Skip to main content

Incremental Predictive Process Monitoring: The Next Activity Case

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12875))

Abstract

Next-activity prediction methods for business processes are always introduced in a static setting, implying a single training phase followed by the application of the learned model during the test phase. Real-life processes, however, are often dynamic and prone to changes over time. Therefore, all state-of-the-art methods need regular retraining on new data to be kept up to date. It is, however, not straightforward to determine when to retrain nor what data to use; for instance, should all historic data be included or only new data? Updating models that still perform at an acceptable level wastes a potentially large amount of computational resources while postponing an update too much will deteriorate model performance. In this paper, we present incremental learning strategies for updating these existing models that do not require fully retraining them, hence reducing the number of computational resources needed while still maintaining a more consistent and correct view of the process in its current form. We introduce a basic neural network method consisting of a single dense layer. This architecture makes it easier to perform fast updates to the model and enables us to perform more experiments. We investigate the differences between our proposed incremental approaches. Experiments performed with a prototype on real-life data show that these update strategies are a promising way forward to further increase the power and usability of state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/StephenPauwels/edbn.

References

  1. Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  2. Berti, A.: Improving process mining prediction results in processes that change over time. Data Anal. 2016, 49 (2016)

    Google Scholar 

  3. Bifet, A., Gavalda, R.: SIAM: learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448. SIAM (2007)

    Google Scholar 

  4. Bose, R.J.C., Van Der Aalst, W.M., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2013)

    Article  Google Scholar 

  5. Burattin, A., Carmona, J.: A framework for online conformance checking. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_12

    Chapter  Google Scholar 

  6. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declarative process models from event streams. IEEE Trans. Serv. Comput. 8(6), 833–846 (2015). https://doi.org/10.1109/TSC.2015.2459703

    Article  Google Scholar 

  7. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  8. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  9. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incremental predictive process monitoring: How to deal with the variability of real environments. arXiv preprint arXiv:1804.03967 (2018)

  10. Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_25

    Chapter  Google Scholar 

  11. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  12. van Dongen, B.: BPI challenge (2012). https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

  13. van Dongen, B.: BPI challenge (2015). https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

  14. van Dongen, B.: Real-life event logs - hospital log, March 2011. https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

  15. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  16. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

    Article  Google Scholar 

  17. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN) (2016)

    Google Scholar 

  18. Lin, L., Wen, L., Wang, J.: MM-PRED: a deep predictive model for multi-attribute event sequence. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 118–126. SIAM (2019)

    Google Scholar 

  19. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. SCC 17, 1–8 (2017)

    Google Scholar 

  20. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  21. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_26

    Chapter  Google Scholar 

  22. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: 2019 International Conference on Process Mining (ICPM), pp. 129–136. IEEE (2019)

    Google Scholar 

  23. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Predictive process mining meets computer vision. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 176–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_11

    Chapter  Google Scholar 

  24. Pauwels, S., Calders, T.: Bayesian network based predictions of business processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 159–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_10

    Chapter  Google Scholar 

  25. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_15

  26. Serrà Julià, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: Dy, J., Krause, A., (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 10–15 July 2018, Stockholmsmässan, Sweden [Massachusetts: PMLR; 2018], pp. 4548–4557. Proceedings of Machine Learning Research (2018)

    Google Scholar 

  27. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–1365 (2020)

    Article  Google Scholar 

  28. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  29. Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_14

    Chapter  Google Scholar 

  30. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov Data (TKDD) 13(2), 1–57 (2019)

    Article  Google Scholar 

  31. Theis, J., Darabi, H.: Decay replay mining to predict next process events. IEEE Access 7, 119787–119803 (2019)

    Article  Google Scholar 

  32. Verenich, I.: Helpdesk, mendeley data, v1 (2016). https://doi.org/10.17632/39bp3vv62t.1

  33. Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv preprint arXiv:2005.01194 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Pauwels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pauwels, S., Calders, T. (2021). Incremental Predictive Process Monitoring: The Next Activity Case. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85469-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics