Skip to main content

Progressive Intensity of Human-Technology Teaming

  • Conference paper
  • First Online:
Human Interaction, Emerging Technologies and Future Systems V (IHIET 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 319))

Abstract

Human-technology combination is normally conceptualized on a bi-polar dimension from no technical autonomy to full technical autonomy, and consequently from full human control to no human control. This paper presents an alternative scale for describing levels of human-technology teaming. It assumes complementarity of humans and technology. Humans and technology are considered to remain qualitatively different in spite of new technical capabilities. When combined smartly, they are able to mutually compensate for weaknesses and to mutually reinforce strengths. On the proposed scale, both full human control as well as full technical autonomy are on the lowest level, as there is no teaming at all. Higher levels represent an increasing intensity of teaming ranging from (i) technology informs the human, via (ii) human and technology influence each other to (iii) true human-technology collaboration that allows for shared control. These levels are described and substantiated in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell, M.: Artificial Intelligence. Farrar Strauss and Giroux, New York (2019)

    Google Scholar 

  2. Hirsch-Kreinsen, H., Karačić, A.: Technologieversprechen Autonome Systeme. In: Hirsch-Kreinsen, H., Karačić, A. (eds.) Autonome Systeme und Arbeit, pp. 9–24. Transcript Verlag, Bielefeld (2019)

    Google Scholar 

  3. Kuhn, T., Liggesmeyer, P.: Autonome Systeme, Potenziale und Herausforderungen. In: Hirsch-Kreinsen, H., Karačić A. (eds.) Autonome Systeme und Arbeit, pp. 27–45. Transcript Verlag, Bielefeld (2019)

    Google Scholar 

  4. Fitts, P.M.: Human engineering for an effective air-navigation and traffic-control system. NRC, Washington DC (1951)

    Google Scholar 

  5. Waefler, T., Grote, G., Windischer, A., Ryser, C.: KOMPASS: a method for complementary system design. In: Hollnagel, E. (ed.) Handbook of Cognitive Task Design, pp. 477–502. Lawrence Erlbaum, Mahwah (2003)

    Chapter  Google Scholar 

  6. Grote, G., Weik, S., Waefler, T., Zoelch, M.: Criteria for the complementary allocation of functions in automated work systems and their use in simultaneous engineering projects. Int. J. Ind. Ergon. 16, 367–382 (1995)

    Article  Google Scholar 

  7. Sheridan, T.B.: Supervisory control. In: Salvendy, G. (ed.) Handbook of Human Factors/Ergonomics. Wiley, New York (1987)

    Google Scholar 

  8. EASA: Artificial Intelligence Roadmap (2020). http://easa.europa.eu/ai

  9. Sheridan, T.B.: Function allocation: algorithm, alchemy or apostasy? Int. J. Hum.-Comput. Stud. 52, 203–216 (2000)

    Article  Google Scholar 

  10. Bainbridge, L.: Ironies of automation. In: Rasmussen, J., Duncan, K., Leplat, J. (eds.) New Technology and Human Error, pp. 271–283. Wiley, Chichester (1987)

    Google Scholar 

  11. Parasuraman, R., Mouloua, M., Molloy, R.: Effects of adaptive task allocation on monitoring of automated systems. Hum. Factors 38, 665–679 (1996)

    Article  Google Scholar 

  12. Manzey, D.: Systemgestaltung und Automatisierung. In: Badke-Schaub, P., Hofinger, G., Lauche, K. (eds.) Human Factors, pp. 333–352. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-19886-1_19

    Chapter  Google Scholar 

  13. Abbass, H.A.: Social integration of artificial intelligence: functions, automation allocation logic and human-autonomy trust. Cogn. Comput. 11(2), 159–171 (2019). https://doi.org/10.1007/s12559-018-9619-0

    Article  Google Scholar 

  14. Bradshaw, J.M., Hoffman, R.R., Johnson, M., Woods, D.D.: The seven deadly myths of “autonomous systems.” IEEE Intell. Syst. 28(3), 54–61 (2013)

    Article  Google Scholar 

  15. Gerst, D.: Autonome Systeme und Künstliche Intelligenz. Herausforderungen für die Arbeits systemgestaltung. In: Hirsch-Kreinsen, H., Karačić, A. (eds.) Autonome Systeme und Arbeit, pp. 101–137. Transcript Verlag, Bielefeld (2019)

    Google Scholar 

  16. Russell, S.: Human Compatible. Penguin Books, London (2019)

    Google Scholar 

  17. Chen, J.Q.: Who should be the boss? Machines or humans? In: Griffiths, P., Nowshade Kabir, M. (eds.) ECIAIR 2019, Oxford, UK, pp. 71–79 (2019)

    Google Scholar 

  18. Franken, S., Wattenberg, M.: The impact of AI on employment and organisation in the industrial working environment of the future. In: Griffiths, P., Nowshade Kabir, M. (eds.) ECIAIR 2019, Oxford, UK, pp. 141–148 (2019)

    Google Scholar 

  19. Bezemer, T., de Groot, M., Blasse, E., ten Berg, M., Kappen, T.H., Bredenoord, A.L.: A Human(e) in clinical decision support systems. J. Med. Internet Res. 21, 1–9 (2019)

    Article  Google Scholar 

  20. Floridi, L.: The Fourth Revolution How the Infosphere Is Reshaping Human Reality. Oxford University Press, Oxford (2016)

    Google Scholar 

  21. Zuboff, S.: In the Age of the Smart Machine. Basic Books, New York (1988)

    Google Scholar 

  22. Waefler, T.: Gebildeter und vernetzter Mensch: Vier Thesen zur soziotechnischen Gestaltung der Zukunft. J. Psychologie des Arbeitshandelns. 13(2), 5–21 (2020)

    Google Scholar 

  23. Grote, G.: Gestaltungsansätze für das komplementäre Zusammenwirken von Mensch und Technik in Industrie 4.0. In: Hirsch-Kreinsen, H., Ittermann, P., Niehaus, J. (eds.) Digitalisierung industrieller Arbeit, pp. 131–146. Nomos, Baden-Baden (2015)

    Google Scholar 

  24. Crowe, D., LaPierre, M., Kebritchi, M.: Knowledge based artificial augmentation intelligence technology: next step in academic instructional tools of distance learning. TechTrends 61, 494–506 (2017)

    Article  Google Scholar 

  25. Kirste, M.: Augmented Intelligence – Wie Menschen mit KI zusammen arbeiten. In: Wittpahl, V. (ed.) Künstliche Intelligenz, pp. 58–71. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58042-4_4

    Chapter  Google Scholar 

  26. Scherk, J., Pöchhacker-Tröscher, G., Wagner, K.: Künstliche Intelligenz - Artificial Intelligence. Pöschhacker Innovation Consulting, Linz (2017)

    Google Scholar 

  27. Both, G., Weber, J.: Hands-free driving? Automatisiertes Fahren und Mensch-Maschine Interaktion. In: Hilgendorf, E. (ed.) Robotik im Kontext von Moral und Recht, pp. 171–188. Nomos, Baden-Baden (2014)

    Google Scholar 

  28. Samek, W., Wiegand, T., Müller, K.-R.: Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. ICT Discov. 1, 1–10 (2017). Special Issue The Impact of AI on Communication Networks and Services

    Google Scholar 

  29. Rodriguez, S.S., O’Donovan, J., Schaffer, J.A., Höllerer, T.: Knowledge complacency and decision support systems. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), pp.43–51 (2019)

    Google Scholar 

  30. Schmid, U., Finzel, B.: Mutual explanations for cooperative decision making in medicine. KI - Künstliche Intelligenz 34(2), 227–233 (2020). https://doi.org/10.1007/s13218-020-00633-2

    Article  Google Scholar 

  31. Ittermann, P., Niehaus, J., Hirsch-Kreinsen, H., Dregger, J., ten Hompel, M.: Social Manufacturing and Logistics. Gestaltung von Arbeit in der digitalen Produktion und Logistik. Technische Universität Dortmund, Dortmund (2016)

    Google Scholar 

  32. Heim, P.: Interaktive Angleichung als Modell für die Mensch-Computer-Interaktion im Semantic Web. Universität Stuttgart, Stuttgart (2011)

    Google Scholar 

  33. Ludwig, B.: Planbasierte Mensch-Maschine-Interaktion in multimodalen Assistenzsystemen. Springer, Berlin (2015).https://doi.org/10.1007/978-3-662-44819-9

  34. Onnasch, L., Roesler, E.: A taxonomy to structure and analyze human–robot interaction. Int. J. Soc. Robot. (2020)

    Google Scholar 

  35. Schmidt, A., Herrmann, T.: User interfaces: a new interaction paradigm for automated systems. Interactions 25(5), 41–46 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Waefler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waefler, T. (2022). Progressive Intensity of Human-Technology Teaming. In: Ahram, T., Taiar, R. (eds) Human Interaction, Emerging Technologies and Future Systems V. IHIET 2021. Lecture Notes in Networks and Systems, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-85540-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85540-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85539-0

  • Online ISBN: 978-3-030-85540-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics