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Abstract. Microbial community simulations using genome scale
metabolic networks (GSMs) are relevant for many application areas,
such as the analysis of the human microbiome. Such simulations rely
on assumptions about the culturing environment, affecting if the cul-
ture may reach a metabolically stationary state with constant microbial
concentrations. They also require assumptions on decision making by
the microbes: metabolic strategies can be in the interest of individual
community members or of the whole community. However, the impact
of such common assumptions on community simulation results has not
been investigated systematically. Here, we investigate four combinations
of assumptions, elucidate how they are applied in literature, provide
novel mathematical formulations for their simulation, and show how the
resulting predictions differ qualitatively. Crucially, our results stress that
different assumption combinations give qualitatively different predictions
on microbial coexistence by differential substrate utilization. This funda-
mental mechanism is critically under explored in the steady state GSM
literature with its strong focus on coexistence states due to crossfeeding
(division of labor).

Keywords: Microbial communities · Flux balance analysis · Game
theory

1 Introduction

Microbial communities perform essential functions in diverse environments such
as the soil [11] and the human gut [13]. While the experimental characterization
of community composition is relatively easy with metagenomics methods, this is
not true for the analysis of functional metabolic interactions between community
members [10]. The paradigm of constraint based modelling of metabolism with
genome scale models (GSMs) [4] has therefore become increasingly popular for
the analysis of microbial communities [1,3]. For example, a recent GSM-based
study stipulated that whether a microbial community is cooperative or compet-
itive correlates strongly with the nutrient abundance in its natural habitat [20].
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Approaching community functions with GSMs requires two key ingredi-
ents: models and simulation methods. Models are no longer a main limitation
because of the ease with which large, organism-specific and relatively predictive
GSMs can be derived automatically from genome sequences [15]. However, the
main simulation methods for GSMs such as flux balance analysis (FBA) [16]
and stochastic sampling [14] were originally developed for single species, not
communities.

In single-species FBA, a key assumption is that the simulated species opti-
mizes its fitness (e.g., growth). This can be interpreted as a decision making
problem where the organism needs to optimally control its (evolved) metabolic
network. However, in co-culture, the degree to which one species reaches its
objective may depend on the metabolic activity of all species, for example, when
species compete for nutrients. Dynamic FBA (dFBA) explicitly accounts for
nutrient concentrations and thereby for such interactions; it combines the FBA
principle with iterations over time to reflect changing environmental conditions
[28]. Recently, also scalable methods for dFBA simulation of communities have
been proposed [23]. Yet, a drawback of dFBA is that it requires reliable knowl-
edge on the form and parameters of uptake kinetics. These are hard to obtain
and without them, the simulation results can be unreliable [3].

Incomplete information on uptake kinetics raises a new frontier in decision
making for the simulation of interacting microbes in co-culture: the presence
of multiple decision making entities with potentially conflicting objectives. For
example, in d-OptCom, an influential method for dFBA of a community of
GSMs, decisions are based on a community objective (high community biomass
production) as well as individual objectives (high growth rate) [29]. In other
methods, the emergence of multiple decision makers has stimulated the use of
game theory for the analysis of microbial interactions [24].

To alleviate the dependence on uptake kinetics, community analyses with
GSMs are often restricted to metabolically stationary states (that is, metabolic
fluxes are constant over time) [7,31]. The long term behavior, represented by the
steady states, is the primary interest of most investigations. This makes invest-
ment of computational resources into predicting transient behavior less attrac-
tive. Furthermore, dynamics make the conceptualization of microbial decision
making more complex (raising questions about when a consortium strives to
achieve an objective).

However, as we will detail in Sect. 2, going from one to several microbial
species, the interpretation of the metabolically stationary state assumption in
constraint-based modeling suddenly depends on the type of cultivation envi-
ronment. Moreover, it turns out that differences in the environment also have
implications for models of decision making in FBA-type analyses. In particular,
assumptions on environment and decision making have fundamental impact on
whether organisms in a community of GSMs can coexist or not. These depen-
dencies have not yet been investigated systematically.



Microbial Community Decision Making Models 143

Here, we formulate four methods for simulating metabolically stationary
states, corresponding to combinations of two different environments, batch and
chemostat cultivation, and two different modes of microbial decision making,
distributed (rational agent) and centralized (rational community). In these for-
mulations, we put a novel emphasis on what information (local/global) the
decision makers have access to. The combination steady state batch/rational
community resembles the SteadyCom formulation [8]; the chemostat formula-
tions applicable to GSMs are new. We demonstrate the qualitative differences
between the approaches on two toy-examples, a prisoners dilemma (PD) model
for decision making and a nutrient limitation model for coexistence. As expected,
switching from rational agent to rational community, PD switches from defec-
tion to cooperation. For nutrient limitation, the four models yield qualitatively
different results. We argue that, which model to apply in a practical scenario
should be considered carefully and has to reflect both the chemical environment
and whether the community can be expected to have developed community
strategies. We believe that the chemostat formulations are of particular value
because important microbial environments such as the human gut resemble a
chemostat [9].

Fig. 1. Cultivation systems and their implications for metabolically stationary state
conditions. For definitions of mathematical variables, see Sect. 2.1. (A) Chemostat as an
open system in steady state. Black: time-constant entities; bold arrows: flows; normal
arrows: metabolic fluxes; rounded rectangle: cell. (B) Dynamics in batch cultivation
of cells with a phase of metabolically stationary state (constant growth rate, implying
linear increase of the logarithm of the species concentration, insensitive to external
concentrations) between dashed vertical lines. (C) Metabolically stationary state in
the closed batch system (time-constant entities in black).

2 Concepts

The two main environments for cultivating microbes are (assumed) chemostat
and batch processes. For FBA-based analysis, they imply different concepts of
metabolically stationary state, leading to different forms of microbial coexistence
and of models for decision making.
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2.1 Chemostat vs Batch Environment

In a chemostat as an open system, a fluid flow (dilution rate D) adds nutrients
(inflow concentrations Cin) and flushes out parts of the cultivation medium,
keeping the cultivation volume constant (see Fig. 1A). A metabolically stationary
state requires that metabolic fluxes (ν), species abundances (X), and environ-
mental nutrient concentrations (C) are constant over time (t). For the (non-zero)
absolute microbial species abundances to be constant, the growth rates (μ) must
be equal to the dilution rate D (henceforth called D-growth).

Assuming growth maximization, the growth rate depends on the environmen-
tal nutrient concentrations via uptake kinetic functions that determine the upper
bounds of uptake fluxes. In turn, environmental nutrient concentrations depend
on fluxes and species abundances. Assume that the kinetic functions increase
monotonically with environmental nutrient concentrations. Then, starting from
low species abundances and high environmental nutrient concentrations, growth
rates higher than D (if existent) will increase species abundances and decrease
environmental nutrient concentrations, thereby decreasing the growth rate, until
the growth rate equals D and a (nutrient limited) metabolically stationary state
is reached. As a consequence, to simulate the microbial abundances at which
the nutrient limited steady state(s) occurs, we need an explicit representation of
extracellular substrate concentrations. Different combinations of microbial and
substrate concentrations may give rise to multiple valid steady states. Models
that take the extracellular environment into account are frequent in the chemo-
stat literature [18,19]. However, the illustrative small scale models convention-
ally used in chemostat modelling do not possess intracellular metabolic networks
with degrees of freedom in the fluxes, and are thus not concerned with decision
making in the same way as FBA-models that use internal degrees of freedom to
optimize some objective.

In a batch process as a closed system, all nutrients are provided at the begin-
ning of the cultivation and nothing is flushed out (Fig. 1B, C). Here, a modeled
metabolically stationary state refers to the condition that metabolic fluxes as
well as growth rates are time-constant. This can hold, for example, during expo-
nential growth. It has two important implications: First, relevant environmental
nutrient concentrations are assumed to be in a regime where the kinetic functions
determining the upper bounds of the growth limiting uptake fluxes are insensi-
tive to the nutrient concentrations. This allows for community models without
a representation of environmental nutrient concentrations. Second, the relative
species concentrations must be constant, implying that all species with non-zero
abundance grow at the same rate averaged over time (henceforth called balanced
growth). This allows to properly model inter species crossfeeding of compounds.
Some GSM-based studies of communities apply balanced growth [8,17]. How-
ever, others do not [6,7,30], thus assuming a non-closed system. Throughout
this manuscript, any system operating a metabolically stationary state under
non-limiting extracellular nutrient conditions will be called a steady state batch.
Though such a system may not have to be a batch cultivation, we will use the
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name batch throughout the manuscript, since batch cultivation is the model
system addressed in this manuscript.

2.2 Implications for Coexistence

As demonstrated, in the context of GSMs, chemostat and batch imply distinct
conditions on metabolically stationary states. These distinctions have crucial
consequences for the possibility of co-existence of microbes. For non-interacting
microbes in a batch, balanced growth will only occur if all concerned species
have the exact same growth rate by chance, a situation that never happens in
practice. Therefore, to simulate coexistence in a consortium, an explicit inter-
action between microbes, such as crossfeeding [8] or some form of agreement
to grow at the same rate is mandatory. In contrast, for a chemostat operated
with constant nutrient concentrations in the feed, competing species may coex-
ist under D-growth, if they are limited by different nutrients [2]. Indeed, this
enables models with coexistence states originating from both crossfeeding and
differential nutrient limitations [22].

2.3 Implications for Decision Making

The assumptions on the environment—implying observability of nutrient con-
centrations or lack of observability—also have implications for models of decision
making in FBA-type analyses. As mentioned for the GSM community simulation
method d-OptCom [29], as well as for its metabolically stationary state sibling
OptCom, [30], decision making is modeled as a bi-level optimization problem.
On one level, the community strives towards a fitness goal (high community
biomass production) and on the other level each microbial species optimizes its
own fitness (growth rate). Abstractly, there are two types of decision makers,
one making community decisions and one making decisions for individuals. The
existence of an apparent community decision maker is hypothetical—it could
result from species co-evolution [27,31]. Generally, it has been shown that coop-
erative (generous) strategies are evolutionarily robust in repeated PD games in
simulations [25].

Because community and individual decision makers may follow contradictory
strategies, a principle for conflict resolution is needed. Some possibilities used
for GSMs are: the community strategy takes precedence over individual decision
makers [30], a community strategy must be Pareto optimal for the individual
decision makers [6], and a community strategy must be a Nash equilibrium for
the individual decision makers [7].

In particular, Cai et al. [7] makes the differences in conflict resolution mech-
anisms concrete by converting the so-called called Prisoners Dilemma (PD) [12]
game theory example to a metabolic network setting. PD is a two player sym-
metric game with payoffs shown in Table 1. Mutual cooperation generates the
largest overall benefit, but defection by one player yields a higher payoff for this
player if the other player cooperates. Figure 2 shows a metabolic community ver-
sion of PD, where species 1 and 2 both have the capacity to produce metabolites
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Table 1. Generic prisoners dilemma payoff matrix (numbers unrelated to Fig. 2). The
first and second number in the round brackets denote the payoffs for player 1 and 2,
respectively.

Player 1 Player 2

Cooperate Defect

Cooperate (3, 3) (1, 4)

Defect (4, 1) (2, 2)

A and B and need both to grow, but where species 1 produces A and species
2 produces B at lower yield than the other. Thus, for the community, mutual
cooperation (crossfeeding) will lead to the highest biomass yield, whereas for
the individual species, the highest yield is obtained by not secreting anything,
while still being fed by the other species. PD is a good testing ground for conflict
resolution: it pits the community and individual decision makers against each
other. As expected, the Nash equilibrium mechanism suggested in [7] results in
no crossfeeding, whereas giving the community decision maker precedence [30]
yields crossfeeding. Yeast cells feeding off sucrose may be a biological PD. The
sucrose is hydrolyzed to glucose and fructose extracellularly by the enzyme inver-
tase. It is expected that producing and secreting invertase comes at a metabolic
cost. However, it may also give a growth benefit, if being an invertase producer
means that more sugars will be hydrolyzed close to the producer. If the cost is
relatively high and the benefit relatively low, cheating by producing no invertase
becomes a desirable strategy [7].
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Fig. 2. A PD microbial consortium [7]. Rectangles are metabolites and diamonds are
reactions. Red rectangles are extracellular metabolites. Numbers next to lines are sto-
ichiometric coefficients. The subscripts c and e denote intra- and extracellular com-
pounds, respectively. Species 1 and 2 (blue and brown symbols) can choose to crossfeed
the compounds A and B to increase their yields by activating the reactions with the
red dashed lines. (Color figure online)
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3 Community Models

To cover the two principal dimensions environment (chemostat vs batch) and
decision making model (rational agent vs rational community), we developed
four models of microbial community growth at metabolically stationary state
using metabolic networks. We first introduce the general system of equations
and differential equations governing the metabolite and species concentrations
that the models are based on. Then we impose assumptions about steady state
conditions and decision making that lead to the models.

3.1 General Consortium Models

We are interested in the time development of the extracellular compound con-
centrations C ≥ 0 ∈ RnC (we denote dimensionalities of variable x by nx)
and the organism concentrations X ≥ 0 ∈ RnX (see also Fig. 1). We consider
a system with inflow rate Din and outflow rate Dout. The inflow has nutrient
concentrations Cin ∈ RnC . The vector of metabolic fluxes (reaction rates) of
microbial species i is denoted νi ∈ Rnνi . One element of each flux vector νi is
the biomass production (growth) rate νμ,i. The matrix Ti ∈ RnC×nνi maps reac-
tions to exchanges of extracellular compounds. Assuming that compounds and
cells are flushed out at a rate proportional to their concentrations, the dynamics
of C and X are described by:

dC

dt
= DinCin − DoutC −

∑

i

TiνiXi (1)

dXi

dt
= Xi(νμ,i − Dout), ∀i . (2)

For steady state, left-hand sides of the system of ordinary differential equations
(ODEs) Eqs. (1–2) are zero.

Common in both FBA and dFBA, as well as used here, is the assump-
tion of intracellular (metabolically) stationary state [16,21]. Modelling reactions
between nS intracellular compounds at constant concentrations, intracellular
stationary state introduces a stoichiometric matrix Si ∈ RnS×nνi for which holds
that

Siνi = 0, ∀i . (3)

Furthermore, for some matrix Ai ∈ RnA×nνi and a vector bi ∈ RnA , the
fluxes have capacity constraints

Aiνi ≤ bi, ∀i . (4)

The steady state models of interest here are chemostat and steady state batch.
In a chemostat at steady state, Din = Dout = D and the steady state algebraic
relations from Eqs. (1)–(4) apply directly.

In contrast, in steady state batch, the extracellular compound concentra-
tions are assumed to have no influence on the fluxes. To avoid infinite uptakes,
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flux exchanges with the environment, modeled by changes in C in Eq. (1), are
captured by a vector of culture uptake bounds, u ∈ RnC . The species concen-
trations X are exchanged for the relative species concentrations x. The change
to relative species concentrations allows them to stay constant over time under
balanced growth. To represent balanced growth, a community growth rate ν�

μ is
introduced. In combination, the steady state batch system is then:

u −
∑

i

Tiνi · xi ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi, ∀i

xi(ν�
μ − νμ,i) = 0,∀i

∑

i

xi = 1 .

We use these formulations of chemostat and batch in metabolically stationary
state to introduce four models. For ease of comparison, all model equations, plus
extra information such as Karush Kuhn Tucker (KKT) [26] conditions used for
solving the models, can be seen side-by-side in Table A.1.

3.2 Rational Agents

We assume that each cell is a decision making entity, using the extracellular
concentrations as information to maximize its growth rate. As foundation for its
decision making, each cell uses local information, in this case the extracellular
compound concentrations, as well as its own flux constraints Eqs. (3–4). This
assumption seems intuitive for microbial species that do not share an evolution-
ary history of interactions.

Assuming a chemostat environment and denoting variables resulting from an
optimization problem with hat notation ν̂i, the rational agent (CA, where ‘C’
stands for chemostat and ‘A’ for agent) model becomes:

D(Cin − C) −
∑

i

Tiν̂i(C)Xi = 0

Xi(D − ν̂μ,i(C)) = 0, ∀i

C,X ≥ 0
ν̂i(C) = argmax

νi∈Rnνi

νμ,i,∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i .

(5)

Importantly, here the right hand side of the capacity constraints b(C) depends
on the extracellular concentrations C through uptake kinetics. Without imple-
menting a concentration dependency, the optimization problem is independent
of the substrate and organism concentrations. This means that the modeled cells
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do not adapt their growth to changes in extracellular nutrient concentrations. In
most cases, this will imply that no solution will fulfill the D-growth requirement
and only the trivial solution X = 0 will be feasible.

Correspondingly, the steady state batch rational agent (BA) system is:

u −
∑

i

Tiν̂i · xi ≥ 0

xi(ν�
μ − ν̂μ,i) = 0,∀i

∑

i

xi = 1

x ≥ 0
ν̂i = argmax

νi∈Rnνi

νμ,i,∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi, ∀i .

(6)

Contrary to practice in the GSM consortium literature [3], the rational agent
assumption does not include the global equations (first lines) in the optimiza-
tion problem. Furthermore, since the extracellular substrate concentrations are
assumed to be constant, the optimization problem is independent of the first two
lines of Eq. (6). Combined with the balanced growth assumption, this means
that coexistence is only possible for organisms that independently developed the
exact same growth rate, a situation that will never occur in practice. The steady
state batch rational agent model is therefore of little practical relevance and we
included it only for completeness.

3.3 Rational Community

The rational community model assumes that, through a time of coexistence,
a community has learnt to optimize its (D- or balanced-) growth rate while
cooperating to create a favourable nutrient environment.

To model a chemostat environment and a rational community (CC), note
that what the community wants to achieve through cooperation, and with it the
formal community objective function, may vary. A biologically relevant commu-
nity objective, so far not formulated as FBA objective, is resistance to invasion
by pathogenic species [5]. Here, for simplicity and in line with the literature [3],
we consider only the community objective of maximizing total biomass produc-
tion. Using a concatenated flux variable ν = [ν1, , , νnX

] ∈ Rnν , the CC model
reads:
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Xi(D − ν̂μ,i(X)) = 0,∀i

X ≥ 0

ν̂(X) = argmax
ν∈Rnν ,C∈RnC

∑

i

νμ,iXi

s.t. D(Cin − C) −
∑

i

TiνiXi = 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

C ≥ 0 .

(7)

Contrary to the rational agent models, Eq. (1) is now inside the optimization
problem, and therefore, so are also all instances of the global variables C. This
encodes our assumption that the community has knowledge of and power over
the global cellular exchanges of compounds.

An important detail of the CC model is that the abundances X do not enter
the optimization problem as optimization variables. Since different community
decisions may benefit different organisms (in terms of species abundances and
other factors), having a range of community optimal strategies in terms of fluxes
and extracellular concentrations, but given different species abundances, it is not
possible to know which strategy the community will settle for without detailed
knowledge of the “negotiation” process leading up to a decision. Thus, the step
from rational agent to rational community is not about assuming full knowledge
of how the community decides, but that actively influencing C is taken into
account in its decision, while optimizing some assumed objective.

In the steady state batch rational community (BC) case, having no explicit
representation of C, the community decision maker cannot take C into account
in the optimization problem. Thus, the difference to the rational agent steady
state batch model is that the community takes the macroscopic equation u +∑

i Tiνi · xi ≥ 0 into account in the decision making process, leading to the
system:

xi(ν�
μ − ν̂μ,i(x)) = 0,∀i

∑

i

xi = 1

x ≥ 0

ν̂(x) = argmax
ν∈Rnν

∑

i

νμ,ixi

s.t. u −
∑

i

Tiνi · xi ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi, ∀i .

(8)
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4 Applications

We tested the CA, CC and BC models on two toy examples: PD (Fig. 2) for
exploring decision making and a competition scenario for exploring coexistence.
For named reactions and compounds in Figs. 2 and 3, such as tS,1 and Se, the
corresponding fluxes and concentrations will be referred to as νtS ,1 and CSe

.
All examples were solved symbolically in Mathematica 9 using the KKT for-
mulations in Table A.1. Notice that the optimization problems in Eqs. (5)–(8)
are all linear in the optimization arguments, implying that KKT provides suf-
ficient conditions for global optimality [26]. By solving the respective systems
symbolically, we are confident that all solutions are found.

4.1 Prisoners Dilemma

For PD (Fig. 2), we are interested in whether, using a specific simulation model,
the community achieves a fitness bonus by utilizing crossfeeding (using reactions
with dashed red arrows in Fig. 2) or whether the organisms refuse to cooperate.
For CA and CC simulations, we set the inflow nutrient concentration mixture
to Cin,Ae

= 0, Cin,Be
= 0 and Cin,Se

= 10. The flow rate was set to D = 0.5.
Similarly for BC, we used the culture uptake bounds uAe

= 0, uBe
= 0 and

uSe
= 10.
Quantitative simulation results are shown in Table 2. As expected, without

a joint objective for the organisms, CA finds no crossfeeding. CC and BC find
crossfeeding solutions, but these solutions differ. In CC, the secretion fluxes
are greater than the uptake fluxes because some of the secreted material will
be flushed out of the chemostat, rather than taken up by another organism.
This generally makes crossfeeding in chemostats less attractive. For example
when increasing the flow rate D from 0.5 to 1.2, the benefit of crossfeeding
vanishes and CC switches to a solution without crossfeeding. In BC, void of an
active out flush mechanism, all secreted material is taken up. Apart from the
symmetric (non-zero) solutions, non-symmetric solutions where one species has
zero abundance occur. These solutions, with only one participating species and
thereby no potential for cooperation, are not considered here.

4.2 Coexistence Microbial Consortium

In a chemostat with two supplied nutrients Ae and Be, coexistence of two distinct
species may emerge if, depending on the supply concentrations, the species reach
a state in which they are limited by different nutrients [2,19]. This (potentially
competitive) coexistence does not rely on direct interactions such as crossfeeding.
For the CA, CC and BC models, we investigated under what circumstances
coexistence emerges for the non-crossfeeding metabolic network models in Fig. 3.
There, species 1 needs more of compound Ac to grow and species 2 needs more
of compound Bc to grow.

For CA and CC, we varied the nutrient composition of the inflow,
(Cin,Ae

/Cin,Be
), linearly from (0/10) to (10/0). We set the flow rate D = 1
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Table 2. Flux values of PD simulations for CA, CC and BC. The variable names
correspond to the reactions in Fig. 2. In the last column, CC was run with a higher
flow rate, D = 1.2.

Variable CA CC BC CC D = 1.2

CAe 0 0.5 0

CBe 0 0.5 0

CSe 1.5 1.13 3.6

X1 1.42 1.97 0.5 1.07

X2 1.42 1.97 0.5 1.07

νtS ,1 1.5 1.13 10 3.6

νtA,1 0 0.5 5 0

νtB ,1 0 −0.627 −5 0

νrA,1 0.5 0 0 1.2

νrB ,1 0.5 1.13 10 1.2

νμ,1 0.5 0.5 5 1.2

νtS ,2 1.5 1.13 10 3.6

νtA,2 0 −0.627 −5 0

νtB ,2 0 0.5 5 0

νrA,2 0.5 1.13 10 1.2

νrB ,2 0.5 0 0 1.2

νμ,2 0.5 0.5 5 1.2

and the uptake flux limitations νtA,i ≤ 2 · CAe
and νtB ,i ≤ 2 · CBe

(symbols
defined in Fig. 3). Lacking a potential to crossfeed, CA and CC generated identi-
cal results. Figure 4A shows identical, horizontally mirrored, zero solutions (ZS),
that is, solutions where only one species exists. The ZS of species 1 starts flat at
zero, which is a regime where the concentration of CAe

is so low that species 1
cannot grow at the flow rate (D = 1); it is flushed out of the chemostat. After
the zero regime comes a regime in which the growth rate of species 1 is lim-
ited by CAe

and the concentration of species 1 increases linearly with Cin,Ae
.

This continues with increasing Cin,Ae
and decreasing Cin,Be

, until CBe
becomes

growth limiting, and the species concentration goes down linearly. A coexistence
solution (CS) exists in one central regime, throughout which species 1 is limited
by CAe

and species 2 is limited by CBe
. At the concentration mixture where the

dark blue curve (CS) goes to zero and ends, the light blue curve (CS) touches
the light green curve (ZS). At this point, where the lower CS goes to zero, the
upper CS becomes a ZS.

For BC, we varied the culture uptake bounds uAe
and uBe

linearly from (0/1)
to (1/0). The uptake bounds were νtA,i ≤ 2 and νtB ,i ≤ 2. The main distinction
from the chemostat scenario is that in BC, the ZSs are identically one (Fig. 4B),
due to the relative species concentrations.
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Fig. 3. A coexistence microbial consortium. Rectangles are metabolites and diamonds
are reactions. Red rectangles are extracellular metabolites. The subscripts c and e
denotes intra- and extracellular compounds, respectively. Numbers next to lines are
stoichiometric coefficients. (Color figure online)

Despite the apparent similarity between CA and BC, the interpretation of the
coexistence solutions (CSs) differs. For CA, a CS emerges without interspecies
communication, simply because, at the species level, the growth rates of species 1
and 2 are limited by the uptake rates of Ae and Be, respectively. This is a known
result from chemostat modelling [18]. Thus, at their steady state concentrations,
the species reach a self stabilizing equilibrium, where neither species can grow
faster than D = 1.

In contrast, the growth rates of the species in the CS in BC (Fig. 4B) are
not restricted by individual species uptake fluxes. Figure 4C shows for species
1 (a horizontal mirror image of species 2) that the uptake flux νtA,1 always
remains below its upper bound of 2. Instead, the growth rates are restricted by
the global nutrient restrictions u − ∑

i Tiνi · xi ≥ 0. With regard to the global
nutrient restrictions, the balanced growth solutions, where the species grow at
the same rate are not the only solutions. As shown in Fig. 4C, in the CS, species
1 voluntarily grows at a rate that is lower than its maximal growth rate (CS
max νμ,1 exceeds the take-all solution ZS νμ,1 since it is operating at a lower
relative species concentration). If the species did not communicate that growing
at the same rate maximizes community biomass production, single species would
claim more resources for themselves and break the metabolically stationary state.
Thus, the CS solution we see is a result of the objective function.

To elucidate the dependence of the CSs of CC and BC on the community
objective function, we changed the objective of CC and BC to maximizing the
sum of growth rates,

∑
i νμ,iδ(Xi > 0), rather than total community biomass

production,
∑

i νμ,iXi (Xi is replaced by xi in BC). Figure 4D-E shows that the
changed objective function results in CSs that differ from the ones in Fig. 4A-B.
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Fig. 4. Coexistence results for the network in Fig. 3 for varying environmental conditions
using CA, CC and BC. Abbreviations: ZS - zero solution shows the value of a variable for
one species; for the other species, all variables are zero. CS - coexistence solution shows the
value of a variable for one species, while for the other species, the value of the same variable
is given by the other CS curve. (A) Species concentrations X for changing supply mixtures
Cin in CA or CC; they yield identical solutions. (B) Relative species concentrations x for
changing input flux mixtures u for BC. ZS curves for the two species coincide. (C) Selected
fluxes of species 1 for changing input flux mixtures u for BC. (D) Same information as in
(A), but only using CC and with an alternative objective function. (E) Same information
as in (B), but with an alternative objective function.

5 Discussion

Our study draws heavily on the long tradition of chemostat community models
[19]. We followed in the same spirit: to keep models small and to use them
to demonstrate general system properties, rather than detailed properties of
cells with specific genomes. On the contrary, GSMs facilitate a detailed, species-
specific analysis of intracellular fluxes and related properties. We consider the
work presented here as an early-stage attempt to combine the two worlds.
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To incorporate FBA models in the chemostat community model frame work,
due to the internal degrees of freedom of FBA models, the fundamentally game
theoretic problem of multiple decision makers has to be taken into account [24].
Here, and in line we previous proposals for community modeling, we there-
fore explored two flavors: rational agent and rational community. For our ratio-
nal community models, we allowed the community to optimize both its shared
metabolism and the environmental nutrient concentrations to achieve a commu-
nity objective. However, we did not explicitly optimize the species concentration
variables. This acknowledges that, if different species concentrations favor dif-
ferent species, and thereby yield multiple optima in terms of fluxes and nutrient
concentrations, we do not know which optimum the community would choose.

One would expect that the decision a community takes depends on the over-
arching frame work (here: rational agent and rational community) and on the
particular objective imposed. For example, by maximizing biomass production
of the community, crossfeeding emerges in the PD scenario. However, our com-
munity models demonstrates that also environmental variables play a role. For
example, by increasing the flow rate in the chemostat, the benefit of crossfeed-
ing decreased, so that CC switched from crossfeeding to no crossfeeding. This
phenomenon might be relevant for the gut microbiome, where the significance
of other aspects of flow has been investigated [9].

More specifically, we believe that the qualitative results of PD are relatively
robust to changes in the community objective, such as switching to a sum of
growth rates objective. Contrarily, for the coexistence example, we saw that
changing the community objective function gave a new set of coexistence states.

Our models also suggest that coexistence in batch (BC) relies on a different
mechanism than in chemostat (CA and CC). In BC, the community steady state
is not a consequence of nutrient limitations caused by community growth. Coex-
istence requires agreement to coexist in the community, without any external
enforcement mechanism, contrary to the chemostat models. Agreement without
enforcement may amount to forced altruism, a modelling artifact discussed in
detail in the context of PD by Chan et al. [8]. The emergence of forced altruism
in terms of coexistence at balanced growth, rather than in terms of crossfeeding,
is to our knowledge a new perspective that may be relevant for future community
simulation methods.

A limitation of the present work is that we considered only toy metabolic
networks. This choice was intentional to provide general insights. It also allows us
to solve the problems symbolically, which certified that all roots to the equations
were found. However, this approach is of course not scalable. Before any real
applications can be considered, an efficient numerical solution scheme needs to be
developed. As alternative to solving the KKT equations, one could directly run
corresponding dFBA simulations until stationarity. However, also this approach
would need to be complemented with a mechanism for finding multiple solutions.

Lastly, in the chemostat literature [19], stability of stationary solutions of
ODEs is a central topic, which we did not address. If we assume that the micro-
bial species can make decisions and actively uphold a state or an equilibrium,
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exactly what stability means in this scenario may need additional theoretical
attention. Such concepts may be important to evaluate resistance of microbial
communities to invasion by pathogens.
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Appendix

Table A.1. Models, Lagrangians and KKT formulations. For BA and CA, Lagrangian
multipliers (inequality, λ1, and equality, λ2, multipliers) are introduced on a per species
level (subscript i), whereas for BC and CC, global multipliers are introduced. Dimen-
sionalities of multipliers vary between formulations. Rows #var and #EQ confirm that
the numbers of unknowns and equations are equal.

BA CA BC CC

Eqs

u − ∑

i

Tiν̂i · xi ≥ 0

xi(ν
�
μ − ν̂i,μ) = 0, ∀i
∑

i

xi = 1

x ≥ 0

ν̂i = argmax
νi∈Rnνi

νμ,i, ∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi, ∀i

D(Cin − C)

− ∑

i

Tiν̂i(C)Xi = 0

Xi(D − ν̂i,μ(C)) = 0, ∀i

C, X ≥ 0

ν̂i(C) = argmax
νi∈Rnνi

νμ,i, ∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

xi(ν
�
μ − ν̂i,μ(x)) = 0, ∀i,

∑

i

xi = 1,

x ≥ 0,

ν̂(x) = argmax
ν∈Rnν

∑

i

νμ,ixi,

s.t. u − ∑

i

Tiνi · xi ≥ 0,

Siνi = 0, ∀i,

Aiνi ≤ bi, ∀i

Xi(D − ν̂i,μ(X)) = 0, ∀i

X ≥ 0

ν̂(X) =

argmax
ν∈Rnν ,C∈RnC

∑

i

νμ,iXi

s.t. D(Cin − C)

− ∑

i

TiνiXi = 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

C ≥ 0

Lgr

Li(νi) =

−νμ,i + λT
i,1(Aiνi − bi)

+λT
i,2(Siνi), ∀i

Li(νi(C)) =

−νμ,i + λT
i,1(Aiνi − bi(C))

+λT
i,2(Siνi), ∀i

L(ν) =

− ∑

i

νμ,ixi

+λT
1

[
Aν − b

−u +
∑

i Tiνixi

]

+λT
i,2Si

L([ν, C]) =

− ∑

i

νμ,iXi

+λT
1

[
(Aν − b(C))

−C

]

+λT
2

⎡

⎢
⎢
⎢
⎣

S

D(Csupply − C)

−
∑

i

TiνiXi

⎤

⎥
⎥
⎥
⎦

KKT

⎡

⎢
⎢
⎣

0
...

−1

⎤

⎥
⎥
⎦

T

+ λT
i,1Ai

+λT
i,2Si = 0, ∀i,

λi,1 ≥ 0, ∀i,

λT
i,1(Aiνi − bi) = 0, ∀i

⎡

⎢
⎢
⎣

0
...

−1

⎤

⎥
⎥
⎦

T

+ λT
i,1Ai

+λT
i,2Si = 0, ∀i,
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λT
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⎡
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A
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+λT
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S 0

− ∑
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1
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]

= 0

#var 1 + nx + nν + nS + nA nC + nX + nν + nS + nA 1 + nx + nC + nν + nS + nA 3nC + nX + nν +
nS + nA

#EQ nx + 1 + nS + nν + nA nC + nX + nS + nν + nA nx + 1 + nS + nν + nC + nA nX + nC + nS + nν +
nC + nA + nC
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31. Zomorrodi, A.R., Segrè, D.: Genome-driven evolutionary game theory helps under-
stand the rise of metabolic interdependencies in microbial communities. Nat. Com-
mun. 8(1), 1–12 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1007/b106451
http://creativecommons.org/licenses/by/4.0/

	Microbial Community Decision Making Models in Batch and Chemostat Cultures
	1 Introduction
	2 Concepts
	2.1 Chemostat vs Batch Environment
	2.2 Implications for Coexistence
	2.3 Implications for Decision Making

	3 Community Models
	3.1 General Consortium Models
	3.2 Rational Agents
	3.3 Rational Community

	4 Applications
	4.1 Prisoners Dilemma
	4.2 Coexistence Microbial Consortium

	5 Discussion
	References




