-paths are in the subgraph: are the case DF-paths disjoint
(i.e., each event belongs to exactly one case) or can case DF-paths synchronize
(i.e., have a shared event)?

3. The subgraphs in Fig. 1 contain at most one resource DF-path. Are there
(meaningful) execution patterns which have multiple resource DF-paths?

4. If multiple resource DF-paths are in the subgraph: are the resource DF-paths
disjoint (i.e., each event belongs to exactly one resource) or can resource
DF-paths synchronize (i.e., have a shared event)?

5. In Fig. 1, all DF-paths are continuously in the subgraph (i.e., they only enter
once and leave once). Are there (meaningful) execution patterns where a
DF-path also temporarily leaves the subgraph and re-enters later?

4.2 Taxonomy of Task Execution Patterns

The above questions define a parameter space that allows for a set of different
subgraph configurations that can be systematically described within the bounds of
this space. We explored this parameter space by modeling abstract task execution
patterns as subgraphs of event nodes of an event graph. We explain the patterns
found, introduce a taxonomy to structure them systematically, and evaluate
whether each pattern has real-world interpretation and whether it was already
discussed in literature.

We considered subgraphs that emerge from multiple DF-paths synchronizing
as some “unit of work”. We identified the following necessary conditions for
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n ≥ 2 DF-paths Σ = {σ1, . . . , σn} to induce a subgraph G that describes a task
execution: (T1) any two event nodes in G are connected via at least one DF-path
σ ∈ Σ, (T2) for each event node e in G exists a case DF-path σc ∈ Σ and a
resource DF-path σr ∈ Σ that contain e (i.e., G is traversed by at least one case
and one resource DF-path), (T3) there is at least one DF-path σ1 ∈ Σ that is
continuously in G (enters G once and leaves G once). We identified two stricter
necessary conditions of task executions defining a spectrum:

– Graph-structure based task execution: in the strictest form of task executions
the subgraph G is induced by Σ = {σ1, . . . , σn} and satisfies (T1)-(T3) and
additionally (T2’): each event node e ∈ G is in each DF-path σ ∈ Σ (i.e.,
all paths always synchronize in all events in G but some paths may leave
in between). As a consequence, all paths converge at the first event of the
continuous DF-path σ1 in G and diverge at the last event of σ1 in G, see
(T3). All subgraphs in Fig. 2 have this property.

– Domain-knowledge based task execution: the paths in G do not converge
and diverge at the same start and end events of G, yet are coherent. In
addition to (T1)-(T3) the following condition holds: (T3’) all DF-paths are
continuously in G. All subgraphs in Fig. 3 have this property. T3’ requires
domain-knowledge to decide whether DF-paths Σ form a valid subgraph G
describing a task execution.

Next, we differentiate different types of subgraphs further by the following 4
parameters over a subgraph G (i) the number of case DF-paths, (ii) the number
of resource DF-paths, and (iii) how often they enter and leave, and (iv) how they
synchronize in G. We start with graph-structure based tasks executions.

Taxonomy of Graph-Structure-Based Task Execution Patterns Fig. 2
shows the graph-structure-based task execution patterns arranged according to
the parameters identified in Sect. 4.1.

The taxonomy categorizes the subgraphs on the x-axis based on them con-
taining a single DF-path from a single case (SC) or multiple DF-paths from
multiple cases (MC). The patterns are categorized along the y-axis based on them
containing a single DF-path from a single resource (SR) or multiple DF-paths
from multiple resources (MR). This structures our taxonomy into four major
quadrants: (SR,SC), (SR,MC), (MR,SC), (MR,MC).

Next, subgraphs within each of these quadrants are arranged based on the
configuration of the paths they contain. A path is (1) single step (s) if it only
contains a single event node within the subgraph, (2) continuous (c) if the path
contains > 1 event node and is continuously within the subgraph, i.e., it only
enters and leaves once, and (3) interrupted (i) if it contains > 1 event node and
it leaves and enters the subgraph more than once. A single step path and an
interrupted path are both non-continuous.

The set of resource DF-paths are configured separately from the set of case
DF-paths. For each quadrant the subgraphs are arranged on the x-axis into
columns for continuous and non-continuous case DF-paths and on the y-axis into
rows for continuous and non-continuous resource DF-paths.
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Fig. 2: Taxonomy of graph-structure-based task execution patterns

The bold letters in Fig. 2 indicate the short-hand notation we use in the
following, e.g., MRi,SCc denotes pattern P10: Multiple Resource interrupted,
Single Case continuous.

Structural properties. A fundamental property of graph-structure-based execution
patterns is that all entities (cases and resources) are involved in each step of the
task execution.

A fundamental property of our taxonomy is that adding/removing resource
or case DF-paths results in a corresponding pattern in another quadrant, e.g.,
adding more resource DF-paths to P3 returns P11 and adding both more resource
and case DF-paths returns P15.

A second fundamental property of the taxonomy is that it distinguishes
elementary task execution patterns that cannot be decomposed further into
subgraphs fitting the parameter space (1, 4, 5, 8, 9, 12, 13, 16) and non-elementary
task execution patterns that are compositions thereof (2, 3, 6, 7, 10, 11, 14, 15).
By combining instances of elementary patterns along either a continuous resource
DF-path or a continuous case DF-path, we end up with a non-elementary instance
belonging to the same quadrant. For instance, if we take three instances of P1
for the same case c and resource r and combine them along the case DF-path,
i.e., the case is continuous in the composition (only leaves and enters once) while
the DF-path for r can be arbitrary, we end up with P2.

The subgraphs in Fig. 2 that are not single-step are only one of the many
variations possible within each specific cell. For instance, if we take two instances
of P1 and one instance of P4 and again combine along a continuous case DF-path,
we end up with a variation of P2.
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Conceptual evaluation. Within each quadrant, the top-left cell (1, 5, 9, 13)
describes a single-step task. The bottom-right cell (4, 8, 12, 16) describes a task
continuously involving all cases and resources over multiple steps. The top-right
and bottom-left cell of a quadrant describes tasks interrupted by either the
resource(s) or the case(s), respectively, e.g., a resource attending an urgent task
in another case or a resource requiring input from another resource not involved
in the task. While some single step and continuous patterns have been observed
in other works [5,6,17], at present, no work has systematically studied interrupted
patterns.

SR,SC patterns portray tasks that can only be executed for a single case by
a single resource at a time, e.g., writing out a speeding ticket (single step, i.e.,
P1), or finalizing a loan offer: 〈call client about loan offer, create offer, send
offer〉 (multiple steps, i.e., P4). P2 describes an actor interrupting and returning
to a larger unit of work in a case, e.g., compiling a report that is interrupted
by other duties. P3 describes an actor continuously being concerned with the
same case while other actors have to be involved as well, e.g., due checks based
on a four-eyes principle. P1 has been extensively studied in traditional process
analysis and P4 has been observed in [5].

SR,MC patterns portray tasks where a single resource handles multiple cases
together, such as batch processing, e.g., lecturing a classroom of students (single
step, i.e., P5) or analyzing a batch of blood samples, which involves transporting
them to the lab, scanning them and analyzing them (multiple steps, i.e., P8).
Only single step (P5) and multi-step batching (P8) have both been observed in
[17].

Conversely, MR,SC patterns portray tasks where multiple resources work on a
single case together. For instance in collaborative decision making, e.g., a master’s
defense (single step, i.e., P9), or due to practical or technical requirements,
e.g., delivering, carrying, and installing a washing machine requires two people
(multiple steps, i.e., P12). Only P9 has been observed in [6], where queues and
conveyor belts synchronize as distinct resources for the same (single step) events.

Finally, MR,MC patterns portray tasks executed by multiple resources on
multiple cases together. While theoretically possible, it is very unlikely multiple
cases and resources synchronize that strongly in real-life processes especially over
multiple steps. A very relaxed interpretation of such a task would be the co-
chairing of a panel for a conference (single step, i.e., P13). We discuss more realistic
manifestations of MR,MC task configurations when discussing domain-knowledge
based patterns (shown in Fig. 3). At present, no work has systematically studied
patterns involving both multiple cases and multiple resources.

Taxonomy of Domain-Knowledge-Based Task Execution Patterns So
far we discussed our taxonomy for the strictly synchronized graph-structure based
patterns shown in Fig. 2. We now discuss our taxonomy for the domain-knowledge
based patterns at the other end of the spectrum shown in Fig. 3. The domain-
knowledge based task execution patterns allow that only some case/resource
paths synchronize per event but require all paths to be uninterrupted; this yields
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Fig. 3: Taxonomy of domain-knowledge-based task execution patterns

“units of work” that are more distributed. While there is a considerable amount
of other subgraphs that fit Fig. 3, we limit ourselves to discuss those that require
only basic domain knowledge.

Structural properties. We first observe that we can derive all the configurations
in Fig. 3 by composing multiple of the same elementary pattern from Fig. 2.
For instance, P7’ and P10’ are essentially multiple instances of P1 composed
along the resource and case DF-path, respectively. P8’ and P12’ can be composed
similarly using instances of P4. P14’ can be composed of P5 instances along the
case DF-path and P15’ with P9 instances along the resource DF-path. In Fig. 3,
P16’ is composed of multiple instances of P1, both along the resource and case
dimension. The pattern properties of this particular cell 16’ allow for basically
every combination of elementary patterns composed along both the resource and
case dimension. In contrast to graph-structure-based non-elementary patterns,
the conditions for composing the patterns in Fig. 3 require domain knowledge.

Conceptual evaluation. In Fig. 3, P7’, P8’, P15’ portray different forms of
sequential batching, i.e., the same step is executed for a sequence of cases one
after the other, with a single resource (P7’, SRc,MCs), with multiple resources
(P15’, MRc,MCs) and with one resource executing multiple steps per case (P8’,
SRc,MCc). Sequential batching that involves a single resource (P7’ and P8’) has
been observed in [17].

We also identify a subset of patterns in which multiple resources are separately
involved, each performing a set of steps for a case after which it moves to the
next resource for the next step(s) in a pipe-lined fashion (e.g., P10’ and P12’,
MRs,c,SCc), resembling a factory/production type of setting. Such a setting could
also be realized for (simultaneous) batches of cases (P14’, MRs,MCc). At present,
no work has systematically studied these patterns.
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P16’ (MRc,MCc) is a combination of the former two types; it portrays sequen-
tial batching being performed in a pipe-lined fashion. In Sect. 6 we show that we
can identify an instance of P16’ in the BPIC’17 data.

5 Detecting Task Execution Patterns in Event Graphs

In this section, we present a technique for detecting instances of the task execution
patterns of Section 4 as subgraphs in an event graph. We query the graph to
retrieve all instances (subgraphs) of elementary task execution patterns (P1, P4),
which we then materialize and store as new “task instance” nodes (Sect. 5.1).
Later, we use these task instance nodes for querying elementary task instances
(Sect. 5.2) and for detecting and querying non-elementary task instances (Sect.
5.3). All conceptual queries presented here are implemented in the graph query
language Cypher on the graph database Neo4j; see Sect. 6 and App. B.

5.1 Modeling Elementary Task Instances as High Level Events

We assume the data to be given in an event graph G (see Sect. 3). We describe
how to detect in G subgraphs describing task instances (TIs) of elementary
patterns P1 and P4 and how to materialize these as new nodes with label TI
in the event graph. Finally, we lift the DF -edges from the Event nodes in the
task instance subgraph to the corresponding TI node. Fig. 4 shows the result
of constructing the TI nodes and all corresponding relationships for the event
graph from Fig. 1.

We first search the graph for all pairs of events (ei, ei+1) that have both a
case DF-edge (ei, ei+1)c and a resource DF-edge (ei, ei+1)r and create a new

“joint” DF-edge (ei, ei+1)j . We then detect any task instance of elementary P4
as a maximal sequence of events ti = 〈em, ..., en〉 where for each ei, ei+1 ∈ ti
there exists (ei, ei+1)j and there exists no joint DF-edges (e′, em)j or (en, e

′)j .
An instance of P1 is ti = e without (e′, e)j , (e, e′)j . We materialize ti as a new
node hti with label TI and a contains relationship from hti to each e ∈ ti.
We treat hti as a “high-level” event and set properties hti.timestart = em.time
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Fig. 4: Event graph containing the hti nodes constructed from the events from Fig. 1
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and hti.timeend = en.time and correlate hti to each entity n to which em, ..., en
are correlated by adding CORR relationships. Finally, we sort all TI nodes
h1, . . . , hk correlated to the same entity n of type x by timeend and introduce
corresponding DF -edges (hi, hi+1)x of type x, which lifts DF-paths from events
to task instances. See Appendix B.1 for the Cypher query. For example, we
detect in Fig. 1 ti1 = e1, e2 and ti4 = e6, e7, e8 resulting in nodes h1 and h4 and
(h1, h4)r in Fig. 4. Instances of the other elementary patterns (5, 8, 9, 12, 13, 16)
can be found by checking for multiple (ei, ei+1)c and/or (ei, ei+1)r relationships
over all events in ti.

The elementary task execution T described by an elementary task instance
ti = em, ..., en is its sequence of action names T = em.action, ..., en.action; we
set ti.task = T for easier querying.

5.2 Querying Elementary Task Instances

Having materialized all elementary task instances into TI nodes, we can query
the graph of TI nodes and DF-relationships between them for insights. This
allows for the following kinds of queries: (1a) Retrieve a subset of TIs based on
a specific property, e.g., all TIs correlated to r1 (h1 and h4 in Fig. 4), or (1b)
the subset of TIs of the most frequently executed tasks (h2 and h5 in Fig. 4).
(2) Query for DF-paths between TI nodes, for instance the DF-path of TI nodes
correlated to a specific case (〈h4, h5〉 for c1 in Fig. 4) or to a specific resource
(〈h3〉 for r29 in Fig. 4). (3) Querying the DF-path of TIs of a specific resource on
a specific day could give insight into habits [2] followed by this resource. Next,
we query DF-paths between TI nodes along cases and resources to detect larger,
non-elementary task execution patterns.

5.3 Querying Non-Elementary Task Instances

We materialized elementary task instances as TI nodes connected through DF-
edges in Sect. 5.1. We now show how to detect instances of non-elementary task
execution patterns (NTI for short) as shown in Figures 2 and 3 as compositions
of TIs by querying for paths of TI nodes along DF-edges.

We detect any interrupted NTI (Fig. 2) involving resources r1, ..., rl and
cases c1, ..., cm by querying for a maximal sequence of TI nodes h1, ..., hk with
(hi, hi+1)r1 , ..., (hi, hi+1)rl or (hi, hi+1)c1 , ..., (hi, hi+1)cm , 1 ≤ i < k so that all
underlying Event nodes are correlated to the same resource entities nr1 , ..., nrl and
case entities nc1 , ..., ncm . For detecting the domain-knowledge-based NTIs (Fig.
3), we also query a maximal sequence of TI nodes along either the resource-path
or case-path, but this time require only one of the entity types (cases or resources)
to be correlated to all TI nodes. For the patterns that describe batching behavior
(7’, 8’, 15’, 16’), we additionally require all TI nodes h1, . . . , hk to describe the
same elementary task, i.e. hi.task = hi+1.task, and a maximum time difference
∆tbatch between two subsequent TIs, i.e. hi+1.timestart − hi.timeend < ∆tbatch;
see Appendix B.2 for a Cypher query that detects NTIs of sequential batching
P8’. Using such domain knowledge for a time gap is commonly done in batch
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identification [17]. For patterns 10’, 12’, 14’ and 16’ additional domain-knowledge
is required to determine if multiple TIs along the case-path form a task execution.
Examples of NTIs of P2, P3, P7’ and P8’ are shown in Fig. 5.

6 Evaluation

We performed an exploratory analysis to investigate the occurrence of task
execution patterns in two real-life event logs BPIC’14 [7] (only the events cor-
related to a resource) and BPIC’17 [8]. We realized the approach of Sect. 5 in
Cypher queries invoked via Python scripts on the Graph DB Neo4j; available at
https://github.com/multi-dimensional-process-mining/event-graph-

task-pattern-detection. Creating all TI constructs (Sect. 5.1) took 42.09s for
the BPIC’14 log and 73.59s for the BPIC’17 log on an Intel i7 CPU @ 2.2GHz
machine with 32GB RAM.

We applied queries for detecting all patterns that did not require specific
domain knowledge, i.e., all patterns except 10’, 12’, 14’ and 16’, in the event
graphs of the BPIC’14 and BPIC’17 data. We found TIs of patterns 1, 2, 3, 4, 7’
and 8’; TIs involving multiple resources and/or multiple cases per event simply
do not occur in the data.

Fig. 5 shows for the BPIC’17 data for each detected pattern type a task
instance annotated with resource and case identifiers. The P1 instance in Fig. 5
shows actor r14 executing a single step in a case before moving to a different case
and the P4 instance shows r95 executing four actions in a case before moving
to the next. The P2 instance shows r3 executing ten actions in a case with
an interruption after the first step W2, executing the same action W2 also in
another case before completing the task in the former case. The P3 instance
shows r107 continuously working on a case, performing the same task execution
(〈V4, I1, I2, A6〉) twice while r128 performs other actions in between. The P7’ and
P8’ instances show r35 and r126 performing the same actions W2 and 〈I4, V1,
V2, A9〉, respectively, for the same five cases in a sequential batch. We observe
a min/avg/max time difference of 0/12/613min and 0/4.8/512min between any
two subsequent steps in a batch for BPIC’17 and BPIC’14, respectively.
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I4 V1 V2 A9
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1 4 2
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Fig. 5: Instances of task execution patterns 1, 2, 3, 4, 7’ and 8’ found in the BPIC’17
data

https://github.com/multi-dimensional-process-mining/event-graph-task-pattern-detection
https://github.com/multi-dimensional-process-mining/event-graph-task-pattern-detection
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Table 2: General task execution pattern measurements for BPIC’17 and BPIC’14 with
<30m between all TIs in NTI or >30m between at least one TI in NTI
log pat. # of # of % of length duration # of TIs(1,4)

TIs events events (min) in the NTIs
avg. st.dev avg. st.dev avg. st.dev

BPIC’17 1 11 995 11 995 1.4 1.0 0.0 0.0 0.0
without 4 125 472 703 000 81.8 5.6 2.8 2.9 61.5
User 1 2>30 1 174 10 640 1.2 9.1 3.0 140.0 104.0 2.0 0.1

3>30 45 354 0.0 7.9 2.4 121.6 92.9 2.0 0.0
2<30 431 3 755 0.4 8.7 3.7 19.9 10.5 2.0 0.3
3<30 55 419 0.0 7.6 3.4 11.8 12.8 2.0 0.1
7’<30 269 1 297 0.2 4.8 1.1 23.8 16.1 4.8 1.1
8’<30 2 385 64 974 7.6 27.2 16.4 43.8 38.8 6.2 3.7

BPIC’17 1 27 27 0.0 1.0 0.0 0.0 0.0
only 4 33 706 144 683 16.8 4.3 1.6 0.2 0.4
User 1 2<30 1 788 10 687 1.2 6.0 0.3 0.8 0.8 2.0 0.1

3<30 255 1 530 0.2 6.0 0.0 0.7 0.5 2.0 0.0
8’<30 1 350 43 641 5.1 32.3 29.2 24.2 33.1 9.0 14.3

BPIC’14 1 107 069 107 069 22.9 1.0 0.0 0.0 0.0
4 138 002 359 668 77.1 2.6 0.9 21.6 580.9
2>30 16 489 80 585 17.3 4.9 2.0 116.1 102.5 2.4 0.8
3>30 1 631 7 364 1.6 4.5 2.0 103.3 87.5 2.1 0.3
2<30 16 963 70 965 15.2 4.2 1.5 10.7 14.9 2.2 0.4
3<30 11 085 40 029 8.6 3.6 1.4 6.5 18.0 2.0 0.1
7’<30 3 274 18 320 3.9 5.6 2.6 8.9 12.6 5.6 2.6
8’<30 228 1 988 0.4 8.7 1.5 10.4 12.4 4.3 0.7

Tab. 2 shows the occurrence and other statistics of patterns 1, 2, 3, 4, 7’ and 8’
in the BPIC’14 and BPIC’17 data. We observe that P4 (multiple actions by same
actor) makes up for the largest share of events in both logs (77.1% and 98.6% for
BPIC’14 and BPIC’17, respectively) and has an average duration of 21.6 and 2.9
minutes and an average waiting time of 16.5 and 22.6 minutes between every pair
of successive P4 instances for BPIC’14 and BPIC’17, respectively. It is therefore
likely that these instances are composed of a single task execution as opposed to
multiple tasks executions, rejecting the general assumption that a task execution
is a single step executed by a single actor in a single case. We see P3 (actors
interrupt a task execution and switch to another case) more often in BPIC’14
(1.6%+8.6%) than in BPIC’17 (0.2%), showing that actors work differently in
different processes. Of these P3 interruptions in the BPIC’14 data, 86% lasted
less than 10 seconds. We observe that almost half of the interruptions P2 in
BPIC’14 last more than 30 minutes, indicating that actors often switch context
for long periods at a time. Task executions interrupted by waiting for another
actor (P3) make up 10.2% of the BPIC’14 data, with a minor part lasting longer
than 30 minutes, indicating either very long breaks or tasks in another process
context not recorded in the data. TIs of P2 and P3 contain on average 2 other
elementary TIs of P1 or P4 (last column). Executions of batch patterns P7’ and
P8’ comprise 0.2+7.6% of the BPIC’17 data; although multi-step batches (P8’)
have > 5 times as many steps as single-step batches (P7’) they only take twice
as long in duration; indicating large deviations in executions of batching tasks in
the BPIC’17 data. We observe a mean duration of 21.6m for analyzing problems
in IT components (BPIC’14) and 2.9m for handling loan applications (BPIC’17)
for elementary TIs, confirming our intuition that a task execution is short.
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Fig. 6: Event graph of loan applications 1111458873, 1372864243, 206394826,
1877008365 and 1992048266 in BPIC’17 revealing five different task execution patterns

To investigate the manifestation of different task execution patterns on a
case level, we visualized the events of five process executions in Fig. 6, revealing
instances of five different task execution patterns P1, P4, P7’, P8’, and notably
the most complex P16’. In Fig. 6, we observe six instances of P1 (one separately
and five as part of P7’). All other task instances are of type P4, meaning that
most actors perform tasks over multiple steps in the same case before handing
the case over to the next actor. Existing process discovery techniques lack the
resource perspective necessary to actually structure a trace into a sequence of
P4 (and P1) instances, required to reveal these handovers of work. We observe
r1 executing 〈A4, A8, H1, H3,W1, A3〉 in a batch for five cases in row (P8’) and
r19 executes W2 for the same fives cases in a batch (P7’) directly afterwards.
The instances of P8’ and P7’ together form an instance of P16’ along the cases.
While domain knowledge is required to verify whether this instance of P16’ is
intentional, we show that structured task executions involving multiple resources
and cases exist in the data. This particular type of structured collaboration over
multiple steps suggests a routine; confirming this requires further investigation.

We finally explored whether we find evidence for task executions changing
over time, as stipulated in [14]. We queried the frequency of all task executions
in BPIC’17 over time; Fig. 7 shows 4 selected task executions Ta-Td and their
frequency. Ta changes into Tb in July 2016 by changing only the first action
from V5 (lifecycle complete) to V4 (lifecycle abort), suggesting a minor change in
directive but not a change in the way people work. We see similar lifecycle changes
in other task executions of the BPIC’17 data (not shown here). Around the same
time, Tc and Td emerge, which both contain Ta at the end suggesting that also
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Fig. 7: Trends and subgraphs of four elem. task executions T in BPIC’17 showing
concept drift
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the way people worked changed. In total we found 6 more task executions with
this characteristic that also show this change.

7 Conclusion

In this paper, we considered event data along both the case and actor dimension.
Doing this in event graphs revealed different ways in which non-trivial tasks
manifest as patterns in the data and uncovered dynamics that have not been
described before in established process mining and modeling; these range from
interruptions and batching to the more complex production-type settings.

This lays the foundation for a fundamentally different way of conceptualizing
processes as the interplay of cases and actors engaging in recurrent patterns of
work, i.e., routines and habits as studied routines research [2]. We found evidence
in existing real-life event logs that such patterns make up the larger share of
events. We believe the taxonomy of task patterns aids in task mining and many
other process analysis problems where actor and case perspectives meet. For
example, the relation between certain actor behavior and process performance
or process outcomes, the adherence to queuing policies [25] as well as questions
related to the study of complete systems of processes, resources and queues
together [6].

Our approach is limited in that our taxonomy does not cover the entire
spectrum of possible task patterns; we currently do not account for graph-
structure-based patterns with a less strict synchronization of paths, while real-life
manifestations thereof do exist. This includes other possible patterns or aspects
that may have been overlooked. Some patterns of the taxonomy involving multiple
actors and cases were not found in the data as such data was not available.
However, such patterns do exist, e.g., delivering and installing a washing machine
by two actors does happen. A next step is finding and exploring other data for the
existence of these patterns. Important to note is that our work does not identify
a task itself but only the patterns of actions used to achieve a task. Finding out
what these patterns mean and what real-life tasks they portray is future work.
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4. Debois, S., López, H.A., Slaats, T., Andaloussi, A.A., Hildebrandt, T.T.: Chain

of events: Modular process models for the law. In: IFM. LNCS, vol. 12546, pp.
368–386. Springer (2020)

5. Delcoucq, L., Lecron, F., Fortemps, P., van der Aalst, W.M.P.: Resource-centric
process mining: clustering using local process models. In: SAC. pp. 45–52. ACM
(2020)



Classifying and Detecting Tasks and Routines using Event Graphs 17

6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Repairing event logs with miss-
ing events to support performance analysis of systems with shared resources. In:
PetriNets. LNCS, vol. 12152, pp. 239–259. Springer (2020)

7. van Dongen, B.F.: BPI Challenge 2014. Dataset (2014), https://doi.org/10.412
1/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

8. van Dongen, B.F.: BPI Challenge 2017. Dataset (2017), https://doi.org/10.412
1/12705737.v2

9. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, 2 edn. (2018)

10. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10, 109–141 (2021)

11. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
PetriNets. LNCS, vol. 11522, pp. 3–24. Springer (2019)

12. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
BPM. LNCS, vol. 9850, pp. 348–364. Springer (2016)

13. Gall, M., Rinderle-Ma, S.: Visual modeling of instance-spanning constraints in
process-aware information systems. In: CAiSE. LNCS, vol. 10253, pp. 597–611.
Springer (2017)

14. Goh, K., Pentland, B.: From actions to paths to patterning: Toward a dynamic
theory of patterning in routines. The Academy of Management Journal 62, 1901–
1929 (12 2019)

15. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic Process
Mining: Vision and Challenges. BISE (2020)

16. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability
calendars of a process from an event log. Inf. Syst. 88 (2020)

17. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event
logs. Inf. Syst. 95, 101642 (2021)

18. Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving
batch organisation of work insights from event logs. Decis. Support Syst. 100,
119–128 (2017)

19. Pentland, B., Feldman, M.: Narrative networks: Patterns of technology and organi-
zation. Organ. Sci. 18, 781–795 (2007)

20. Pentland, B., Feldman, M., Becker, M., Liu, P.: Dynamics of organizational routines:
A generative model. J. of Mngmt. Studies 49, 1484–1508 (12 2012)

21. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst,
W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst.
8(1), 1–30 (2017)

22. Pufahl, L., Weske, M.: Batch activity: enhancing business process modeling and
enactment with batch processing. Computing 101(12), 1909–1933 (2019)

23. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: CAiSE. LNCS,
vol. 3520, pp. 216–232. Springer (2005)

24. Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling, J.: Mining resource
assignments and teamwork compositions from process logs. Softwaretechnik-Trends
36(4) (2016)

25. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A., Kadish,
S., Bunnell, C.A.: Data-driven performance analysis of scheduled processes. In:
BPM. LNCS, vol. 9253, pp. 35–52. Springer (2015)

26. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational
mining. Decis. Support Syst. 46(1), 300–317 (2008)

https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/12705737.v2
https://doi.org/10.4121/12705737.v2


18 E.L. Klijn et al.

27. Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering instance and process spanning
constraints from process execution logs. Inf. Syst. 89, 101484 (2020)

A Formal Definitions

This appendix provides formal definitions of the graph concepts used in Sect. 3
and 4 and is available at the reviewers’ discretion.

A.1 Event Graphs

The following definitions summarize the concepts of event data in labeled property
graphs [10] as they are used in the paper an introduced in Section 3.

A labeled property graph (LPG) G = (N,R, λ,#) is a graph with nodes
N , and relationships R where each relationship r ∈ R defines a directed edge
−→r ∈ N×N between two nodes. Each node n ∈ N carries a label λ(n) ∈ ΛN ; each
relationship r ∈ R carries a label λ(r) ∈ ΛR. We write N ` = {n ∈ N | λ(n) = `}
and R` = {r ∈ R | λ(r) = `} for the nodes and relationships with label `,
respectively. Any node n and relationship r can carry properties via function
# : (N ∪ R) × Attr → Val of attribute-value pairs. We write x.a = v for
#(x, a) = v and x.a =⊥ if a is undefined for x.

An event graph is an LPG G = (N,R, λ,#) with node labels ΛN ∈ {Event ,
Entity} and relationship labels ΛR = {df , corr} with the following proper-
ties.Every event node e ∈ NEvent records an action name e.action 6=⊥ and
a timestamp e.time 6=⊥. Every entity node n ∈ NEntity has an entity type
n.type 6=⊥; in this paper n.type ∈ {Case,Resource} is either a case (of the
process) or an actor (working in the process).

Every correlation relationship r ∈ Rcorr is defined from an event node to an
entity node −→r = (e, n), e ∈ NEvent , n ∈ NEntity . The set of entities to which e is
correlated is corr(e) = {n | ∃r ∈ Rcorr−→r = (e, n)}; note that this set can contain
any number of entity nodes and even be empty. The set of events correlated to
entity n is corr(n) = {e | ∃r ∈ Rcorr−→r = (e, n)}

Any directly-follows relationship r ∈ Rdf is defined between event nodes
−→r = (e1, e2), e1, e2 ∈ NEvent and has an entity type r.type 6=⊥ so that (1) e1 and
e2 are correlated to the same entity n ∈ corr(e1)∩ corr(e2) with n.type = r.type,
and (2) e1 occurs before e2: e1.time < e2.time, and (3) there is no other event
e3 ∈ NEvent related to n ∈ corr(e3) that occurs in between e1.time < e3.time <
e2.time. In this paper we assume R to be complete wrt. all df relationships, i.e.,
it contains all df relationships for the given corr relationships.

A.2 DF-Paths

The following definitions formalize the notion of df -paths as introduced in Sect. 3.
Let G = (N,R, λ,#) be an event graph. A df -path for entity n ∈ NEntity is

a sequence σ = 〈r1, . . . , rk〉 of df -relationships ri ∈ Rdf with ri.type = n.type so
that there exist events e0, . . . , ek ∈ NEvent with
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1. −→ri = (ei−1, ei), 1 ≤ i ≤ k, and
2. {e0, . . . , ek} ⊆ corr(n)

We write σEvent = 〈e0, . . . , ek〉. A df -path does not have to be maximal, but it
has to be continuous. A df -path σ for entity n is complete iff σEvent = 〈e0, . . . , ek〉
and {e0, . . . , ek} = corr(n).

We also call a df -path σ for an entity n with n.type = T a T -df -path or just
T -path, e.g., a Resource-path or a Case-path; we write σ.type = T to denote the
type.

A.3 DF-Paths entering and leaving Event Subgraphs

The following definitions formalize the notion of df-paths entering and leaving
subgraphs of an event graph as discussed in Sections 3 and 4.1.

An event graph G′ = (N ′, R′, λ′,#′) is an event subgraph of G = (N,R,
λ,#) if N ′ ⊆ N,R′ ⊆ R, λ′ ⊆ λ,#′ ⊆ # so that all n ∈ N ′ are event nodes
λ(n) = Event . Let G′ be an event subgraph of an event graph G.

– A df -path σ with σEvent = 〈e0, . . . , ek〉 enters (leaves) G′ at event ei iff
ei ∈ N ′ and either i = 0 or ei−1 6∈ N ′ (either i = k or ei+1 6∈ N ′).

– σ enters G′ first (leaves G′ last) at event ei iff ei enters (leaves) G′ at ei and
there is no ej , j < i (j > i) where σ enters (leaves) G′.

– σ enters (leaves) G′ once at event ei if there is no other event ej where σ
enters (leaves) G′.

– σ is single in G′ iff σ = 〈e1〉; σ is continuous in G′ iff σ enters and leaves G′;
otherwise σ is interrupted in G′ (enters and leaves G′ more than once)

If σ = 〈r1, . . . , rk〉 is a continuous path in G′ then we write σ ∩G′ = 〈ri, . . . , rj〉
for the path within G′, i.e., σ enters G′ at ei−1,−→ri = (ei−1, ei) and leaves G′ at
ej ,−→rj = (ej−1, ej). We write σEvent ∩G′ = 〈ei−1, . . . , ej〉.

A.4 Task Execution Subgraphs formed by Synchronizing DF-Paths

The following definitions formalize the notion of task execution patterns in an
event graph as discussed in Section 4.2.

Let σ1, . . . , σn, n ≥ 2 be a set of complete df -paths in event graph G. Let G′

be an event subgraph of G.
Paths Σ = {σ1, . . . , σn} synchronize in a task execution described by subgraph

G′ iff all following conditions hold:

(T1) For any two different event nodes e, e′ ∈ N ′Event, e 6= e′ in G′ exists a
df -path σi, 1 ≤ i ≤ n containing both events e, e′ ∈ σEvent

i .
(T2) For each event node e ∈ N ′Event in G′ exists a case df -path σc, 1 ≤ c ≤ n

with σc.type = case and resource df -path σr, 1 ≤ r ≤ n with σr.type =
resource so that e ∈ σEvent

c and e ∈ σEvent
r .

(T3) There is at least one σ ∈ Σ continuous in G′.
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Paths Σ = {σ1, . . . , σn} strongly synchronize in a graph-structure based task
execution described by subgraph G′ iff all following conditions hold (T1), (T2),
(T3) and additionally

(T2’) For each event node e ∈ N ′Event in G′ holds: e ∈ σEvent of each σ ∈ Σ (e
occurs in each path in Σ.

Paths Σ = {σ1, . . . , σn} weakly synchronize in a domain-knowledge based task
execution described by subgraph G′ iff all following conditions hold (T1), (T2),
(T3) and additionally

(T3’) Each df -path σ ∈ Σ is continuous in G′

B Cypher Queries

This appendix provides the Cypher implementations of the queries for task
instances presented in Sect. 5 and is available at the reviewers’ discretion.

B.1 Query for Materializing Elementary Task Instances

The following Cypher query constructs the TI nodes and all corresponding
relationships as described in Sect. 5.1.

1 CALL {

2 MATCH (e1:Event)-[:DF {EntityType:"joint"}]->()

3 WHERE NOT ()-[:DF {EntityType:"joint"}]->(e1)

4 MATCH ()-[:DF {EntityType:"joint"}]->(e2:Event)

5 WHERE NOT (e2)-[:DF {EntityType:"joint"}]->()

6 MATCH p=(e1)-[:DF*]->(e2) WHERE all(r IN relationships(p)

7 WHERE (r.EntityType = "joint"))

8 RETURN p, e1, e2

9 UNION

10 MATCH (e:Event) WHERE NOT ()-[:DF {EntityType:"joint"}]->(e)

11 AND NOT (e)-[:DF {EntityType:"joint"}]->()

12 MATCH p=(e) RETURN p, e AS e1, e AS e2

13 }

14 WITH [event IN nodes(p) | event.Action_Lifecycle] AS path,

15 nodes(p) AS events, e1, e2

16 CREATE (h:TaskInstance {path:path, rID:e1.resource, cID:e1.case,

17 start_time:e1.timestamp, end_time:e2.timestamp})

18 WITH h, events

19 UNWIND events AS e

20 CREATE (h)-[:CONTAINS]->(e)

Lines 1-17 are for detecting the TI subgraphs. The CALL {} clause (lines
1-14) evaluates two subqueries: one to detect all subgraphs of P4 (lines 2-8) and
one to detect all subgraphs of P1 (lines 10-12); the results of these subqueries
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are then combined using the UNION clause (line 9). The MATCH clause in line
2 retrieves all event nodes e1 for which there exists an outgoing joint DF-edge
and the WHERE clause in line 3 restricts those nodes to not have an ingoing
joint DF-edge (e.g., e1, e3, e6 and e9 in Fig. 4). Conversely, the query in lines
4-5 retrieves all event nodes e2 for which there exists an ingoing joint DF-edge
and no outgoing joint DF-edge (e.g., e2, e4, e8 and e10 in Fig. 4). Lines 6-7 then
retrieve all possible paths from a node e1 to a node e2 of an arbitrary amount of
joint DF-edges (e.g., 〈e1, e2〉, 〈e3, e4〉, 〈e6, e7, e8〉 and 〈e9, e10〉 in Fig. 4). The
RETURN statement in line 8 defines what to include in the subquery result.
We similarly detect the subgraphs of P1 (e.g., 〈e5〉 in Fig. 4) in lines 10-12 and
return the results using the same format in line 13. WITH in lines 14-15 then
manipulates the output before it pipes the results to the next query, specifically
carrying over all event nodes included in the path. Next, we create a hti node
for each TI that we detect (the grey rectangular nodes in Fig. 4). The query in
lines 16-17 creates a node with the label TaskInstance and adds properties (path,
resource, case, start time, end time) of the subgraph it corresponds to using the
results of the previous query. We then carry over the created TI nodes and the
previously carried over list of event nodes (line 18), transform the latter back
into individual events (line 19) and, finally, correlate each TI to its corresponding
events using a CONTAINS relationship (line 20) (the grey dashed edges in Fig.
4).

B.2 Example query for detecting NTIs of P8’

The following Cypher query detects all instances of non-elementary task execution
pattern 8’. We assume a maximum of 30 minutes between cases for sequential
batch processing.

1 MATCH (h1:TaskInstance) WHERE NOT (:TaskInstance {task:h1.task})

2 -[:DF {EntityType:"resource"}]->(h1) AND size(h1.path) > 1

3 MATCH (h2:TaskInstance) WHERE NOT (h2)

4 -[:DF {EntityType:"resource"}]->(:TaskInstance {task:h2.task})

5 AND size(h2.path) > 1 AND h2.task=h1.task

6 MATCH p=(h1)-[:DF*3..]->(h2)

7 WHERE all(r IN relationships(p) WHERE (r.EntityType = "resource"))

8 AND all(n IN nodes(p) WHERE n.task = h1.task) AND all(idx IN

9 range(0, size(nodes(p)) - 2) WHERE datetime((nodes(p)[idx]).end_time) >

10 (datetime((nodes(p)[idx+1]).start_time) - duration("PT30M")))

11 RETURN p

In lines 1-2, we query the start of the path h1 that does not have an incoming
resource DF-edge from a TI node describing the same task execution and has a
path length > 1 (i.e., is a P4 instance). In lines 3-5 we query the end of the path
h2 using the inverse of the previous query and we additionally constrain h2 to be
the same task execution as h1. Lines 6-10 then retrieve all possible paths from
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h1 to h2 of at least 3 resource DF-edges containing only TIs of the same task
execution timestamped at most 30 minutes apart, which are returned in line 11.

C Legend for action name abbreviations

The following legend maps the abbreviations used in Figures 5 to 7 to their full
written action names.

A0 : A Accepted+COMPLETE C1 : W Call after offers+SCHEDULE
A1 : A Cancelled+COMPLETE C2 : W Call after offers+START
A2 : A Complete+COMPLETE C4 : W Call after offers+ATE ABORT
A3 : A Concept+COMPLETE I1 : W Call incomplete files+SCHEDULE
A4 : A Create Application+COMPLETE I2 : W Call incomplete files+START
A5 : A Denied+COMPLETE I4 : W Call incomplete files+ATE ABORT
A6 : A Incomplete+COMPLETE W1 : W Complete application+SCHEDULE
A7 : A Pending+COMPLETE W2 : W Complete application+START
A8 : A Submitted+COMPLETE W4 : W Complete application+ATE ABORT
A9 : A Validating+COMPLETE W5 : W Complete application+COMPLETE
O1 : O Cancelled+COMPLETE H1 : W Handle leads+SCHEDULE
O2 : O Create Offer+COMPLETE H3 : W Handle leads+WITHDRAW
O3 : O Created+COMPLETE V1 : W Validate application+SCHEDULE
O4 : O Refused+COMPLETE V2 : W Validate application+START
O5 : O Returned+COMPLETE V4 : W Validate application+ATE ABORT
O6 : O Sent (mail and online)+COMPLETE V5 : W Validate application+COMPLETE
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