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Abstract. Synthetic biologists use and combine diverse biological parts
to build systems such as genetic circuits that perform desirable functions
in, for example, biomedical or industrial applications. Computer-aided
design methods have been developed to help choose appropriate network
structures and biological parts for a given design objective. However,
they almost always model the behavior of the network in an average
cell, despite pervasive cell-to-cell variability. Here, we present a compu-
tational framework to guide the design of synthetic biological circuits
while accounting for cell-to-cell variability explicitly. Our design method
integrates a NonLinear Mixed-Effect (NLME) framework into an exist-
ing algorithm for design based on ordinary differential equation (ODE)
models. The analysis of a recently developed transcriptional controller
demonstrates first insights into design guidelines when trying to achieve
reliable performance under cell-to-cell variability. We anticipate that our
method not only facilitates the rational design of synthetic networks
under cell-to-cell variability, but also enables novel applications by sup-
porting design objectives that specify the desired behavior of cell popu-
lations.

Keywords: Cell-to-cell variability · Synthetic biology ·
Computer-aided design

1 Introduction

Synthetic biology aims at establishing novel functions in biological systems, or
to re-engineer existing ones, in many areas such as new materials or cell-based
therapies that are starting to see real-world applications [21]. The conceptual
core of the field’s rational engineering approach to establish, for example, the
corresponding synthetic gene circuits are a systematic design-build-test cycle
and the use of predictive mathematical models throughout this cycle to design,
analyze, and tune the circuits [14].

Computer-aided design helps identifying suitable network structures (topolo-
gies) as well as biological parts for their implementation to reach a given design

c© The Author(s) 2021
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Fig. 1. Cell behaviors relate to parameters at the individual and population
level. (A) Dose-response relationships for single cells (lines) drawn from two distinct
populations (red and orange) as well as other cells (gray). The design objective for
individual cells is represented by an ideal reference curve (black). (B) Space of indi-
vidual parameters β, the set of possible parameter values for a single cell. Dots show
parametrizations yielding the behaviors in (A) of the corresponding color. The blue
ellipse encloses the individual viable space where an individual cost measuring consis-
tency of the single-cell behavior with the design objective for individual cells is below a
threshold ε. Red and orange dots encircled by ellipses represent individual cells drawn
from the two distinct cell populations. (C) Space of population parameters γ, where
each parameter vector (dot) describes a full distribution of individual parameters in a
population, typically via mean vector and covariance matrix. The orange (γ) and red
(γ′) dots represent the population parameter vectors that generate the corresponding
populations in (A,B). (Color figure online)

objective. For the commonly applied models in the form of ordinary differen-
tial equations (ODEs), both design problems can be addressed by investigat-
ing the space of model parameters to assess (predicted) circuit behaviors in
relation to design objectives encoded by a reference for the desired behavior.
With sampling-based methods such as (approximate) Bayesian computation,
this defines a ‘viable’ subspace of the parameter space where the behavior is
consistent with the design objective (Fig. 1A,B) [2,10,17].

The ODE-based approach captures the behavior of an ‘average’ cell and thus
only allows design with respect to such an assumed cell. Yet, for the biological
implementation it is critical that a circuit functions under conditions of uncer-
tainty (e.g., in changing environmental conditions or because the models do not
capture relevant interactions between parts or with the cellular context [7]) as
well as cell-to-cell variability that is present even in isogenic populations (e.g.,
due to extrinsic or intrinsic stochastic noise, or different cell cycle phases and
ages of cells in a population [4]). One can account for uncertainty in ODE-based
design, for example, via measures of robustness that quantify parameter uncer-
tainty [10]. It is also possible to tackle cell-to-cell variability with stochastic
models, where temporal logic specifications are written as Continuous Stochas-
tic Logic (CSL) [23]. However, the pure ODE and CSL frameworks are limited
in two main aspects: First, they cannot account for all aspects of cell-to-cell vari-
ability directly; stochastic models do not represent extrinsic variability result-
ing, for example, from variable cell sizes. This is particularly important when
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an ‘average’ cell poorly represents the population dynamics, for example, when
subpopulations of cells show different qualitative behaviors. Second, and related,
it is not possible to define design objectives for the population, such as requiring
a certain fraction of the cells to have a coherent behavior.

To address these limitations, here we propose a framework for robust syn-
thetic circuit design that takes into account cell-to-cell variability, and clearly
separates it from experimental noise and impact of variable environmental con-
ditions and interacting parts. For this population design, we extend an existing
algorithm for ODE-based design [10] to the NLME (NonLinear Mixed-Effect)
models framework [8]. Specifically, this entails augmenting the ODE model with
a statistical model at the population level that induces probability distributions
over the parameter space at the individual cell level (see Fig. 1B,C). This allows
a designer to impose cell-to-cell variability constraints on synthetic networks. We
demonstrate the approach with the a posteriori analysis of a recently developed
transcriptional controller [1], a class of circuits that is often designed to minimize
cell-to-cell variability.

2 Population Design Framework

Individual Cell Model. For any individual cell, the dynamics of the synthetic
circuit are governed by the individual cell model

Σ(β) :

⎧
⎪⎨

⎪⎩

dx(t)
dt = v(x(t), u(t), α)

x(0) = x0

y(t) = h(x(t)) ,

(1)

where x are the system states such as concentrations of chemical species, v is
a rate function, and u is an input function. Usually, states cannot be observed
directly and the observations y of the system result from a (known) observation
function h. We subsume the parameters α and initial conditions x0 into the
parameter β = (α, x0) ∈ B, where B is a bounded set.

Average Cell Design. We first consider the average cell design problem of
determining the parameter β∗ that minimizes the divergence between the cir-
cuit’s behavior and a desired reference behavior. We model the behavior of Σ
as an input-output map D : R × B × U → R that provides a (time-dependent)
function D(τ ;β, u) in τ for each parameter β ∈ B and any input u ∈ U , where
U is a finite set of relevant inputs. The reference behavior Dref : R × U → R

is a user-specified (time-dependent) function for each u ∈ U that encodes the
desired input-output relation; it need not be realizable by Σ. A simple exam-
ple is a dose-response curve, where a constant input u is mapped to a constant
response for the reference, and to the output at steady state for t → ∞ for the
circuit. Another example identifies D(τ ;β, u) = y(τ) as the observations of Σ at
time τ for a given input and parameter.
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We measure the divergence between system and reference behavior by the
individual cost function

s(β) =
1

|U|
∑

u∈U

∣
∣
∣
∣D(τ ;β, u) − Dref(τ ;u)

∣
∣
∣
∣ , (2)

which averages some norm || · || between the system and reference behavior over
the considered inputs.

In principle, the average cell design problem could be solved directly to iden-
tify the optimal average cell parameter β∗ = argminβs(β). However, additional
uncertainties arise due to unmodelled system components and from combin-
ing previously characterized biological parts into a circuit [11]. We account
for these uncertainties by defining a threshold ε > 0 on the cost function
to encode which solutions are ‘good enough’, and determine the viable region
V avg = {β ∈ B | s(β) ≤ ε} of all parameters that fulfill this criterion. An output
of the average cell design problem is then a description of V avg rather than a
single parameter.

Population Model. To capture cell-to-cell variability, we postulate a population
model, where all cells share the same model structure Σ, but each cell i has its
own parameter βi drawn from a common population distribution

βi ∼ Pγ (3)

with population parameters γ ∈ Γ . This is known as a nonlinear mixed-effects
model and Pγ is often chosen to be a normal or log-normal distribution, in which
case γ are the expected values and (co)variances of the parameters in βi.

Population Design. The population model allows us to consider the distribu-
tion of behaviors of a circuit under cell-to-cell heterogeneity. In particular, each
population parameter γ yields a specific distribution Pγ of the individual cell
parameters β, and this induces a distribution over the values of the individual
cost functions s(β). The population design problem then consists of finding a
population parameter that minimizes a corresponding population cost function,
given by a functional

c : {Pγ | γ ∈ Γ} → R
+ . (4)

For example c(γ) = Eγ(s(β)) considers the expected value of the individual costs
over the population, and c(γ) = PPγ

(s(β) ≥ ε) = PPγ
(β �∈ V avg) considers the

percentage of cells whose behavior deviates from the reference by more than a
user-defined threshold ε (cf. Fig. 1B); this percentage depends on the specific
population distribution Pγ , and therefore on the population parameter γ.

Again, the population design problem can in principle be solved directly to
yield γ∗ = argminγc(γ). Here, we again relax this problem and seek to identify
the population viable space V pop = {γ ∈ Γ | c(γ) ≤ δ} to account for additional
uncertainties, where δ is again a user-defined parameter. In particular for design
objectives such as requiring a minimal fraction of cells with ‘acceptable’ behavior
that will have multiple optima, the population viable space also yields equivalent
design alternatives.
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Fig. 2. Well-tempered controller (WTC) circuit. (A) Schematic representation
of the circuit structure and its parametrization. Rectangles: genes with associated pro-
moters; ellipses: proteins (corresponding color); bold lines with arrows: molecular reac-
tions; normal lines with bar heads: regulatory interactions for inactivation. (B) Sim-
ulated dose-response curves of a population of cells for a given population parameter
γ with a coefficient of variation CV ≈ 10%. Red line: median response; blue to pur-
ple lines: responses of individual cells colored by cost: the lower the cost, the darker
the color; dashed orange line: reference linear dose-response curve, used to compute
the individual cost. (C) Experimental and simulated aTc dose-response curve for the
WTC. Blue: mean (circles) and standard deviation (error bars) of experimental data
obtained by flow cytometry; green line: simulation results for the estimated param-
eter values in Table 1. Additionally, we used estimated values dC = 0.0031 min−1,
dTet = 0.005 min−1, θTet = 1.2 nM, and θTup = 10−4 nM. To match the model output
(Citrine concentration) to fluorescence (a.u.), we determined a scaling factor as in [10].
(Color figure online)

3 Case Study: Design of a Transcriptional Con-
troller

3.1 Overview

To demonstrate the framework, we use a transcriptional controller termed well-
tempered controller (WTC) that was experimentally designed by Azizoglu et al.
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[1]. In the WTC (Fig. 2A), expression of the fluorescent protein Citrine—or of
any gene of interest—is regulated by constitutively expressed TetR-Tup1 and
by autorepressed TetR. Anhydrotetracycline (aTc) can bind to both TetR and
TetR-Tup1, thereby inactivating their ability to repress gene expression.

Experimentally, it was shown that cell-to-cell variability in the expression
of Citrine is reduced through the introduction of the TetR-mediated negative
feedback. At the same time, the dose-response curve—obtained by adding dif-
ferent amounts of the inducer molecule aTc—was tuned to approach an ideal
linear dose-response, corresponding to high Input Dynamic Range (IDR) and
high Output Dynamic Range (ODR) [12] (Fig. 2B).

Given that we already know the final network structure of the WTC, we aim
to use our computational framework to determine the acceptable characteristics
of the distribution of circuit parameters in a population of cells, namely their
mean and covariance, such that a large proportion of cells in the population will
display a dose-response curve close to an ideal reference curve. Notably, we wish
to establish whether our framework can identify the relevance of the feedback
mechanism in the context of a population of cells.

3.2 Individual Model

We first formulated an ODE model to describe the behavior of the WTC circuit
(see Fig. 2A). It involves the concentration of the input molecule aTc (a)—which
can be added to the cell culture—and three states for the total concentrations of
the repressor TetR (RTet), the repressor TetR-Tup1 (RTup) and the fluorescent
protein Citrine (C):

dRTet

dt
=

kTet

1 +
(

f ·RT et

θT et

)n

+
(

f ·RT up

θT up

)n − dTet · RTet (5)

dRTup

dt
= kTup − dTup · RTup (6)

dC

dt
=

kC

1 +
(

f ·RT et

θT et

)n

+
(

f ·RT up

θT up

)n − dC · C. (7)

Parameters kTet, kTup and kC are maximal expression constants that capture
both transcription and translation to keep the model simple. Parameters dTet,
dTup and dC are the degradation constants.

For TetR and Citrine production we added a control term representing a
Hill function that depends on the active concentrations of the repressors TetR
and TetR-Tup1. Active TetR and TetR-Tup1 molecules are those that are not
bound to the inducer aTc. Assuming rapid equilibrium for the binding of aTc
to TetR and TetR-Tup1 (as in Lormeau et al. [10]), the fraction of active TetR
and TetR-Tup1 (f) is given by:

f =
1
2

− 1 + Kaa − √
(1 + Ka(RTet + RTup − a))2 + 4Kaa

2Ka(RTet + RTup)
. (8)
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Experimental data showed that TetR and TetR-Tup1 have different repres-
sion efficiencies [1], represented by θ in the model. We therefore decided to model
the action of the two repressors on their controlled genes as an ‘OR’-gate. This
means that we are not taking into account that the repressors might bind to the
same DNA sequences. In contrast, we do not expect a difference in Hill coefficient
(n) or affinity (Ka) to aTc between TetR and TetR-Tup1.

3.3 Population Model

To simplify computations, we fixed the means of 6 out of 10 parameters of
the ODE model (see Table 1). To obtain these values, we estimated the model
parameters using data from Azizoglu et al. [1] and additional data on the WTC’s
biological parts. As shown in Fig. 2C, the parametrized WTC model captures
the experimental dose-response curve.

The four remaining parameters (dTet, dC , θTet, and θTup) are the protein
degradation constants, and the effective concentrations relative to the repres-
sion (including feedback) mechanisms. We fixed the mean value of dTup because
this parameter is not identifiable together with θTup using only steady-state
information. If dTup were to be sampled along with θTup, the strong negative
correlation of these two parameters would not have any biological meaning. For
the same reason, we fixed production constants and only allowed degradation
constants to vary.

Regarding variances, only the production constants (kTet, kTup, kC) and
degradation constants (dTet, dTup, dC) were assumed to display cell-to-cell vari-
ability. Without data on the variance of these parameters, we assumed that they
all follow a log-normal distribution (to ensure positivity) based on the same
variance σ2 of the underlying Normal distribution. This implies that all the
parameter distributions have the same coefficient of variation CV =

√
eσ2 − 1.

Since σ ≤ 0.1 for our data, we use the approximation CV ≈ σ to simplify our
analysis slightly.

3.4 Design Problem

Reference Dose-Response Curve. Our objective for the behavior of individ-
ual cells endowed with the WTC is a linear dose-response curve over an IDR
of [0 nM, 600 nM] for aTc with a desired ODR of [0 nM, 120 nM]. We encode a
dose-response curve as a reference behavior. It takes the aTc concentration a as
a constant input u(t) ≡ a, and yields a constant response Dref(a) ≡ Dref(τ ; a)
for all τ . We encode the high-IDR, high-ODR objective by defining (a,Dref(a))
to be the straight line between (0 nM, 0 nM) and (600 nM, 120 nM).

Individual Cost. To quantify the deviation between an individual cell’s behav-
ior and the reference curve, we use the individual cost from Eq. 2 based on the
dose-response curve (a,D(τ ;β, a)), where cell i has individual parameter set
βi = (k(i)

Tet, k
(i)
Tup, k

(i)
C , d

(i)
Tup, n, Ka, d

(i)
Tet, d

(i)
C , θTet, θTup), and D(τ ;β, a) ≡

D(β, a) is the steady-state (t → ∞) response to aTc concentration a. In our
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Table 1. Parameter specifications for the WTC model. Parameters
kTet, kTup, kC , and dTup are cell-to-cell variable but their mean is fixed to the indi-
cated value.

Fixed parameters

Name Description Units Fixed value Cell-specific

kTet Max production rate of
TetR

nM · min−1 1.115 Yes

kTup Max production rate of
TetR-Tup1

nM · min−1 0.7919 Yes

kC Max production rate of
Citrine

nM · min−1 0.8395 Yes

dTup Degradation constant of
TetR-Tup1

min−1 1.2745 Yes

n Hill coefficient for
promoter repression by
TetR and TetR-Tup1

(–) 1.5656 No

Ka Association constant for
TetR and TetR-Tup1
binding to aTc

nM−1 144.37 No

Sampled parameters

Name Description Units Bounds Explored
in log
space

Cell-specific

dTet Degradation constant of
TetR

min−1 [10−5 10] Yes Yes

dC Degradation constant of
Citrine

min−1 [10−10 10] Yes Yes

θTet Repression coefficient
TetR

nM [10−6 106] Yes No

θTup Repression coefficient
TetR-Tup1

nM [10−6 20] Yes No

implementation, the individual cost function is calculated via a discrete version
of the L2-norm based on N aTc input doses U = {a1, . . . , aN}, regularly spaced
between 0 and 600 nM:

s(β) =

√
√
√
√ 1

N

N∑

k=1

(D(β, ak) − Dref(ak))2 . (9)

We consider an individual cell’s dose-response acceptable if s(β) ≤ ε; the cor-
responding parameters β constitute the viable space. For our analysis, we use
ε = 5nM and ε = 2nM, which represent approximately 5% and 2% of the ODR
we wish to achieve, respectively.
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Population Cost. For our population design, we consider the percentage of
individual cells in a population with parameter γ that fulfill the criterion Eq. 9
as our population cost function:

c(γ) = PPγ
(s(β) ≥ ε) . (10)

We define the population viable space as those γ that yield at least 80% indi-
vidual cells with behavior sufficiently close to the reference and c(γ) ≤ 20%.

We estimate the population cost by drawing individual parameter sets βi from
the distribution Pγ and by determining the proportion of sampled parameter sets
that yield acceptable individual costs.

Sampling in Parameter Spaces. We sampled from both the individual
parameter space and the population parameter space, according to the individ-
ual cost s and the population cost c, respectively. We used an adaptive version
of the Metropolis-Hastings algorithm [6] in both cases, implemented in the R
[15] package ‘fmcmc’ [20], with pseudo-likelihoods based on individual cost and
population cost. The package ‘deSolve’ [19] was used to solve the ODE model,
with derivatives computed in C code. We defined the pseudo-likelihood for the
individual parameter space as:

l(β) = 1(s(β) ≤ ε) (11)

with ε ∈ {5 nM, 2 nM}, therefore sampling uniformly the viable region V avg =
{β ∈ B | s(β) ≤ ε}. The pseudo-likelihood for the population parameter space
was:

L(γ) = 1(c(γ) ≤ δ) (12)

with δ = 0.2. We then obtain uniformly distributed samples from the population
viable space V pop = {γ ∈ Γ | c(γ) ≤ δ}. Note that, as c(γ) depends on the value
of ε (Eq. 10), L(γ) and the associated population viable space will also depend
on its value.

To compute this population pseudo-likelihood, however, we need to approxi-
mate c(γ), as it is the functional of a distribution (in this case study, a probabil-
ity). For each value of γ, 300 individual parameters were drawn randomly from
the underlying log-normal distribution Pγ . For each individual parameter vector,
we computed the individual cost s and approximated c(γ) as the fraction of sam-
ples with individual costs above the corresponding threshold ε ∈ {5 nM, 2 nM}.
Note that we are interested in the resulting distribution of the individual costs
and not in describing Pγ . Thus, even though we consider 6 cell-to-cell variable
parameters, a sample size of 300 proved sufficient to reliably represent this distri-
bution of individual costs as the underlying distance measure between a constant
reference and the output of an ODE model is sufficiently smooth. An illustration
is given in Fig. 2B, where 300 individual dose-response curves from a population
distribution with high coefficient of variation cover the graph sufficiently.

The log-normal population distribution for our example allows us to reduce
the required amount of random sampling and to provide more consistent results
for the approximation of the population pseudo-likelihood. Note that we can
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reconstruct the mean vector μ ∈ R
6 and the 6 × 6 covariance matrix C of the

underlying multivariate Normal distribution from the population parameter γ.
We therefore once generated 300 samples Si from the standard multivariate
Normal distribution N(0, I) in R

6. For each value of γ, we constructed the cor-
responding samples of the individual parameters as βi = μ + C1/2 · Si, where
C1/2 is the lower triangular matrix from a Cholesky decomposition of C. This
ensures that repeated calls to our approximation of the population cost function
with the same population parameter γ yields the same cost and requires only
a single sample of size 300. On a standard laptop with Intel i7 processor, we
obtained ≈900 samples from the population space per hour, corresponding to
≈2.7·105 samples from the individual parameter space.

Example. To illustrate the interplay between the individual and the popula-
tion level in our design problem, Fig. 2B shows an example of the dose-response
relationship of the WTC model for a population of cells. The NLME formula-
tion takes into account the variance in parameters, that is, cell-to-cell variability.
Here, although the median response is close enough to the ideal response, approx-
imately 83% of the response curves are not within the acceptable range due to
variance in the individual parameters. This leads to a population cost of ≈0.83,
given an individual cost threshold of ε = 5 nM (corresponding to approximately
5% deviation from the reference curve). The example illustrates a key difference
between traditional design assuming an ‘average’ cell and population design. If
the design objective were to achieve a median response close to the reference,
the example would be a valid solution, although the vast majority of individual
cells would not comply with the design objective.

3.5 Sampling the Individual Parameters

Figure 3 shows the results of sampling the individual parameter space according
to the value of the individual cost s(·). We first note that the protein degradation
constant of Citrine, dC , displays a substantially narrower marginal distribution
than all other parameters. Citrine is the system response, and therefore this
distribution shape is not surprising: with all other parameters kept identical, a
change in dC will directly impact the shape of the dose-response curve.

In the two-dimensional projections of the joint distribution over the individ-
ual viable space V avg, the two parameters for protein degradation, dTet and dC ,
are correlated, but mainly in the high-viability region. This indicates that either
of the two parameters could be used to fine-tune the circuit.

Most importantly, the pattern of the projection across (θTet, θTup), which
capture the strength of transcriptional repression, reveals insights into the rele-
vance of negative feedback for WTC performance. Specifically, θTet is the param-
eter for auto-repression, whereas θTup is the parameter for constitutive repres-
sion. A smaller value of θTet (resp. θTup) means a stronger auto-repression (resp.
constitutive repression). For the viability threshold of 5 nM used to define the
viable space for the data shown in Fig. 3, most values for both θs are allowed,
including high values that would effectively nullify the corresponding repressive
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Fig. 3. Viable samples in the individual parameter space. Histograms show
marginal distributions, and scatter plots samples in all two-dimensional projections
of the parameter space. In the projections, samples are colored according to their
individual cost from light blue to purple: a darker blue indicates a lower cost, and
thus a higher consistency of the WTC dose-response with the reference curve for a
given point. Only the parameters present in the plot were allowed to vary, all others
were fixed to values specified in Table 1. Additionally, all parameters were sampled in
log10-scale, and are displayed as such. (Color figure online)

effect. However, the upper right quadrant does not contain viable samples, indi-
cating that at least one type of repression is needed for the circuit to achieve the
desired behavior. Importantly, samples with lower values of the individual cost
are located in the region of low θTet (notice the color gradient). If we wish to
achieve even closer correspondence of the WTC’s dose-response with the refer-
ence curve for an individual cell (e.g., with an individual threshold ε = 2nM),
auto-repression becomes mandatory. Note as well that θTet becomes strongly cor-
related with both degradation constants dTet and dC , whenever auto-repression
is strong. This is logical because auto-repression reduces the mean expression
of TetR and Citrine, and should thus be compensated for by lower degradation
constants to keep mean expressions in the desired range.

3.6 Sampling the Population Parameters

We next applied the population design framework described in Sect. 2 to the
WTC model. Our aim is to obtain design guidelines for a reasonably good tran-
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Fig. 4. Viable samples in the population parameter space. Samples in all two-
dimensional projections of the parameter space; note that CV is the common coeffi-
cient of variation for all cell-to-cell variable population parameters. Orange dots: viable
samples for the threshold on the individual cost ε = 5 nM; red dots: viable samples for
ε = 2nM. All parameters are in log10-scale.(Color figure online)

scriptional controller with low cell-to-cell variability in the steady-state dose-
response, which we encode via the population cost Eq. 10 with a threshold of
δ = 20%. The resulting samples according to Eq. 10 are shown in Fig. 4 for
the two individual cost thresholds ε = 5nM (orange) and ε = 2nM (red). For
both values of ε, we ran the Markov Chain Monte-Carlo (MCMC) chain twice
from two different starting points. This explains the apparent density differences
between regions, particularly visible in the planes (dTet, θTup) and (dTet, CV ).

Compared to the individual parameter samples (Fig. 3), we observe a clear
upper bound of about 10−2.5min−1 for the population mean of dTet, which needs
to be considered in the population design of the transcriptional controller.

Moreover, we find two distinct ‘modes’ of parameter combinations that lead
to the desired population behavior, clearly visible in the (dTet, θTet) panel of
Fig. 4: if the average degradation constant dTet is large enough, this process
alone ensures a level of TetR compatible with the desired output and the auto-
repression with θTet can be chosen almost arbitrarily. Conversely, a low degrada-
tion constant requires strong auto-repression to achieve the population behav-
ior, and thus low values for θTet. These two modes are connected via a region
with strong correlation between these parameters, indicating that both param-
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eters need to be tuned simultaneously to achieve the population behavior in
this region. In contrast, a strong auto-repression cannot compensate for a low
degradation of Citrine (parameter dC), while sufficiently high degradation of
Citrine does not require tuning the auto-repression constants, as seen in panels
(dC , θTet) and (dC , θTup).

To generate the data in Fig. 4, we allowed the coefficient of variation (CV,
which is multiplicative in linear space) to vary up to a value of one. However,
viable samples are essentially all below 0.02, pointing to this value as a possi-
ble maximum for the admissible cell-to-cell variability for reaching the design
objective under the model’s assumptions. For future studies, it is, hence, of
interest to experimentally quantify the cell-to-cell variability of the parameters,
and check the results against our inferred value. Note, however, that higher
coefficients of variation would be allowed in the presence of negative correla-
tions between parameters. In the plane (θTet, CV ) exists also a slightly decreas-
ing slope for the case ε = 5nM: when the value of θTet increases, leading to
weaker auto-repression, the maximum admissible value for the coefficient of vari-
ation decreases. Indeed, the maximum CV for all samples has a value of ≈1.8%,
whereas the maximum CV for the samples fulfilling the condition θTet > 104 nM
is only ≈0.45%. This indicates that auto-repression can help compensate for cell-
to-cell variability.

Regarding the repression parameters, θTet and θTup, we observe what could
be expected from the individual samples: for ε = 5nM, the pattern of the projec-
tion of the samples over the plane (θTet, θTup) is very similar, if not exactly iden-
tical, to the one observed in Fig. 3. When the individual threshold is decreased
to ε = 2nM, the viable region is reduced to low values of θTet, indicating that
auto-repression becomes necessary to achieve the design objective. Just as in the
individual parameter space, θTet strongly correlates with both degradation con-
stants for low θTet, i.e. for strong auto-repression. This applies particularly for
ε = 2nM. If auto-repression is mandatory in a circuit, as here, particular atten-
tion should be given to tuning repression constants and degradation constants
together.

Finally, we assumed that neither of the two repression parameters θTet and
θTup displays cell-to-cell variability because the corresponding (microscopic)
binding affinities are related to protein and DNA sequences that should be identi-
cal in each cell of an isogenic population. To assess the impact of this assumption,
we performed an analogous sampling where the two parameters were assumed
to vary from cell to cell just as the production and degradation constants; this
yielded results very similar to Fig. 4 (data not shown).

4 Discussion

Nearly all current methods for synthetic circuit design assume an ‘average’ cell
that needs to be optimized to fulfill the design objectives, potentially by consider-
ing parameter variations to achieve robustness of the biological implementation
[10]. Stochastic design frameworks that account for cell-to-cell variability due
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to intrinsic noise with low molecule copy numbers are beginning to emerge, but
computational complexity currently limits them to small networks, steady-state,
and homogeneous model parameters in a cell population [18]. Here, we therefore
proposed population design via NLMEs as an alternative to both approaches.
We argue that it has the potential to bring information about cell-to-cell vari-
ability to synthetic biological design in realistic settings, and to help infer the
impact of said variability on the system of interest.

Our case study considers a problem synthetic circuit designers often face,
namely to tune their system in order to reduce cell-to-cell variability [1]. For
the WTC, the population sampling highlighted the importance of fine-tuning
jointly the degradation constant of TetR and its auto-repression constant to
achieve low cell-to-cell variability—the parameters could assume a wider range
of values to achieve mere individual cell viability. Feedback mechanisms were
necessary in both cases, at least under our assumption of a common variance
parameter. This indicates that constitutive repression, and even more so auto-
repression, are useful to linearize dose-response curves of individual cells. While
constitutive repression had no impact on cell-to-cell variability, auto-repression
could increase the admissible CV from ≈0.45% to ≈1.8%. However, we could
not achieve higher values of the CV , most likely because variability reduction
is directly linked to repression strength: increasing repression would decrease
cell-to-cell variability as well as mean expression of the repressed component.
To weaken or eliminate this link between mean and variability, one may need to
consider more complex topologies [3]. Note also that we limited our analysis to
a small number of dimensions. Future studies could include more parameters or
allow all variance parameters to be sampled independently. With independently
sampled variances, it would be particularly interesting to see how autorepression
affects (presumably relaxes) variance constraints across the network.

One limitation of our study (and an impediment to the extended analysis of
the WTC) is the sampling technique we used. MCMC sampling does not scale
well with dimensions, but one could use dedicated methods for sampling in higher
dimensional spaces [22] instead. We also noted a tendency of the MCMC chain
to get stuck in some parameter regions for population sampling, thus requiring
multiple starting points to explore the whole space; this was not needed for the
individual parameter space. However, keeping in mind that the number of vari-
ance parameters (including correlations) grows quadratically with the number
of individual parameters, it is likely that one will not be able to tune the vari-
ance of each parameter individually. As a possible strategy, one could fix the
covariance matrix to an experimentally determined one, for example, by using
well-established NLME inference approaches [4,8] to obtain a parametrization
of the cell-to-cell variability of biological parts. Other (not mutually exclusive)
alternatives include the use of approximation methods for the individual cost [16]
and of small sets sampling techniques such as the sigma-point approximation [9].
A different approach could be to replace exact MCMC sampling by approximate
methods. For example, variational inference can be much faster than MCMC
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and still provide accurate results, provided that the correlation structure of the
likelihood is properly accounted for [5].

For the present case study, we explored the population parameter space of a
network topology we knew should work for some parameter values. In the broader
context of synthetic biology, a working, simple topology that has the potential
to achieve the design objective is not necessarily known. In many cases, one may
want to explore different topologies and select the one that performs best while
still being simple enough. To achieve this goal while taking into account cell-to-
cell variability, we propose to apply the method described by Lormeau et al. [10]
to the objective function defined at the population level. Briefly, the algorithm
will explore a number of possible topologies by simplifying an initial (complex)
starting network, removing its edges. The viability (existence of parameters mak-
ing the network viable) of each network is assessed. One can then choose robust
networks according to the size of the viable region, for instance. The case study
presented here only aimed at providing a first insight into the relevance of sam-
pling from the population viable space, but we did not sample the population
viable space for multiple topologies. However, our findings for the WTC on the
importance of feedback mechanisms (to achieve the design objective, without
impacting cell-to-cell variability) and of fine-tuning TetR degradation (to reduce
cell-to-cell variability) indicate that the concept is promising.

Overall, the population design framework could then be used to recommend
network structures, together with their parameter values, that are best suited to
fulfill a design objective incorporating cell-to-cell variability. Such an approach
could also help exploring situations where cell-to-cell variability and a given
distribution over behaviors of cells in a population is desirable. One example
is bet-hedging in bacterial populations, where non-genetic variability across a
population increases the chances of survival in the face of antibiotics [13].

5 Conclusion

We propose a general framework we call population design that aims to help
biologists interested in synthetic circuit design to account for cell-to-cell vari-
ability via ODE-based NLMEs. We implemented a simple version of the concept
and demonstrated its usefulness for a transcriptional controller in an a poste-
riori case study. The current implementation is restricted to small models with
few parameters. We hope to augment it with advanced numerical methods and
extend it to the problem of topology design. In perspective, this could enable the
rational design of synthetic gene circuits that induce prescribed (distributions
of) behaviors at the population level, and thereby allow to exploit cell-to-cell
variability for novel applications.
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