
A log-linear (2 + 5/6)-approximation algorithm
for parallel machine scheduling with a single

orthogonal resource?

Adrian Naruszko, Bartłomiej Przybylski, and Krzysztof Rządca

Institute of Informatics, University of Warsaw
Warsaw, Poland

an371233@students.mimuw.edu.pl, {bap,krzadca}@mimuw.edu.pl

Abstract. As the gap between compute and I/O performance tends to
grow, modern High-Performance Computing (HPC) architectures include
a new resource type: an intermediate persistent fast memory layer, called
burst buffers. This is just one of many kinds of renewable resources which
are orthogonal to the processors themselves, such as network bandwidth or
software licenses. Ignoring orthogonal resources while making scheduling
decisions just for processors may lead to unplanned delays of jobs of
which resource requirements cannot be immediately satisfied. We focus
on a classic problem of makespan minimization for parallel-machine
scheduling of independent sequential jobs with additional requirements on
the amount of a single renewable orthogonal resource. We present an easily-
implementable log-linear algorithm that we prove is 2 5

6
-approximation.

In simulation experiments, we compare our algorithm to standard greedy
list-scheduling heuristics and show that, compared to LPT, resource-based
algorithms generate significantly shorter schedules.

Keywords: Parallel machines · Orthogonal resource · Burst buffers ·
Rigid jobs · Approximation algorithm

1 Introduction

In a simplified model of parallel-machine scheduling, independent jobs can be
freely assigned to processors if only at most one job is executed by each processor
at any moment. Thus, the only resource to be allocated is the set of processors.
However, this simple model does not fully reflect the real-life challenges. In
practice, jobs may require additional resources to be successfully executed. These
resources may include—among others—fast off-node memory, power, software
licenses, or network bandwidth. All of these example resources are renewable, i.e.
once a job completes it returns the claimed resources to the common pool (in
contrast to consumable resources such as time or fuel).
? Preprint of the paper accepted at the 27th International European Conference on
Parallel and Distributed Computing (Euro-Par 2021), Lisbon, Portugal, 2021, DOI:
10.1007/978-3-030-85665-6_10

ar
X

iv
:2

10
8.

13
71

6v
1

 [
cs

.D
C

]
 3

1
A

ug
 2

02
1

2 A. Naruszko et al.

Some of the resources may be orthogonal which means that they are allocated
independently of other resources. For example, in standard High-Performance
Computing (HPC) scheduling, node memory is not orthogonal as a job claims all
the memory of the node on which it runs. On the other hand, in cloud computing,
node memory is an orthogonal resource, as it is partitioned among containers
or virtual machines concurrently running at the node. Thus, node memory (and
also network bandwidth) is managed in a similar manner to the processors.

The results presented in this paper are directly inspired by the practical
problem of parallel-machine scheduling of jobs in HPC centers with an orthogonal
resource in a form of a burst buffer. A burst buffer is a fast persistent NVRAM
memory layer logically placed between the operational memory of a node and the
slow external file system. Burst buffers are shared by all the jobs running in a
cluster and thus they are orthogonal to processors. They can be used as a cache
for I/O operations or as a storage for intermediate results in scientific workflows.

The main contribution of this paper is a log-linear 2 5
6 -approximation algorithm

for a parallel-machine scheduling problem with independent, sequential and rigid
jobs, a single orthogonal resource and makespan as the objective. We thus directly
improve the classic

(
3− 3

m

)
-approximation algorithm by Garey and Graham [6].

Although a (2 + ε)-approximation algorithm [21] and an asymptotic FPTAS [14]
are known, their time and implementation complexities are considerable. Our
algorithm can be easily implemented and it runs in log-linear time. Additionally,
it can be combined with known fast heuristics, thus providing good average-case
results with a guarantee on the worst case.

The paper is organized as follows. In Sec. 2, we define the analysed problem
and review the related work. Then, in Sec. 3 we present a 2 5

6 -approximation
algorithm and prove its correctness. In Sec. 4 we simulate our algorithm, compare
its performance to known heuristics, and discuss its possible extensions. Finally,
in Sec. 5, we make general conclusions.

2 Problem definition and related work

We are given a set of m parallel identical machines, a set of n non-preemptable
jobs J = {1, 2, . . . , n}, and a single resource of integer capacity R. Each job
i ∈ J is described by its processing time pi and a required amount of the resource
Ri ≤ R. We use the classic rigid job model [5] in which the processing time does
not depend on the amount of the resource assigned. Our aim is to minimize the
time needed to process all the jobs (or, in other words, the maximum completion
time). Based on the three-field notation introduced in [10] and then extended in
[3], we can denote the considered problem as P|res1··|Cmax. Here, the three values
after the ‘res ’ keyword determine: (1) the number of resources (one in this case);
(2) the total amount of each resource (arbitrary in this case); (3) the maximum
resource requirement of a single job (arbitrary in this case). This problem is NP-
Hard as a generalization of P||Cmax [7]. However, both the problems have been
deeply analyzed in the literature. Moreover, different machine, job, and resource
characteristics have been considered in the context of various objective functions.

A log-linear (2 + 5/6)-approximation algorithm... 3

We refer the reader to [4] for the most recent review on resource-constrained
scheduling.

In case of the variant without additional resources – P||Cmax – it was proved
that the LPT strategy leads to a

(
4
3 − 1

3m

)
-approximation algorithm [9] while

any arbitrary list strategy provides a
(
2− 1

m

)
-approximation [8]. A classic result

on polynomial-time approximation scheme (PTAS) for P||Cmax was presented
in [11]. In general, an efficient polynomial-time approximation scheme (EPTAS)
for the Q||Cmax problem (with uniform machines) is known [12,13]. As the
P||Cmax problem is strongly NP-Hard, there exists no fully polynomial-time
approximation scheme unless P = NP.

When orthogonal resources are introduced, the upper-bounds increase. Given
s additional resources and more than two machines, any arbitrary list strategy
leads to a

(
s+ 2− 2s+1

m

)
-approximation algorithm [6] and this general bound is

tight for m > 2s+ 1. For s = 1, i.e. in the case of a single resource, this ratio
becomes 3− 3

m . We also get limm→∞
(
3− 3

m

)
= 3.

For the P|res1·1, pi = 1|Cmax problem with unit processing times, binary
resource requirements and an arbitrary amount of the resource, the optimal
Cmax can be found in constant time [17]. The more general P|res1·1, ri, pi =
1|Cmax problem with ready times can be solved in linear time [1], while the
P2|res1··, ri, pi = 1|Cmax problem with just two machines and no limits on
resource requirements of a single job is already NP-Hard [2].

A number of heuristic and approximation algorithms has been developed
for the P|res1··|Cmax problem and its close variants. A polynomial-time 4

3 -
approximation algorithm for the P|res1··, pi = 1|Cmax problem was shown in
[18]. On the other hand, a (3.5 + ε)-approximation algorithm is known for the
P|res1··, Int|Cmax problem [15], i.e. for resource-dependent job processing times.
In [21], a (2 + ε)-approximation algorithm for the P|res1··|Cmax problem is
presented. This algorithm can be transformed into a PTAS if the number of
machines or the number of different resource requirements is upper-bounded by
a constant. Further, an asymptotic FPTAS for the P|res1··|Cmax problem was
shown [14]. Although the latter results have a great theoretical impact on the
problem considered in this paper, the complexity of the obtained algorithms
prevents them from being efficiently implemented.

3 Approximation algorithm

In this section, we present a log-linear 2 5
6 -approximation algorithm for the

P|res1··|Cmax problem. In order to make our reasoning easier to follow, we
normalize all the resource requirements. In particular, for each job i ∈ J we use
its relative resource consumption ri := Ri/R ∈ [0, 1]. Thus, for any set of jobs
J ⊆ J executed at the same moment it must hold that

∑
i∈J ri ≤ 1. We also

denote the length of an optimal schedule with OPT .
Before we present algorithm details, we introduce some definitions and facts.

We will say that job i ∈ J is light if ri ≤ 1
3 . medium if 1

3 < ri ≤ 1
2 , and heavy if

ri >
1
2 . Thus, each job falls into exactly one of the three disjoint sets, denoted

4 A. Naruszko et al.

by Jlight, Jmedium, Jheavy, respectively. Note that — whatever the job resource
requirements are — not more than one heavy and one medium, or two medium
jobs can be executed simultaneously.

Given a subset of jobs J ⊆ J , we define its total resource consumption as
R(J) :=

∑
i∈J ri. We say that a set J is satisfied with θ resources, if for each

subset J ′ ⊆ J such that |J ′| ≤ m we have R(J ′) ≤ θ. In such a case, we write
Rm(J) ≤ θ.

The set of all the scheduled jobs will be denoted by Jscheduled. For a scheduled
job i ∈ Jscheduled, we denote its start and completion times by Si and Ci,
respectively. We say that job i was executed before moment t if Ci ≤ t, is being
executed at moment t if Si ≤ t < Ci, and will be executed after moment t
if Si > t. The set of jobs executed at moment t will be denoted by J (t) and
the total resource consumption of jobs in set J (t) by R(t). We present a brief
summary of the notation in Tab. 1.

Table 1. Summary of the notation

Symbol Meaning

J The set of all the jobs
J (t) The set of all scheduled jobs i such that Si ≤ t < Ci

J ⊆ J Subset of all the jobs
R(J) Total resource requirement of the jobs in J
Rm(J) Total resource requirement of m most consumable jobs in J
R(t) Total resource requirement of jobs in J (t)

Let us start with the following lemmas, which are the essence of our further
reasoning. In the algorithm, we will make sure that the assumptions of these
lemmas are met, so we can use them to prove the general properties of the
solution.

Lemma 1. If R(t) ≥ 2
3 for all t ∈ [ta, tb), then tb − ta ≤ 3

2OPT.

Proof. It holds that OPT ≥ ∑
i∈J ri · pi, as the optimal schedule length is

lower-bounded by a total amount of resources consumed by all jobs in time. As
R(t) ≥ 2

3 , we obtain

2

3
· (tb − ta) ≤

∫ tb

ta

R(t) dt ≤
∑
i∈J

ri · pi ≤ OPT ,

and thus tb − ta ≤ 3
2OPT .

Lemma 2. Let J1, J2 ⊆ J . If Rm(J1) < θ1 and Rm(J2) < θ2, then Rm(J1 ∪
J2) < θ1 + θ2.

Proof. Let us notice that, given any set of jobs J, the value of Rm(J) is determined
by m most resource-consuming jobs in J. Thus, the value of Rm(J1 ∪ J2) is

A log-linear (2 + 5/6)-approximation algorithm... 5

0

Machine 1

Machine 2

. . .

Machine m

T3

t3

T1

t1

T2

t2

T4

t4

≤ 3
2OPT ≤ 4

3OPT

Fig. 1. The structure of a resulting schedule T.

determined by m most resource-consuming jobs from sets J1 and J2. As a
consequence, it holds that Rm(J1 ∪ J2) ≤ Rm(J1) +Rm(J2) < θ1 + θ2.

3.1 The idea

Our approximation algorithm consists of four separate steps that lead to a
resulting schedule T. In each of the steps we generate a part of a schedule denoted
by T1. T2. T3 and T4, respectively. A general structure of schedule T is presented
in Fig. 1. Note that some time moments are marked by t1, t2, t3 and t4. These
values are found while the algorithm is being executed. However, our algorithm
guarantees that 0 ≤ t2 ≤ t1 ≤ t3 ≤ t4. We also state that t3 ≤ 3

2OPT and that
t4 − t3 ≤ 4

3OPT . As it is so, we get Cmax(T) ≤ 3
2OPT + 4

3OPT = 2 5
6OPT . The

algorithm is structured as follows.

Step 1. Schedule all heavy jobs on the first machine in the weakly decreasing
order of their resource requirements. As a consequence, it holds that
t1 =

∑
i∈Jheavy

pi and thus t1 ≤ OPT .
Step 2. Schedule selected light jobs starting from moment 0 in such a way that

t2 ≤ t1 and R(t) ≥ 2
3 for all t < t2.

Step 3. Schedule all medium jobs and selected not-yet scheduled light jobs
starting from moment t2 in such a way that t3 ≤ 3

2OPT .
Step 4. Schedule all the remaining jobs using an LPT list strategy, starting

from moment t3. In Steps (2) and (3), we selected jobs to be scheduled
in such a way that now all non-scheduled jobs form a set J such that
Rm(J) ≤ 1. Thus, t4 − t3 ≤ 4

3OPT .

As Step (1) is self-explanatory, we will not discuss it in details. However,
we present its pseudocode in Alg. 1A. Steps (2) and (3) share a subroutine
Schedule-2/3 presented in Alg. 2. Given a set J of jobs to be scheduled and
a starting time ts, the procedure schedules some (perhaps none) of the jobs
from J and returns tc such that R(t) ≥ 2

3 for all t ∈ [ts, tc). If ts = tc, then
[ts, tc) = ∅ and the statement remains true. Note that the time complexity of the
Schedule-2/3 subroutine is O (|J | log |J |) .

6 A. Naruszko et al.

Algorithm 1A Approximation algorithm — Step 1 out of 4
Schedule all the jobs from the Jheavy set in a weakly decreasing order of ri, on the
first machine, starting from moment 0
t1 ←

∑
i∈Jheavy

pi

Algorithm 2
procedure Schedule-2/3(J, ts)

tc ← ts
Sort J in a weakly decreasing order of ri
for i ∈ J do

tc ← min{t : t ≥ tc and R(t) < 2
3
}

if job i can be feasibly scheduled in the [tc, tc + pi) interval then
Schedule job i in the [tc, tc + pi) interval on any free machine

else break
return min{t : t ≥ tc and R(t) < 2

3
}

3.2 The analysis of the algorithm

In Step (2) of the algorithm, we partially fill the T2 block of the schedule in
such a way that at least 2

3 of the resource is consumed at any point in the [0, t2)
interval. As we expect t2 to be less or equal to t1, this step does not apply if
t1 = 0 or, equivalently, if Jheavy = ∅. The procedure itself is presented in Alg. 1B
and its time complexity is O(|Jlight| log |Jlight|). Note that when it is finished,
there might exist one or more scheduled jobs i ∈ Jlight such that Ci > t2, i.e.
J (t2) ∩ Jlight might be a non-empty set.

Proposition 1. Let t1 > 0. After Step (2) is finished, the following statements
hold:

(a) If t1 = t2, then R(J (t2) ∩ Jlight) <
1
3 .

(b) If t1 > t2, then R(J (t2) ∩ Jlight) <
1
6 and Rm (Jlight \ Jscheduled) <

1
3 .

Proof (1a). Assume that t1 = t2 and let h ∈ Jheavy be the last heavy job scheduled
in Step (1). Note that, in particular, Ch = t1. If J (t2)∩Jlight = ∅, then obviously
R(J (t2) ∩ Jlight) = 0 < 1

3 . Otherwise, each job in the J (t2) ∩ Jlight set must
have been started before t2. Consider a moment t = t2 − ε, for an arbitrarily

Algorithm 1B Approximation algorithm — Step 2 out of 4
t2 ← 0
if Jheavy 6= ∅ then

tc ← Schedule-2/3(Jlight, 0)
t2 ← min{t1, tc}
if t1 = t2 then

Unschedule jobs i ∈ Jlight for which Si ≥ t2

A log-linear (2 + 5/6)-approximation algorithm... 7

small ε. The set J (t) consists of job h, zero or more light jobs i ∈ Jlight for which
Ci = t2, and all the jobs from the J (t2) ∩ Jlight set.

Select job j ∈ J (t2) ∩ Jlight that was scheduled as the last one. Be reminded
that in Step (2), light jobs are scheduled in the decreasing order of their resource
requirements. From the construction of the algorithm we conclude that R(t)−rj <
2
3 . If rj ≥ 1

6 , then it must be the only job in the J (t2)∩Jlight set, as rh+ rj > 2
3 .

Thus, 1
6 ≤ R(J (t2) ∩ Jlight) <

1
3 . If rj <

1
6 , then R(t)− rj − rh < 2

3 − 1
2 = 1

6 , so
R(t)− rh < 1

6 + rj <
1
3 . Thus, R(J (t2) ∩ Jlight) <

1
3 . ut

Proof (1b). Assume that t1 > t2 and let h ∈ Jheavy be the heavy job executed at
the moment t2. The value returned by the Schedule-2/3 subroutine guarantees
that R(t) ≥ 2

3 for 0 ≤ t < t2. At the same time, it must hold that 1
2 < R(t2) <

2
3 .

Thus, at moment t2 we have R(J (t2) ∩ Jlight) + rh <
2
3 and, as a consequence,

R(J (t2) ∩ Jlight) <
1
6 .

Now, we will show that Rm (Jlight \ Jscheduled) <
1
3 . There are two cases

to be considered: either all the machines are busy at the moment t2 or not.
If not all the machines are busy, then all the light jobs were scheduled. Oth-
erwise, any remaining light job would be scheduled on a free machine before
the Schedule-2/3 subroutine would end. Thus, Jlight \ Jscheduled = ∅ and
Rm (Jlight \ Jscheduled) = 0.

Now, assume that all the machines are busy at the moment t2, i.e. |J (t2) ∩
Jlight| = m−1. As the light jobs were scheduled in the weakly decreasing order of
their resource requirements and R(J (t2) ∩ Jlight) <

1
6 , which was proven before,

we have

max{ri : i ∈ Jlight \ Jscheduled} ≤ min{ri : i ∈ J (t2) ∩ Jlight} <
1

6
.

As R(J (t2)∩Jlight) <
1
6 and |J (t2)∩Jlight| < m, we conclude that Rm−1(J (t2)∩

Jlight) = R(J (t2) ∩ Jlight) <
1
6 and Rm−1 (Jlight \ Jscheduled) ≤ Rm−1(J (t2) ∩

Jlight) <
1
6 . Finally,

Rm (Jlight \ Jscheduled) ≤ Rm−1 (Jlight \ Jscheduled)
+max{ri : i ∈ Jlight \ Jscheduled}

< 1
6 + 1

6 = 1
3 . ut

Before Step (3) is started, all heavy jobs and some (perhaps none) light jobs
are scheduled. At this point, we ignore all the jobs from the J (t2)∩Jlight set, i.e.
the scheduled light jobs for which Si ≤ t2 < Ci. Being ignored, they are treated
as scheduled jobs that do not occupy machines and do not use any resources.
Thus, we will not schedule these jobs in Step (3). These jobs will be rescheduled
in Step (4). As a consequence, at any point t ≥ t2 not more than a single heavy
job is actually executed. In Step (3), we first schedule all the medium jobs using
a standard list scheduling approach, and then, if t1 = t2, we try to schedule
not-yet scheduled light jobs using the Schedule-2/3 routine. This intuition is
formalized in Alg. 1C. Note that the time complexity of Alg. 1C is O(|J | log |J |).
Proposition 2. Let tc and tg be defined as in Alg. 1C. After Step (3) is finished,
the following statements hold:

8 A. Naruszko et al.

Algorithm 1C Approximation algorithm — Step 3 out of 4
Ignore all the jobs from the J (t2) ∩ Jlight set
Use a standard list scheduling approach to schedule all the jobs from Jmedium in a
weakly increasing order of ri, starting from moment t2
tg ← sup{t : R(t) ≥ 2

3
}

if t1 = t2 then
tg ← Schedule-2/3(Jlight \ Jscheduled, tg)

tc ← max{Ci : i ∈ Jscheduled}
t3 ← max{tg, t1}

(a) If tc = t1, then Rm(J \ Jscheduled) <
1
3 .

(b) If tc > t1 = t2, then Rm (J (tg) ∪ (J \ Jscheduled)) <
2
3 .

(c) If tc > t1 > t2, then Rm (J (tg) ∪ (J \ Jscheduled)) <
5
6 .

Proof (2a). If tc = t1 and t1 = t2, then no jobs were scheduled in Step (3) and
thus |J \ Jscheduled| = 0. On the other hand, if tc = t1 and t1 > t2, then all
medium jobs are finished before or at t1. The only jobs that were not scheduled
yet are light jobs. According to Prop. 1(b), we had Rm (Jlight \ Jscheduled) <

1
3

after Step (2), so now it must hold that Rm(J \ Jscheduled) <
1
3 . ut

Proof (2b). Notice that R(tg) < 2
3 and thus at most one medium job is being

executed at tg. If no medium jobs are being executed at tg, then either there were
no medium jobs to be scheduled or light jobs made the value of tg increase. In both
cases, as tc > t1 = t2, there are only light jobs being executed at tg and only light
jobs are left to be scheduled. Thus, Rm (J (tg) ∪ (J \ Jscheduled)) <

2
3 . Otherwise,

the value of tg would be even larger. Notice that if exactly one medium job is being
executed at tg, then this medium job is the last one executed. Consider two cases. If
not all the machines are busy at tg, then there are no light jobs left to be scheduled
and thus J \ Jscheduled = ∅ and Rm (J (tg) ∪ (J \ Jscheduled)) = R(tg) <

2
3 . On

the other hand, if all the machines are busy at tg, then a medium job and
m − 1 light jobs are executed at this moment. As the medium job has larger
resource requirement than any light job, and light jobs were scheduled in a
weakly decreasing order of their resource requirements, it must hold again that
Rm (J (tg) ∪ (J \ Jscheduled)) = R(tg) <

2
3 . ut

Proof (2c). From the assumption that tc > t1 > t2, we conclude that at least
one medium job was scheduled in Step (3) and t3 ≥ tg > maxi∈Jscheduled Si ≥ t2.
As all the light jobs for which Si ≥ t2 were unscheduled in Step (2), all the light
jobs for which Ci > t2 were ignored, and t1 6= t2, no light jobs are executed at
moment tg. If two non-light jobs, i and j, were executed at tg, then it would
hold that ri + rj >

2
3 which contradicts the fact that tg ≥ sup{t : R(t) ≥ 2

3}.
Finally, if a heavy job was executed at tg, then it would hold that tc = t1 which
contradicts the assumption that tc > t1. Thus, at most one medium job can be
executed at the moment tg, and R(tg) ≤ 1

2 . At the same moment, according to
Prop. 1(b), we had Rm (Jlight \ Jscheduled) <

1
3 after Step (2). Based on Lem. 2,

we obtain Rm (J (tg) ∪ (J \ Jscheduled)) <
1
2 + 1

3 = 5
6 . ut

A log-linear (2 + 5/6)-approximation algorithm... 9

Proposition 3. It holds that t3 ≤ 3
2OPT.

Proof. It holds that t3 ≥ t1. If t1 = t3, then t3 ≤ OPT ≤ 3
2OPT , so assume

that t3 > t1. First, consider a case when t3 > t1 = t2. It means that all medium
jobs (if they exist) were scheduled starting from moment t1. As for any medium
job i ∈ Jmedium we have 1

3 < ri ≤ 1
2 , any two medium jobs can be executed

in parallel, and if it is so, more than 2
3 of the resource is used. In such a case,

just after medium jobs are scheduled, we have tg = sup{t : R(t) ≥ 2
3}, and after

Step (3) is finished, one has R(t) ≥ 2
3 for all t ∈ [t2, t3). Now, be reminded about

the ignored jobs from the J (t2) ∩ Jlight set. If we reconsider them, even at the
cost of exceeding the available amount of resources or the number of machines,
we have R(t) ≥ 2

3 for all t ∈ [0, t3). This is enough to state that, based on Lem. 1,
t3 ≤ 3

2OPT , although some of the jobs scheduled before t3 are ignored and will
be rescheduled later.

Now, consider a case when t3 > t1 > t2. As t1 > t2, no light jobs are scheduled
in Step (3). This inequality implicates that at least one medium job could have
been scheduled together with a heavy job in the [t2, t1) interval. As heavy jobs are
scheduled in a weakly decreasing order of the resource requirements, and medium
jobs are scheduled in a weakly increasing order of the resource requirements,
there are two possibilities.

If a medium job is being executed at every moment t ∈ [t2, t1), then tg =
sup{t : R(t) ≥ 2

3} and — based on the same reasoning as in the previous case
— we have R(t) ≥ 2

3 for all t ∈ [0, tg). As t3 = tg, based on Lem. 1 we obtain
t3 ≤ 3

2OPT .
In the second possibility, there exists a point t in the [t2, t1) interval, for which

R(t) < 2
3 . Consider the latest such point, i.e. t := sup

{
t ∈ [t2, t1) : R(t) <

2
3

}
.

The t value is either equal to t1, or to a starting time of a medium job. In both
cases, no medium job i for which Si ≥ t could have been scheduled earlier. Thus,
in the [t, tg) interval (if non-empty) all jobs are either heavy or medium, and are
scheduled on exactly 2 machines at the same time. Moreover, it would be not
possible to execute three such jobs in parallel due to their resource requirements,
so in the optimal schedule not more than two machines would be busy starting
from point t due to the resource requirements of the medium jobs. In our case,
both machines are busy in the [t, tg) interval, so it must hold that tg ≤ OPT . If
so, then t3 = max{tg, t1} ≤ OPT ≤ 3

2OPT . ut
After Step (3) is finished, we unschedule ignored jobs from the J (t2) ∩ Jlight

set and all the jobs from the J (tg) set, and then we schedule all jobs that are
in the updated J \ Jscheduled set. As we now know that t3 ≤ 3

2OPT and that
t3 ≥ tg, all the machines are free starting from the t3 moment. This intuition
is shown in Alg. 1D. It can be now shown that all the jobs to be scheduled are
satisfied with a single unit of the resource. As it is so, all the machines can execute
m jobs in parallel, whichever m jobs we choose. Thus, a schedule provided by
the LPT list strategy is a 4

3 -approximation solution for the J \ Jscheduled set.

Proposition 4. After Step (3) is finished, it holds that

Rm((J (t2) ∩ Jlight) ∪ J (tg) ∪ (J \ Jscheduled)) < 1.

10 A. Naruszko et al.

Algorithm 1D Approximation algorithm — Step 4 out of 4
Unschedule all the ignored jobs from the J (t2) ∩ Jlight set
Unschedule all the jobs from the J (tg) set
Use an LPT list scheduling approach to schedule all the jobs from the J \Jscheduled

set (including just unscheduled ones), starting from moment t3
t4 ← max{t3, Cmax}

Proof. The proof follows directly from Prop. 1–2 and Lem. 2.

Theorem 1. Algorithm 1A–1D is a log-linear 2 5
6 -approximation algorithm for

the P|res1··|Cmax problem.

Notice that the 2 5
6 -approximation ratio leaves us room for immediate improve-

ment. In fact, based on the result by Graham [9], as we can apply the LPT strategy
in Step (4) without any concerns about the orthogonal resource, it must hold
that t4 − t3 ≤

(
4
3 − 1

3m

)
·OPT . Thus, Alg. 1A–1D is

(
2 5
6 − 1

3m

)
-approximation.

4 Simulations and extensions

The log-linear algorithm presented in Sec. 3 provides a schedule that is not more
than 2 5

6 times longer than the optimal one. This is so for arbitrary independent
jobs and arbitrary resource requirements. While our principal contribution is in
theory, our log-linear algorithm is also easily-implementable, so in this section
we evaluate our algorithm and compare its average-case performance to standard
heuristics.

4.1 Compared algorithms

We will compare three variants of our algorithm against a number of greedy
heuristics based on list scheduling algorithms. All the algorithms were imple-
mented in Python; we performed our experiments on an Intel Core i7-4500U
CPU @ 3.00GHz with 8GB RAM.

The theoretical algorithm from Sec. 3 will be denoted by ApAlg. Its first
extension, denoted by ApAlg-S, introduces an additional step of backfilling.
Namely, after the ApAlg algorithm is finished, we iterate over all the jobs in
order of their starting times, and reschedule them so they start at the earliest
moment possible. Note that this additional step never increases the starting
time of any job, and thus ApAlg-S is also a 2 5

6 -approximation algorithm. The
second extension, denoted by ApAlg-H is a heuristic algorithm based on ApAlg.
In this case, the Schedule-2/3 subroutine (see Alg. 2) is replaced. In ApAlg-H,
it schedules jobs in a strict weakly decreasing order of ri (so no job j such
that rj < ri is started before job i), regardless of whether the total resource
consumption at t has exceeded 2

3 .
We compare the ApAlg, ApAlg-S and ApAlg-H algorithms against four list

scheduling algorithms: LPT (Longest Processing Time), HRR (Highest Resource

A log-linear (2 + 5/6)-approximation algorithm... 11

Requirement), LRR (Lowest Resource Requirement), and RAND (Random
Order). Any list scheduler starts by sorting jobs according to the chosen criterion.
Then, when making a scheduling decision, it seeks for the first job on the list
that can be successfully scheduled, i.e. has its resource requirements not greater
than what is left given jobs being currently executed (if no such job exists, or
all processors are busy, the algorithm moves to the next time moment when any
job completes). Thus, the worst-case running time of the ApAlg-S, LPT and
RAND algorithms is O(n2). The worst-case running time of the LRR and HRR
algorithms is O(n log n) – these algorithms can use binary search to find the
first job from the list having resource requirement not exceeding the currently
available resources.

4.2 Instances

Our simulations are based on the dataset provided by the MetaCentrum Czech
National Grid [19,16]. In order to avoid normalizing data from different clusters,
we arbitrarily chose the cluster with the largest number of nodes (Zapat). The
Zapat cluster consisted of 112 nodes, each equipped with 16 CPU cores and
134GB of RAM. This cluster was monitored between January 2013 and April
2015, which resulted in 299 628 log entries.

Each entry provides information about job processing times (pi) and their
main memory requirements (ri). We limit ourselves to entries for which both pi
and ri are less or equal to their respective 99th percentiles, so the data can be
safely normalized. As different jobs may be executed in parallel on each node, we
consider the main memory to be a single orthogonal resource. We assume that the
total memory size (total amount of the resource) is equal to the maximum memory
requirement in the set of all the considered job entries. Thus, we normalize all
the resource requirements so ri ∈ [0, 1] (where 1 is the resource capacity of the
simulated system). As we study the problem with sequential jobs, we also assume
that each job from the trace requires a single CPU. In Fig. 2, we present how
the job processing times and normalized memory requirements were distributed
within the log. Most of the jobs have rather low resource requirements. In fact,
the 25th, 50th and 75th percentiles of the resource requirements distribution
are equal to 0.0165, 0.0169, and 0.068, respectively. We have also analysed how
the values of pi and ri correlate to each other. As the distributions of pi and ri
clearly are not Gaussian-like, we calculated the Spearman’s correlation coefficient.
This requires an additional assumption that the relation between pi and ri is
monotonic. The calculated value is 0.14207 which suggests positive, yet not very
significant correlation. This result was verified visually.

For each combination of the number of jobs n ∈ {500, 1000, 5000, 10000} and
the number of machines m ∈ {10, 20, 50, 100}, we generated 30 problem instances.
The processing time and resource requirement of each job were set to the process-
ing time and memory requirement of a job randomly chosen from the log. As the
lower bound on the optimal schedule length is L = max{∑i∈J pi/m,

∑
i∈J pi ·ri},

we only considered instances in which maxi∈J pi < L. This way, we omitted

12 A. Naruszko et al.

101 102 103 104 105 106

pi [sec]

102

103

104

105

pi distribution

0.0 0.2 0.4 0.6 0.8 1.0
ri [unit]

101

103

105
ri distribution

Fig. 2. Job processing time and resource requirement distribution in cluster Zapat
(both axes limited to the 99th percentile).

(trivial) instances for which the length of the optimal schedule is determined by
a single job.

4.3 Simulation results

In Fig. 3, we present the results obtained for all the algorithms and all the (n,m)
combinations. We report the returned Cmax values as normalized by the lower-
bound of the optimal schedule length, i.e. max{∑i∈J pi/m,

∑
i∈J pi · ri}. For

lower numbers of machines (left part of the figure) the results of ApAlg, ApAlg-S,
and ApAlg-H algorithms are comparable. However, when the number of machines
increases, the original approximation algorithm is significantly outperformed by
the ApAlg-S and ApAlg-H variants. In the considered job log, the 50th percentile
on the normalized resource requirement was 0.0169. We would thus expect that
usually not more than 50 machines are busy in the initial part of a schedule
provided by the ApAlg variant (due to the threshold of 2

3 on a total resource
consumption). In such cases, the ApAlg-S and ApAlg-H variants gain a clear
advantage, as they can potentially make use of all the machines, if possible.

When the numbers of jobs and machines increase (right-bottom part of the
figure), the normalized Cmax values decrease for all the algorithms. In such cases,
a greedy heuristic, HRR, provides almost optimal schedules, with a maximum
normalized Cmax value of 1.03. There might be two reasons for that. First, when
the number of jobs increases and their processing times come from the same
distribution, it is easier for greedy algorithms to provide better results (as the
normalized Cmax value is relative). Second, if job resource requirements are not
too small compared to the number of machines, the HRR produces a schedule
with the resource being almost fully-utilized most of the time, compared to LPT
which makes decisions solely based on the job length.

We also compared the runtime of the algorithms on large instances with 10000
jobs and 100 machines. As expected, log-linear ApAlg, ApAlg-H, LRR and HRR
algorithms were significantly faster: their runtimes (median over 30 instances)
were equal to 2.83s, 3.29s, 0.74s and 0.83s, respectively — in contrast to ApAlg-S,
LPT and RAND algorithms with runtimes of 88.39s, 88.58s and 92.94s.

A log-linear (2 + 5/6)-approximation algorithm... 13

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(a) (500, 10)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(b) (500, 20)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(c) (500, 50)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(d) (500, 100)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(e) (1000, 10)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

(f) (1000, 20)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

(g) (1000, 50)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

1.4

1.5

(h) (1000, 100)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(i) (5000, 10)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

(j) (5000, 20)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

1.4

(k) (5000, 50)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

(l) (5000, 100)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.2

1.4

1.6

1.8

(m) (10000, 10)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

1.4

1.5

(n) (10000, 20)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

(o) (10000, 50)

A
pA

lg
A
pA

lg
-S

A
pA

lg
-H

L
P
T

L
R
R

H
R
R

R
A
N
D

1

1.1

1.2

1.3

(p) (10000, 100)

Fig. 3. The Cmax values normalized by the lower-bounds on the optimal schedule
lengths. Captions (n,m) describe the number of jobs n and the number of machines m.

14 A. Naruszko et al.

5 Conclusions

In this paper, we presented a log-linear 2 5
6 -approximation algorithm for the

parallel-machine scheduling problem with a single orthogonal resource and
makespan as the objective function. Our algorithm improves the

(
3− 3

m

)
- ap-

proximation ratio of Garey and Graham [6]. It is also considerably easier to
implement than the approximation algorithms proposed by Niemeier and Wiese
[21] and Jansen, Maack and Rau [14].

In the computational experiments, we compared three variants of our al-
gorithm to four list scheduling heuristics. We used the real-life data provided
by the MetaCentrum Czech National Grid. The results provided by the HRR
(Highest Resource Requirement) list heuristic significantly outperformed all other
algorithms for the considered dataset. Although the results provided by the HRR
algorithm are promising, the approximation ratio can be improved in general.
Thus, in order to provide the best results, one can combine the HRR algorithm
with our algorithms and thus obtain good schedules with a better guarantee on
their approximation ratio.

Acknowledgements and Data Availability Statement

This research is supported by a Polish National Science Center grant Opus
(UMO-2017/25/B/ST6/00116). The authors would like to thank anonymous
reviewers for their in-depth comments that helped to significantly improve the
quality of the paper.

The datasets and code generated during and/or analyzed during the current
study are available in the Figshare repository: https://doi.org/10.6084/m9.
figshare.14748267 [20].

References

1. Blazewicz, J.: Complexity of computer scheduling algorithms under resource con-
straints. In: Proceedings of the First Meeting AFCET-SMF on Applied Mathematics.
pp. 169–178 (1978)

2. Blazewicz, J., Cellary, W., Slowinski, R., Weglarz, J.: Scheduling under resource
constraints–deterministic models. JC Baltzer AG (1986)

3. Blazewicz, J., Lenstra, J., Kan, A.R.: Scheduling subject to resource constraints:
classification and complexity. Discrete Applied Mathematics 5(1), 11–24 (1983).
https://doi.org/10.1016/0166-218X(83)90012-4

4. Edis, E.B., Oguz, C., Ozkarahan, I.: Parallel machine scheduling with
additional resources: Notation, classification, models and solution meth-
ods. European Journal of Operational Research 230(3), 449–463 (2013).
https://doi.org/10.1016/j.ejor.2013.02.042

5. Feitelson, D.G.: Job scheduling in multiprogrammed parallel systems (1997)
6. Garey, M., Graham, R.: Bounds for multiprocessor scheduling with resource con-

straints. SIAM J. Comput. 4, 187–200 (1975). https://doi.org/10.1137/0204015

https://doi.org/10.6084/m9.figshare.14748267
https://doi.org/10.6084/m9.figshare.14748267
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/j.ejor.2013.02.042
https://doi.org/10.1137/0204015

A log-linear (2 + 5/6)-approximation algorithm... 15

7. Garey, M., Johnson, D.: Strong NP-completeness results: motivation, ex-
amples, and implications. J. Assoc. Comput. Mach. 25(3), 499–508 (1978).
https://doi.org/10.1145/322077.322090

8. Graham, R.: Bounds for certain multiprocessing anomalies. The Bell Sys-
tem Technical Journal 45(9), 1563–1581 (1966). https://doi.org/10.1002/j.1538-
7305.1966.tb01709.x

9. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics 17(2), 416–429 (1969)

10. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987).
https://doi.org/10.1145/7531.7535

12. Jansen, K.: An eptas for scheduling jobs on uniform processors: Using an milp
relaxation with a constant number of integral variables. SIAM Journal on Discrete
Mathematics 24(2), 457–485 (2010). https://doi.org/10.1137/090749451

13. Jansen, K., Klein, K.M., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. Mathematics of Operations Research 45(4), 1371–1392
(2020). https://doi.org/10.1287/moor.2019.1036

14. Jansen, K., Maack, M., Rau, M.: Approximation schemes for machine
scheduling with resource (in-)dependent processing times 15(3) (2019).
https://doi.org/10.1145/3302250

15. Kellerer, H.: An approximation algorithm for identical parallel machine scheduling
with resource dependent processing times. Operations Research Letters 36(2),
157–159 (2008). https://doi.org/10.1016/j.orl.2007.08.001

16. Klusáček, D., Tóth, Š., Podolníková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) Job Scheduling
Strategies for Parallel Processing. pp. 83–101. Springer (2017)

17. Kovalyov, M.Y., Shafransky, Y.M.: Uniform machine scheduling of unit-time jobs
subject to resource constraints. Discrete Applied Mathematics 84(1), 253–257
(1998). https://doi.org/10.1016/S0166-218X(97)00138-8

18. Krause, K.L., Shen, V.Y., Schwetman, H.D.: A task-scheduling algorithm for a
multiprogramming computer system. SIGOPS Oper. Syst. Rev. 7(4), 112–118
(1973). https://doi.org/10.1145/957195.808058

19. MetaCentrum Czech National Grid: MetaCentrum workload logs (2015), https:
//www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html

20. Naruszko, A., Przybylski, B., Rzadca, K.: Artifact and instructions to generate ex-
perimental results for the Euro-Par 2021 paper: A log-linear (2+5/6)-approximation
algorithm for parallel machine scheduling with a single orthogonal resource (August
2021). https://doi.org/10.6084/m9.figshare.14748267

21. Niemeier, M., Wiese, A.: Scheduling with an orthogonal resource constraint. In:
Erlebach, T., Persiano, G. (eds.) Approximation and Online Algorithms. pp. 242–256.
Springer Berlin Heidelberg (2013)

https://doi.org/10.1145/322077.322090
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/090749451
https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1145/3302250
https://doi.org/10.1016/j.orl.2007.08.001
https://doi.org/10.1016/S0166-218X(97)00138-8
https://doi.org/10.1145/957195.808058
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://doi.org/10.6084/m9.figshare.14748267

	A log-linear (2+5/6)-approximation algorithm for parallel machine scheduling with a single orthogonal resource

