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Abstract. Parameter identifiability describes whether, for a given dif-
ferential model, one can determine parameter values from model equa-
tions. Knowing global or local identifiability properties allows construc-
tion of better practical experiments to identify parameters from exper-
imental data. In this work, we present a web-based software tool that
allows to answer specific identifiability queries. Concretely, our toolbox
can determine identifiability of individual parameters of the model and
also provide all functions of parameters that are identifiable (also called
identifiable combinations) from single or multiple experiments. The pro-
gram is freely available at https://maple.cloud/app/6509768948056064.

Keywords: Structural identifiability · Identifiability software · Differ-
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1 Introduction and Related Work

A parameter is said to be structurally globally identifiable if, given the input
and output of the experiment, one can uniquely recover the parameter’s value
in the generic case. If the recovered value is not unique but comes from a finite
collection, then we say that such a parameter is locally identifiable. Otherwise,
the parameter is called non-identifiable. In the latter case, one wonders if there is
a function of that parameter that is identifiable. This is useful in several ways, for
instance, it can mitigate the issue of non-identifiability of some parameters [13].

There is a variety of installable packages that deal with parameter identifia-
bility, see, for instance [1, 4, 10, 17, 21]. For a more detailed overview of these,
see [5, 8] and references therein. A general overview of solving parameter identifi-
ability problems was presented, for instance, in [12, 14, 20]. Among the available
identifiability software, SIAN [7] written in Maple4 is typically the fastest one

? This work was partially supported by the NSF grants CCF-1564132, CCF-1563942,
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4 For a Julia implementation, see https://github.com/alexeyovchinnikov/SIAN-Julia
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for assessing global identifiability of individual parameters (see, e.g., [7, Table 1]).
In the case of the lack of identifiability, one may want to find which functions of
the parameters are identifiable. For this task, DAISY software [1] implemented
in Reduce can be used (under some assumptions, see [15, Remark 3] and [13]).
This state of affairs may be inconvenient for the user because

1) the features of interest are scattered among different packages;
2) packages may require proprietary (Maple) or less popular (Reduce) software

and may not be available for commonly used OS (DAISY is not available for
the UNIX-type systems);

3) finally, the packages should be installed.

These issues have been partially addressed by a web-based tool called COM-
BOS [11] (and its recent refinement COMBOS 2 for linear systems [9]). How-
ever, the backend algorithm appears to be less efficient than SIAN [7, Table 1],
and it relies on the same assumption on the input model as DAISY.

Our main contribution is a web-based toolbox hosted on Maple Cloud for
assessing structural identifiability built upon SIAN and recent software for com-
puting identifiable functions of parameters [13] which uses the Boulier’s BLAD
software package [2] incorporated into the Maple’s Differential Algebra

package. The key features are

1) efficiency. We use SIAN for assessing identifiability of individual parameters
efficiently. For computing identifiable functions, we use the code from [13]
which we speed up by exploiting the results of the computation performed
by SIAN.

2) versatility. The toolbox allows assessing local and global identifiability of the
parameters and initial conditions and compute the identifiable functions in
parameter both in the single- and multi-experiment setup. We do not make
any assumptions on the input system unlike DAISY or COMBOS.

3) availability. The toolbox is a web app, so it can be used in a browser in one
click and does not require installing anything.

In Section 3, we outline several scenarios in which our application is essential
for assessing identifiability of parameters and parameter combinations. We also
illustrate the speedup achievable using output from each of its parts. The web-
application5 can be used at https://maple.cloud/app/6509768948056064 and is
also available for download.

2 Input-output specification

Let us define the specific form of state-space input ODE that our application
accepts.

5 The Maple implementations of each underlying algorithm are available on GitHub
at https://github.com/pogudingleb/SIAN and https://github.com/pogudingleb/
AllIdentifiableFunctions.

https://maple.cloud/app/6509768948056064
https://github.com/pogudingleb/SIAN
https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions
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Definition 1 (Model in the state-space form). A model in the state-space
form accepted by the application is a system

Σ :=


x′ = f(x,µ,u),

y = g(x,µ,u),

x(0) = x∗,

where f = (f1, . . . , fn) and g = (g1, . . . , gn) with fi = fi(x,µ,u), gi = gi(x,µ,u)
are rational functions over the field of complex numbers C.

The vector x = (x1, . . . , xn) represents the time-dependent state variables
and x′ represents the derivative. The vector-function u = (u1, . . . , us) repre-
sents the input variable. The m-vector y = (y1, . . . , yn) represents the output
variables. The vector µ = (µ1, . . . , µλ) represents the parameters and x∗ =
(x∗1, . . . , x

∗
n) defines initial conditions of the model.

Below we specify the input format and possible outputs of our toolbox. Note
that while used in descriptions below, some outputs, such as number of solutions
for each parameter, are not listed here for brevity. The app also provides addi-
tional logs for debugging purposes. In Appendix B, we provide more specification
examples.

In: A model in state-space form, see Definition 1.

Out: Globally : Globally identifiable parameters, that is
ones uniquely recoverable for a given system.

Locally not Globally : Locally but not globally identifiable
parameters, with finitely many recoverable values.

Non-Identifiable : Non-identifiable parameters, these can have
infinitely many values.

Single-Experiment : Single-Experiment identifiable functions of
parameters, i.e. identifiable from k ≤ 1 experiments.

Multi-Experiment : Multi-Experiment identifiable functions of
parameters, i.e. identifiable from k ≤ β experiments.

β : Bound on the number of experiments.

Note that the single- and multi-experiment identifiable combinations returned
by the app generate all single- and multi-experiment functions of parameters,
respectively. We return them in the algebraically simplified form. In addition,
the app reports number of solutions per each globally or locally identifiable
parameter, which is not explicitly reflected here due to space limitations.

3 Use Cases for Structural Identifiability Toolbox

3.1 Globally Identifiable Example (two-species competition model)

Let us consider a simple two-species competition model based with logistic
growth in homogeneous environment and assume that we are interested in iden-
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tifiability properties of all parameters and initial conditions:
x′1 = r1x1

(
1− x1+x2

k1

)
,

x′2 = r2x2

(
1− x1+x2

k2

)
,

y1 = x1, y2 = x2

with population densities x1, x2 being time-dependent state variables, and in-
trinsic growth rates r1, r2 and carrying capacities k1, k2 being constant. To run
the toolbox for this system, we would write the following into the input field:

In: diff(x1(t),t) = r1*x1(t)*(1 - (x1(t) + x2(t))/k1);

diff(x2(t),t) = r2*x2(t)*(1 - (x1(t) + x2(t))/k2);

y1(t) = x1(t);

y2(t) = x2(t)

Out: Globally : [x1(0), x2(0), r1, r2, k1, k2]

Locally not Globally : []
Non-Identifiable : []

To determine the identifiability for this model, we keep default “Check global/lo-
cal identifiability” and “Print Number of Solutions” options on. After entering
the system and running the application, the output field contains the results.
In this model, all parameters and initial conditions are globally (and locally)
identifiable. One can now proceed to data collection and further experiments.

3.2 Locally Identifiable Model (SIRS model with forcing)

Consider an example of a seasonal epidemic model with a periodic forcing term:

s′ = µ− µs− b0(1 + b1x1)i · s+ g · r,
i′ = b0(1 + b1x1)i · s− (ν + µ)i,

r′ = νi− (µ+ g)r,

x′1 = −Mx2,

x′2 = Mx1,

y1 = i, y2 = r.

The model is taken from [3] and is built into the application as one of the illus-
trating examples. Assume that we are interested in identifiability of parameters
of this model. Without changing default settings, running the application yields
the result of b1, x1(0), x2(0) being unidentifiable, and b0, g, µ, ν, s(0), i(0), r(0) as
globally identifiable. At the same time, we observe that M which defines oscil-
lation of the term x1 is the only parameter identifiable locally, not globally. By
checking the number of solutions, we see that only two can be found for M with
probability p = 0.99. Since M represents the oscillation frequency, it is assumed
to be positive in practice, hence globally identifiable. Note that we only needed a
single section of the app and the result has been obtained in about 7.2 seconds.
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3.3 Identifiable Combination of Non-Identifiable Parameters
(tumor targeting)

In this example, we consider system 3 from [16, Section 3] with unknown initial
conditions. The example describes a compartmental model describing tumor
targeting with antibodies, see [18]. To arrive at the system below, we suppose
equations (B) and (D) are identically zero and that 5V 36

V 3 = 1. The functions
xi, i = 1, . . . , 5 represent concentrations, ki, i = 3, . . . , 7 and a, b, d represent rate
constants.

x′1 = −(k3 + k7)x1 + k4x2,

x′2 = k3x1 − (k4 + (a+ bd)k5)x2 + k6(x3 + x4) + k5x2(x3 + x4),

x′3 = ak5x2 − k6x3 − k5x2x3,
x′4 = bdk5x2 − k6x4 − k5x2x4,
x′5 = k7x1,

y1 = x5.

For this model, after computing identifiability properties using SIAN, we ob-
serve that everything except parameters a, b, d, x3(0), x4(0) is globally or locally
identifiable. To investigate further, we consider computation with “Compute
Identifiable Combinations” option turned on. Running the program with this
additional setting, we see that while parameters a, b, d are not identifiable, their
combination a+ bd can be identified from at most one experiment. This is espe-
cially beneficial since one can connect the meaning of expression a + bd to the
overall biological sense of the model’s underlying phenomenon. For instance, in
the original paper [18], constant a and a product bd may be attributed to total
binding sites on normal tissue and number of binding sites on tumor making
a+ bd the total number of binding sites in the system. Further, one could apply
a substitution of the form x̂3 = x3 + x4, p̂ = a + bd so that in the new system
we only have equations for x1, x2, x̂3, x5 and the parameter combination a+ bd
will now be globally identifiable as a parameter p̂.

3.4 System with a Non-Identifiable Parameter (Lotka-Volterra
model)

Let us consider the following Lotka-Volterra model
x′1 = ax1 − bx1x2
x′2 = −cx2 + dx1x2

y = x1

(1)

By running the application for (1) using only SIAN, we see that parameter
b and initial condition x2(0) are non-identifiable, and the parameters a, b, d and
the initial condition x1(0) are globally identifiable. Furthermore, since a is iden-
tifiable and x1 is observed, from the first equation we conclude that bx2(0) =
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a − x′1(0)/x1(0) is identifiable. This implies that we have an output-preserving
scaling transformation b → λb, x2 → x2/λ. Therefore, the reparametrization
x̂2 := bx2 makes the model globally identifiable.

3.5 Refining Multi-Experiment Identifiability Bound
(slow-fast ambiguity in a chemical reaction network)

Consider the following system:

x′A = −k1xA,
x′B = k1xA − k2xB ,
x′C = k2xB ,

e′A = e′C = 0,

y1 = eAxA + eBxB + eCxC ,

y2 = xC , y3 = eA, y4 = eC .

This model is based on a kinetic reaction A
k1−→ B

k2−→ C from [19] and has
an extra output equation y2. The functions xA, xB , xC are concentrations and
eA, eB with constant eC represent molar extinction coefficients. In addition, pa-
rameters include unknown rate coefficients k1, k2. The application reports global
identifiability for xC(0), eA(0), eC(0) and local identifiability for everything else.

It is then of interest to check identifiable parameter combinations. The app
reports single-experiment identifiability for k1k2, k1 + k2. This implies that the
parameters k1 and k2 are identifiable up to a permutation, so it is possible to
infer the reaction rates from an experiment but not which rate corresponds to
which reaction. Interestingly, the app reports that eB , k1, k2 become globally
identifiable if one performs at most 3 experiments. Can we do better? To answer
this, we turn on the option “Try to Refine Bound” with default number of refining
attempts being 4. As a result, the app reports a new bound for the number of
experiments being 2.

Let us illustrate this point in another way. Recall that we can tell SIAN
to consider multiple copies of the system when analyzing identifiability. In this
mode, SIAN does not output initial conditions for brevity. We observed that
the refined bound for parameters eB , k1, k2 was 2. If we set the “Number of
experiments (copies of the input system)” to 2, SIAN yields global identifiability
of eB , k1, k2, which verifies our earlier finding. Moreover, turning off “Attempt
Bypass using SIAN” option in the search for combinations, we observe that the
application still returns eB , k1, k2 as identifiable with 3 experiments, however,
single experiment check overwrites this result, yielding bound of 1.
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A Details on the underlying algorithms

The application solves two problems: identifiability properties of individual pa-
rameters and that of combinations (functions) of parameters. Note that we return
generators of the field of all identifiable functions.

The input for both problems follows the same structure where we pass a
collection of ODEs and output functions. For querying identifiability of indi-
vidual parameters and initial conditions we use SIAN [7]. In short, it expresses
the Taylor coefficients of output functions in terms of the initial conditions and
parameters and checks whether the parameters or initial conditions of interest
can be expressed via these coefficients. For better efficiency, this is checked for a
randomly sampled solution of the system. The probability that such a solution
will exhibit the generic behavior is quantified in [8]. Therefore, the overall algo-
rithm is randomized Monte Carlo, that is the result is guaranteed correct with
user-specified probability p.

To answer the question on identifiability of parameter functions we take ad-
vantage of work [13]. Note that our application distinguishes single- and multi-
experiment identifiable combinations as opposed to existing methods for iden-
tifiable combination queries. The latter is equivalent to having multiple copies
of original ODE system sharing the parameters, outputs, and inputs. We also
provide a bound on the number of experiments which can be refined by changing
ordering of variables in the underlying algorithm.

We compute the input-output equations, that is, differential equations relat-
ing inputs, outputs, and parameters of the differential model. Identifiable func-
tions of parameters are then extracted from the coefficients of these equations
using methods of differential algebra and computational algebraic geometry, in-
cluding Gröbner basis computation. To minimize the computational overhead,
we take advantage of the Gröbner walk procedure, by changing the order from
total degree reverse to pure lexicographic. This algorithm is deterministic or a
Monte Carlo probabilistic, depending on how/which of the Gröbner basis imple-
mentation is used.

To achieve maximal speed of computation without compromising the func-
tionality of the application, we take advantage of the fact that SIAN is typically
faster than the algorithm from [13] and its output can be sometimes used to
obtain the output of [13] without further computation. More precisely, if all pa-
rameters are reported as globally identifiable with probability p, then, with the
same probability, we report these parameters as their own identifiable combina-
tions and an example of this is presented in Appendix B.5.

With the current implementation, the application does not support specifying
initial conditions, however this functionality is planned for future versions.

B Systems in Structural Identifiability Toolbox Input
Form

Below we present input and output form for examples discussed in this paper.
The input is shown in the Maple syntax form. The toolbox also supports a
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Fig. 1. Main view of the application. The dial on the right side indicates whether an
app is running. The arrows are clickable and show additional settings for each section
of the program as well as documentation.

Fig. 2. Output fields of the application. We present individual parameters’ results and
identifiable combinations with the bound separately. The white field on the left displays
number of solutions per identifiable parameter.
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different input format:

dx1/dt = a*x1 + x2*b + u(t);

dx2/dt = x2*c + x1;

y = x2

where inputs u(t) are required to have argument written explicitly.

B.1 Example from Section 3.2

In: diff(s(t), t) = mu - mu*s(t) - b0*(1 + b1*x1(t))*i(t)*s(t)

+ g(t)*r(t);

diff(i(t), t) = b0*(1 + b1*x1(t))*i(t)*s(t) - (nu+mu)*i(t);

diff(r(t), t) = nu*i(t) - (mu + g)*r(t);

diff(x1(t), d) = -M*x2(t);

diff(x2(t), d) = M*x1(t);

y1(t) = i(t);

y2(t) = r(t)

Out: Globally : [b0, g, mu, nu, s(0), i(0), r(0)]

Locally not Globally : [M]
Non-Identifiable : [b1, x1(0), x2(0)]

B.2 Example from Section 3.3

In: diff(x1(t),t) = -(k3 + k7)*x1(t) + k4*x2(t);

diff(x2(t), t) = k3*x1(t) - (k4 + (a + b*d)*k5)*x2(t)

+ k6*(x3(t) + x4(t)) + k5*x2(t)*(x3(t) + x4(t));

diff(x3(t), t) = a*k5*x2(t) - k6*x3(t) - k5*x2(t)*x3(t);

diff(x4(t), t) = b*d*k5*x2(t) - k6*x4(t) - k5*x2(t)*x4(t);

diff(x5(t), t) = k7*x1(t);

y1(t) = x5(t)

Out: Globally : [k3, k4, k5, k6, k7, x1(0), x2(0), x5(0)]

Locally not Globally : []
Non-Identifiable : [a, b, d, x3(0), x4(0)]

Single-Experiment : [k3, k4, k6, k7, k5/k7, bd+a]

Multi-Experiment : [k3, k4, k6, k7, k5/k7, bd+a]

β = 1
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B.3 Example from Section 3.4

In: diff(x1(t), t) = a*x1(t) - b*x1(t)*x2(t);

diff(x2(t), t) = -c*x2(t) + d*x1(t)*x2(t);

y(t) = x1(t)

Out: Globally : [a, c, d, x1(0)]

Locally not Globally : []
Non-Identifiable : [b, x2(0)]

Single-Experiment : [a, c, d]

Multi-Experiment : [a, c, d]

β = 1

B.4 Example from Section 3.5

In: diff(xA(t), t) = -k1*xA(t);

diff(xB(t), t) = k1*xA(t) - k2*xB(t);

diff(xC(t), t) = k2*xB(t);

diff(eA(t), t) = 0;

diff(eC(t), t) = 0;

y1(t) = eA(t)*xA(t) + eB*xB(t) + eC(t)*xC(t);

y2(t) = xC(t);

y3(t) = eA(t);

y4(t) = eC(t)

Out: Globally : [xC(0), eA(0), eC(0)]

Locally not Globally : [eB, k1, k2, xA(0), xB(0)]

Non-Identifiable : []

Single-Experiment = [k1k2, k1+k2]

Multi-Experiment = [eB, k1, k2]

β = 3

B.5 Example of speedup with Bypasses

Consider the system from [6]

x′1 = −k1x1x2 + k2x4 + k4x6,

x′2 = k1x1x2 + k2x4 + k3x4,

x′3 = k3x4 + k5x6 − k6x3x5,
x′4 = k1x1x2 − k2x4 − k3x4,
x′5 = k4x6 + k5x6 − k6x3x5,
x′6 = −k4x6 − k5x6 + k6x3x5,

y1 = x3,

y2 = x2.



Web-based Structural Identifiability Analyzer 13

This is an example of a mixed-mechanism network, where the state functions
xi(t), i = 1, . . . , 6 are concentrations and the parameters ki, i = 1, . . . , 6 are
rate constants. The app returns global and local identifiability for all parameter
in under 4 seconds. This is used to conclude that multi-experiment identifiable
combinations with the bound of 1 are parameters themselves. If we turn off
the “Attempt Bypass” function, the multi-experiment identifiable combinations
k1, k3, k5, k6,

−k2k4+k3k5
k2+k3

, k2 − k3 with bound 1 are returned in 433 seconds. The
input form for this example is presented below

In: diff(x1(t), t) =-k1*x1(t)*x2(t) + k2*x4(t) + k4*x6(t);

diff(x2(t), t) = k1*x1(t)*x2(t) + k2*x4(t) + k3*x4(t);

diff(x3(t), t) = k3*x4(t) + k5*x6(t) - k6*x3(t)*x5(t);

diff(x4(t), t) = k1*x1(t)*x2(t) - k2*x4(t) - k3*x4(t);

diff(x5(t), t) = k4*x6(t) + k5*x6(t) - k6*x3(t)*x5(t);

diff(x6(t), t) =-k4*x6(t) - k5*x6 (t)+ k6*x3(t)*x5(t);

y1(t) = x3(t);

y2(t) = x2(t)

Out: Globally : [k1, k2, k3, k4, k5, k6,

x1(0), x2(0), x3(0),

x4(0), x5(0), x6(0)]

Locally not Globally : []
Non-Identifiable : []

Single-Experiment : [k1, k2, k3, k4, k5, k6]

Multi-Experiment : [k1, k2, k3, k4, k5, k6]

β = 1
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