arXiv:2107.02539v1 [cs.DC] 6 Jul 2021

An MPI-based Algorithm for Mapping Complex
Networks onto Hierarchical Architectures *

Maria Predari!, Charilaos Tzovas!, Christian Schulz?, and
Henning Meyerhenke!

! Humboldt-Universitit zu Berlin, Berlin, Germany
{charilat,predarim,meyerhenke}@hu-berlin.de
2 Universitit Heidelberg, Heidelberg, Germany
christian.schulz@informatik.uni-heidelberg.de

Abstract. Processing massive application graphs on distributed mem-
ory systems requires to map the graphs onto the system’s processing
elements (PEs). This task becomes all the more important when PEs
have non-uniform communication costs or the input is highly irregular.
Typically, mapping is addressed using partitioning, in a two-step ap-
proach or an integrated one. Parallel partitioning tools do exist; yet,
corresponding mapping algorithms or their public implementations all
have major sequential parts or other severe scaling limitations.

In this paper, we propose a parallel algorithm that maps graphs onto
the PEs of a hierarchical system. Our solution integrates partitioning
and mapping; it models the system hierarchy in a concise way as an im-
plicit labeled tree. The vertices of the application graph are labeled as
well, and these vertex labels induce the mapping. The mapping optimiza-
tion follows the basic idea of parallel label propagation, but we tailor the
gain computations of label changes to quickly account for the induced
communication costs. Our MPI-based code is the first public implemen-
tation of a parallel graph mapping algorithm; to this end, we extend the
partitioning library PARHIP. To evaluate our algorithm’s implementa-
tion, we perform comparative experiments with complex networks in the
million- and billion-scale range. In general our mapping tool shows good
scalability on up to a few thousand PEs. Compared to other MPI-based
competitors, our algorithm achieves the best speed to quality trade-off
and our quality results are even better than non-parallel mapping tools.

Keywords: load balancing, process mapping, hierarchical architectures, paral-
lel label propagation

1 Introduction

Task mapping is the process of assigning tasks of a parallel application onto
a number of available processing elements (PEs) and is an important step in

* This work is partially supported by German Research Foundation (DFG) grant ME

3619/3-2 (FINCA) within Priority Programme 1736 and by DFG grant ME 3619/4-1
(ALMACOM) as well as by the Austrian Science Fund (FWF, project P 31763-N31).

2 M. Predari et al.

high-performance computing. One reason for the importance of mapping is non-
uniform memory access (NUMA), common in many modern architectures, where
PEs close to each other communicate faster than PEs further away. The impor-
tance stems from the fact that communication is orders of magnitude slower than
computation. To alleviate those issues, task mapping is often used as a prepro-
cessing step. Successful mapping solutions assign pairs of heavily-communicating
tasks “close to each other” in the parallel system, so that their communication
overhead is reduced. Moreover, the network topologies of parallel architetures
exhibit special properties that can be exploited during mapping. A common
property is that PEs are hierarchically organized into, e. g., islands, racks, nodes,
processors, cores with corresponding communication links of similar quality.

Furthermore, mapping becomes even more important when the application’s
structure and communication pattern are highly irregular. While partitioning the
application may work well for mesh-based numerical simulations, large graphs
derived from social and other complex networks pose additional challenges [34].
Typical examples are power-law [3] and small-world graphs [21]. The former are
characterized by highly skewed vertex degree distribution, the latter exhibit a
particularly low graph diameter. Distributed graph processing systems, such as
Apache Giraph and GraphLab [23], are made to run analytics on such graphs.
For some algorithms, in particular those with local data access, they report good
scaling results [23]. For non-local or otherwise complex analytics and highly ir-
regular inputs, running times and scalability of these systems can become unsat-
isfactory [30]. Consequently, designing MPI-based graph processing applications
is necessary to scale to massive instances with high performance. Considering
the above and the number of PEs in modern architectures (a number expected to
increase in the future), task mapping can have significant impact in the overall
application performance [1,/4]. Good mapping algorithms should be able to im-
prove the quality of the final mapping, and additionally, they need to be fast in
order not to degrade the overall performance of the application. Thus, developing
MPI-based mapping algorithms with good scaling behavior becomes all the more
crucial. Since finding optimal topology mappings is NP-hard [14], heuristics are
often used to obtain fairly good solutions within reasonable time [5435].

Our contribution is an MPI-based, integrated mapping algorithm for hier-
archically organized architectures, implemented within PARHIP. To model the
system hierarchy and the corresponding communication costs, we use an implicit
bit-label representation, which is very concise and effective. Our algorithm, called
PARHIP _MAP, uses parallel label propagation to stir the mapping optimization.
As far as we know PARHIP _MAP is currently the only available implementation
for parallel mapping. Experiments show that it offers the best speed to quality
trade-off; having on average 62% higher quality than the second best competitor
(PARHIP), and being only 18% slower than the fastest competitor (XTRAPULP),
which favors speed over quality. Moreover, our algorithm scales well up to 3072
PEs and is able to handle graphs of billion edges, with the least failing rate
among other MPI-based tools due to memory or timeout issues on massive com-

An MPI-based Mapping Algorithm for Hierarchical Architectures 3

plex networks. Moreover, compared to a sequential baseline mapping algorithm,
PARHIP _MAP has on average 10% better quality results.

2 Background

We model the underlying parallel application with a graph G, = (V,, Eq,wa),
where vertex u, represents a computational task of the application and an edge
e, indicates data exchanges between tasks. The amount of exchanged data is
quantified by the edge weight w,(e,). Network information for hierarchically
organized systems is often modeled with treeﬁ [13,/19]; we do so as well, but
implicitly (see Sec. . The bottom-up input description of the topology follows
KAHIP: H = {hg, h1,...,hj—1} denotes the number of children of a node per
level, where [is the number of hierarchy levels; i. e., each processor has hg cores,
each node h; processors, and so on. We also define the set of PEs as V,, of size
k= Hi;é h;. Communication costs are defined via D = {dy,ds,...,d;—1} such
that PEs with a common ancestor in level ¢ of the hierarchy communicate with
cost d;; i.e., two cores in the same processor communicate with dy cost, two
cores in the same node but in different processors with di, and so on. We use
d(up, vp) to indicate the time for one data unit exchange between PEs u, and
vp (4. e., their distance).

A k-way partition of G divides V into k blocks Vi, ..., Vj, such that V; U
LUV =V, Vp #0fori =1,...,kand V;NV; = 0 for i # j. Graph
partitioning aims at finding a k-way partition of G that optimizes an objective
function while adhering to a balance constraint. The balance constraint demands
that the sum of node weights in each block does not exceed a given imbalance
threshold e. Moreover, the objective function is often taken to be the edge-cut
of the partition >, ; w(Ey;), where Ej; := {{u,v} € E:u € V;,v € Vj}.

A mapping, ¢ @ V, — V,, is defined as a nearly balanced assignment of
computational tasks onto PEs such that, for some imbalance parameter € > 0,
I t(vp)| < (L +¢€) - [|Val/Inp(Va)]] for all v, € u(V,). Hence, u(-) induces a
balanced partition of G, with blocks u~!(vy), v, € V,. Or inversely, a mapping
i defines a one-to-one mapping from k balanced blocks of V, to k PEs of V,,. To
steer an optimization process for obtaining good mappings, different objective
functions have been proposed [14|E| A widely used [27] mapping objective is
Coco(-) (also referred to as hop-byte or qap), defined as:

Coco(u) = D> walea) d(p(ua), p(va)) 1)
e €EE,
ca = {ta,va}
Intuitively speaking, placing pairs of highly communicating tasks in nearby PEs
minimizes Coco(-).

3 In a tree topology, leaf vertices correspond to PEs, internal nodes to switches.

4 Most theoretical metrics can only approximate the communication overhead of the
application since communication during real-time execution can be affected by many
external factors (e.g., network traffic and overhead from competing jobs).

4 M. Predari et al.
2.1 Related Work

In this section we focus on related techniques for parallel graph partitioning and
sequential and parallel task mapping. For more details we refer the reader to the
overview articles for task mapping [15,27] and for graph partitioning [7].

Parallel graph partitioning. Graph partitioning is closely related to task map-
ping. First, because it is often used as a building block for mapping and second,
because it substitutes mapping when no network information is available. A triv-
ial mapping can be computed from the solution of a graph partitioner, simply by
assigning block i to PE ¢ (identity mapping). To this end, a graph-based metric,
such as the edgecut, i. e., the total weight of edges between blocks, is minimized.
Some popular parallel partitioners are PARMETIS [33], PARHIP [24], and PT-
ScoTcH [28]. These tools all follow the multilevel framework, performing one
or more cycles of the following procedure: they construct a hierarchy of succes-
sively coarser graphs, find an initial solution on the coarsest graph and project
the solution successively to the original graph, while refining it on every level.
Graph coarsening is often based on edge matching [33] or label propagation [29],
while initial partitioning uses recursive bisection, local heuristics or evolutionary
algorithms. The main bottleneck for high scalability in these tools seems to be
the high memory usage due to successive coarsening and the poor scaling of the
initial partitioning phase. XTRAPULP [34], a single-level parallel partitioning tool
that uses label propagation, avoids the scalability issue. This advantage comes
with the price of reduced quality, though.

Mapping tools. Existing mapping algorithms are grouped into two categories:
integrated approaches and two-phase ones. Integrated approaches address the
mapping problem using the network information directly, without decomposing
the problem into independent sub-problems. Examples of integrated approaches
are included in ScoTCH [26] and KAHIP [32|. SCOTCH uses dual recursive bisec-
tion (DRB) [25] to partition both the application graph and the network topology
into two blocks recursively. Embedded sectioning [20] and Recursive multisec-
tion [8}[16] follow a similar technique. Recently, Faraj et al. [10] proposed an inte-
grated mapping approach that uses fast label propagation and a more localized
local search to achieve mapping solutions of high quality. LIBToPOMAP [14],
TopOMATCH [17] and MPIPP [9] are typical examples of the two-phase ap-
proach, where mapping is solved in two steps. The first step usually involves an
established partitioner that obtains a balanced partition. The second step then
assigns the resulting blocks to the PEs while minimizing a mapping objective,
e. g. using a greedy approach [6/14] or metaheuristics [6}19].

To the best of our knowledge, all current mapping algorithms or their public
implementations have major sequential parts. LIBToPOMAP and TOPOMATCH
use parallel partitioning, but the mapping step is completely sequential. Re-
garding integrated approaches, PT-SCOTCH offers parallel mapping only for the
trivial case where the underlying network topology corresponds to a complete

An MPI-based Mapping Algorithm for Hierarchical Architectures 5

graph, which is simply partitioningﬂ Moreover, the JOSTLE authors briefly dis-
cuss a parallel mapping extension of their sequential approach but do not provide
enough details nor an implementation [36].

2.2 Parallel Label Propagation with Size Constraints

Our mapping approach uses the parallel label propagation algorithm (LPA) with
size constraints [24], as implemented in PARHIP. We discuss the algorithm and
its implementation here for self-containment reasons. In its sequential form, LPA
starts with some partition (depending on the algorithm’s purpose) and iterates
over all vertices. At each vertex v, the block number (= label) of v is set to the
dominant one in the neighborhood of v (= block with highest total edge weight
incident to v). If a size constraint is imposed, then the dominant block that can
still host v is chosen. The loop over all vertices vertices is repeated, e. g. a fixed
number of times or until no more changes occur.

The parallel version is implemented as follows. First, each PE gets a subgraph
of the input graph consisting of a contiguous range of nodes in the interval
I := [a...b], the edges incident to the nodes of those blocks, as well as the
end points of edges which are not in I (so-called ghost or halo nodes). In any
case, the graph data structure only stores edges incident to local vertices. To
parallelize the label propagation algorithm, each PE visits all local vertices in a
random order. A vertex v is moved to the block that has the strongest eligible
connection such that the block will not be overloaded. During the course of the
algorithm, local vertices can change their block and hence the blocks in which
halo vertices are contained can change as well. Communication is expensive, so
instead of updating labels of halo vertices every time they change, the algorithm
follows an overlapping scheme, organized in phases. A node is called interface
node if it is adjacent to at least one ghost node. The PE associated with the
ghost node is called adjacent PE. Each PE stores a separate send buffer for
all adjacent PEs. During each phase, the algorithm stores the block label of
interface nodes that have changed into the send buffer of each adjacent PE of
this node. Communication is then implemented asynchronously. In phase 4, the
current updates are sent to the adjacent PEs and each PE receives the updates
of the adjacent PEs from round i — 1, for ¢ > 1.

For maintaining the weight of blocks, the algorithm uses two different ap-
proaches, one for coarsening and another for uncoarsening. During coarsening,
the algorithm uses a localized approach for keeping up with the block weight since
the number of blocks is high and the balance constraint is not tight. Roughly
speaking, a PE maintains and updates only the local amount of node weight of
the blocks of its local and ghost nodes. Due to the way the label propagation
algorithm is initialized, each PE knows the exact weights of the blocks of local
nodes and ghost nodes in the beginning. Label propagation then uses the local

® In the documentation of PT-ScoTcH (6.0.1), there is a comment about implement-
ing parallel mapping algorithms for more target architectures in future releases.

6 M. Predari et al.

information to bound the block weights. Once a node changes its block, the local
block weight is updated. This does not involve additional communication.
During uncoarsening a different approach is taken compared to coarsening
since the number of blocks is much smaller. This bookkeeping approach is similar
to the one in PARMETIS [33]. Initially, the exact block weights of all k blocks are
computed locally. The local block weights are then aggregated and broadcast to
all PEs. Both can be done using one allreduce operation. Now each PE knows the
global block weights of all k& blocks. The label propagation algorithm then uses
this information and locally updates the weights. For each block, a PE maintains
and updates the total amount of node weight that local nodes contribute to the
block weights. Using this information, one can restore the exact block weights
with one allreduce operation which is done at the end of each computation phase.

3 Parallel Mapping Algorithm

In this section, we present the main technical contributions of the paper. This
includes an integrated mapping algorithm for distributed memory systems based
on a concise representation of the hierarchical network topology via bit-labels.
Our algorithm uses a parallel local search refinement process, where gain com-
putations for label changes account for communication in the network topology.
The bit-label network representation allows a quick gain evaluation. As far as
we know, this is the first (implemented and publicly available) parallel mapping
algorithm for distributed-memory systems.

3.1 Network Topology Representation

To encode a tree network topology, most representations typically store | num-
bers for each PE, one for each tree hierarchy level. However, in our work we use
a concise bit-label representation that has very low space requirement. For each
vertex v € V), (i. e., each PE), we only store a single number as a bit-label. This
number is also hidden within the labels of vertices in V, as a bit-prefix. This
enables us to use label propagation on G, for the refinement process and quickly
evaluate distances between PEs.

The bit-label of a given vertex v, € V,, encodes the full ancestry of v, in the
tree. The ancestor of v, in level ¢ can be viewed as a block of an implicit partition
in that level (see Figure . The local numberings of all ancestors/blocks of v,
are encoded in the bit-label of v, and indicate ownership of the vertex in the
tree hierarchy (in which rack, processor, node etc., it belongs to). The red vertex
in Figure [[] has a label of 131 (10[000|0[11 in binary). Reading the bit-label from
left to right, we have that v belongs to block 2 of the first level partition, block
0 of the second level and so on. For the network topology this means that PE v
belongs to rack 2, local processor 0, local node 0 and has local core number 3.
To construct the labels for the available PEs we use Algorithm [I| The bit-label
of each PE is divided into [sections, each containing s[i] bits with 0 <14 < [, as
in Line [5] Each subsection r; gives the local numbering of the ancestor node of

An MPI-based Mapping Algorithm for Hierarchical Architectures 7

4-way partition

partitions ,!
5

h
'
1
1
1
1
1
1

l"
0,1 0: 1

4-way partitions
RS
'
0/1/2]3s 0/1:2]3!
dﬁ 43- o j A

[
.
PE: 131 PE: 161

Fig.1: Example of implicit tree topology. The system has 160 PEs in one island
with four racks (first level), five nodes per rack (second), two processors per node
(third) and four cores per processor (forth). PEs take labels from 0 to 231 but
not all labels are used due to different number of children per level.

the current PE in level i. For each PE p we loop through the levels of the tree
hierarchy and encode the local numbering of each ancestor node in the bit-label
of p (see Lines [9] to [13).

To retrieve the distance between two PEs, one needs to find their common
ancestor in the tree topology. To achieve this in our representation, we apply the
bit-wise operation zor(-, -) on the two bit-labels. We find the level of the common
ancestor by finding the section r; which contains the leftmost non-zero bit on
the result of zor(-,-). In the example of Figure|[l], the leftmost non-zero bit of the
squared vertices is in the second section. This corresponds to the second level in
the tree (illustrated with the blue dashed line). The time complexity of finding
the section of the leftmost non-zero bit is O(log!). Note that modern processors
often have hardware implementation of a count leading zeros operation. This
makes the identification of the leftmost non-zero bit a constant time operation[f]

3.2 Refinement & Gain Computation

Our parallel mapping approach is an integrated solution method that performs
one cycle of the multilevel framework. More precisely, we coarsen the graph,
compute an initial partition and uncoarsen the solution while refining with local
search based on a mapping objective such as Equation . In a parallel setting,
each graph vertex v, has a local vertex label, within the PE, and a global one.
The global vertex labels can be used to induce a mapping u(-) onto PEs via their
prefixes. For instance, in Figure [2] all vertices of the shaded block of G, have
labels with prefix 00/01|01, implying a mapping to PE 5. Using the concise net-
work representation, retrieving communication costs and evaluating Coco can be

5 This holds under the realistic assumption that for any bit-label Vp, the size logv, =
O(log k) of the binary numbers is smaller than the size of a machine word.

8 M. Predari et al.

Algorithm 1 Algorithm for building the bit-label representation for PEs.

1: function BuiLbLABEL(H)
: Input: H, i. e., number of children per node for each hierarchy level

2

3 Output: x, i. e., array of bit-label representation for PEs

4 | + size(H) > number of hierarchies in the tree topology
5: s[i] + [logy hi] > array of size [
6: k< TIi ;R

7 for p < 0to k— 1 do

8

9

t<p

: fori<0tol—1do
10: r[i] + t mod h;
11: t« t/h;
12: x[i] + r[i] << (i * s[i])
13: end for
14: end for
15: return x

16: end function

performed quickly for all edges of G,. For an edge e, = (uq,vq) € E,, the pre-
fixes of u, and v, are used to compute the communication costs between u(ug)
and p(v,), by returning the leftmost non-zero bit on the result of zor(ug,v,).
Overall, through the bit-label information, we can quickly refine an initial map-
ping using parallel label propagation. We use the size-constrainted version of
the algorithm and tailor the gain computations of a potential vertex move to
account for the induced communication costs.

The optimization process works as follows: all PEs visit their local vertices
in random order and consider moving a given vertex v into another block from
the set of candidates R(v) = {pu(u) : v € N(v)} C V, (N(v) is the neigbor-
hood of v). The algorithm performs the move that induces the maximum im-
provement in Coco as long as the size constraint is respected. To compute the
best block assignment, we temporarily move v to each block in R(v) and cal-
culate the communication cost for all possible block assignments; finally, we set
p(v) = argminge p(,) (ZuEN(v) w(v,u) da, (b,u(u))). If the maximum reduc-
tion is induced by keeping the vertex in the current block, we do not perform
any move. In Figure and for an implicit tree distance of D = {2,4,10}, the
maximum reduction for vertex v, with label 00|01|01|*x*x*. After a certain number
of moves, we do a global communication step to update the labels of the halo
nodes of each PE. To handle overloaded blocks, we keep the same modifications
to the block selection rule that was proposed in |24]. The process is repeated for
a user-defined number of rounds. This is repeated for each refinement level and
on the original graph.

3.3 Overall Approach

Here we present a more detailed description of the fully parallel mapping algo-
rithm designed for distributed-memory systems. We implement our algorithm
in PARHIP. For the coarsening step we use the parallel size-constrained label
propagation as implemented in PARHIP, without any modifications. Each PE
computes clusters of its local graph and aggregates them in super-vertices in

An MPI-based Mapping Algorithm for Hierarchical Architectures 9

PE O PE 4
A S PE 16
5
y s / PE20 X A),
PE17
4 oof o1y oof oy oof ol
\>\ PN / PE21
é\ >
4 00/01 00/ o1\00/o1 00 o1\ 00JoN0OlO
/0(0\)) 2, PE 36 U\J. C l. k,(‘ 0 \.m.”].,,(,. ,1.()\,.,‘1.(,(,._ \.
S/ PE37 PEs 0 1 4 516 17 20 21 3233 36 37
(b) Implicit tree topology.

(a) Application graph Ga.

Fig. 2: Mapping from G, to the (implicit) tree topology: colored lines in (a) indicate
the cuts induced by the tree levels in (b). The decimal PE numbers in (a) correspond
to the combined bit-labels on a path from the root to the PE leaf in (b).

parallel until the coarsened graph becomes small enough. The distributed coarse
graph is then collected on each PE and is partitioned using a min-cut/max-flow
algorithm within an evolutionary framework [31]. The best solution among all
PEs is kept and broadcast back to them. For the uncoarsening step each PE
performs a local search using the parallel size-constrained label propagation on
their local part of the coarse graph. This step is repeated for each level of the
hierarchy to refine the solution. At this point, we adapt the parallel label prop-
agation to account for the communication overhead among PEs. More precisely,
we modify the block selection step during vertex moving and we use the im-
plicit topology representation to quickly retrieve the distance costs among PEs.
During gain computation we change the objective from edgecut to Coco(+).

Avoiding memory issues. As already mentioned in Section classic multi-
level algorithms have high memory usage caused by multiple cycles of successive
coarsening. Our algorithm performs only one cycle of the multilevel framework,
but successive coarsening (even in one cycle) can still damage the scalability of
our approach. Moreover, the previous implementation of PARHIP (without our
contributions for parallel mapping) uses block partitioning for the initial data
distributionEI Block partitioning of the input graph often leads to many inter-PE
edges even before coarsening, in particular for complex networks. One reason for
that is the high-degree nodes of complex networks, also known as hubs, when
they become halo vertices. When the number of hubs being halo vertices becomes
large enough, the scalability of PARHIP is negatively affected.

In our implementation we propose a simple correction for such instances
to avoid high memory usage: first, all PEs globally identify halo nodes of high
degree (halo hubs) and then each PE temporarily removes edges connecting halo
hubs with non-local nodes, creating a reduced local graph. Then each PE runs

" The initial data distribution is not a mapping solution, only an initial assignment of
the input data to the PEs.

10 M. Predari et al.

in parallel in parallel
—_—/ I:IPE2 | =—
read graph Q O Q O
PE. D PE1 D
[(halo nod —
/reﬁne—map step
reduce halo hubs

|
3

P

coarsening|rounds — o refine-ma
Jrour p steps
(label propagation) Q (> Q > (label propagation)
o o
Qg ag
Qg g
© © o

PEO PE1 PE2

distributed initial partitioning

Fig.3: Schematic interpretation of the parallel mapping for an example with
three PEs and a partition in four blocks. The algorithm performs one multi-level
cycle with additional pre- and post-processing steps to avoid memory issues.

PARHIP _MAP on its reduced graph and after completion each PE re-introduces
the removed edges. Once the one multilevel cycle is complete, we perform a few
extra rounds of parallel label propagation on the original graph to compensate
for quality losses due to the re-introduction of the removed edges. This way we
avoid the high memory consumption and save communication during coarsening
and initial partition steps without sacrificing much of the quality. A schematic
interpretation of the overall parallel algorithm is given in Figure

4 Experiments

We perform experiments to evaluate the behavior of PARHIP_MAP on several
graphs (see Table [1) downloaded from SNAP [22] or generated via KaGen [11]
and ParMAT [18]. For disconnected graphs (in practice only some R-mat graphs)
we extract the largest connected component. We implement PARHIP _MAP in
C+-+, using the PARHIP graph API. For performance experiments, we compare
against MPI-based partitioning tools, PARMETIS 4.0.3, PARHIP 3.10 (vanilla
version configured to fastsocial) and XTRAPULP 0.3. As mentioned in Sec.
there are no direct competitors for MPI-based mapping solutions so we use
partitioning with identity mapping. Often, identity mapping yields surprisingly
good solutions, since it benefits from spatial locality [12]. Experiments were
conducted on our local clusterff] or the HLRNY| cluster, Lise, in Berlin. Our local
cluster contains 16 Linux machines, each equipped with an Intel Xeon X7460

8 https://www2.hu-berlin.de/macsy/technical-overview.html
9 https://www.hlrn.de/

https://www2.hu-berlin.de/macsy/technical-overview.html
https://www.hlrn.de/

An MPI-based Mapping Algorithm for Hierarchical Architectures 11

CPU (2 sockets, 12 cores each), and 192 GB RAM. In Lise, each compute node
has two Intel Cascade Lake Platinum 9242 CPUs with 384 GB RAM and 96
cores. Unless otherwise specified, we use one MPI process per compute node.
We use the default settings for the competing algorithms, and similar build
settings among all codesm For all experiments, we report geometric mean results
relative to PARHIP_MAP over all graphs (of Table . For each graph we repeat
the experiment three times and we set the imbalance tolerance to 3%, one of the
values used in [36] and in PARMETIS. To ensure reproducibility, all experiments
were managed by SimexPal [2]. Our code and the experimental pipeline can be
found at https://github.com/hu-macsy/KaHIP,

Table 1: 16 (undirected) graphs used in our experiments. Columns correspond
to: name, type, number of vertices, number of edges, degree (average and max).

Network Type 4 |E||davg dmaz
coPapersCiteseer REAL 434102 16036 720| 73,8 1188
eu-2005 862664| 16138468 37,4 68963
as-skitter 1696415 11095298| 13 35455
orkut 3072441| 117184899| 76,2 33313
dbpedia 18265512 136535446| 14,9 612308
friendster 65608 366|1 806 067 135| 55 612308
twitter 52515193|1963 197 641| 74,7 3691240
r-mat (x3) Rmar| 222 — 224|227 _ 2291 40| 18484-63345
barabasi-albert (x3) BA| 223 — 227|226 _ 9321 39| 19905-40 509
random-hyperbolic (x3)| RHG| 22° — 229 229 _ 233 16/83645-200 165

4.1 Parallel Performance

We first evaluate the scalability behavior of PARHIP _MAP in a massively parallel
setting of up to 3072 PEs on Lise. In Figure [fa] we report running times for all
parallel tools relative to PARHIP _MAP. The results indicate that PARHIP _Map
exhibits a good scaling behavior. Compared to the fastest tools i. e., XTRAPULP
and PARMETIS, PARHIP_MAP is on average only 18% and 9% slower, respec-
tively. The high speed of XTRAPULP is not surprising since it is designed to
explicitly favor speed over quality. It is important to note that Figure [a] depicts
aggregated results that may hide out-of-memory or timeout issues. After exam-
ining the failing rates, we observed that PARHIP_MAP has the smallest failing
rate (17%), followed by XTRAPULP, PARHIP and PARMETIS with failing rates
of 42%, 62% and 65% respectively. To reflect a fairer comparison, we also include
scalability experiments on our local clusterE where we observe a slightly better

1% On our local cluster: g+-+ 8.3.1 compiler with -O2 flags and the mpich 3.2 MPI
library. On Lise: g++ 9.2 compiler with -O2 flags and openmpi 3.1.5.
11 Here, we use one MPI process per core.

https://github.com/hu-macsy/KaHIP

12 M. Predari et al.

scaling behavior for PARHIP _MAP and similar trends for the other competitors
(see Figure . It is noteworthy to report that PARHIP _MAP is the only tool
that runs successfully for the twitter graph. Precisely, our algorithm maps the
twitter graph (a graph in the billion-scale range) into 384 blocks on 48 PEs of
our local cluster in less than 6 minutes. PARMETIS and PARHIP failed for
almost all Barabasi-Albert and R-mat graphs, probably due to the highly irreg-
ular degree distribution of these graphs, leading to memory issues. Moreover,
in Figure [dd] we report scaling results for an increasing number of blocks. We
clearly see that PARHIP_MAP is on average 2x faster than PARHIP, slightly
faster than PARMETIS and only about 0.7x slower than XTRAPULP.

12 mm parhip_map

o parhip_vnl
s xPulp

08 Emm parMetis

06

04

00

c96 c192 c384 c768 c1536 c3072

(a) Results for scaling PEs and constant number of blocks= 1536 on Lise.

= parhip_map

20 parhip_vnl
s xPulp
15 B parMetis
: " "
. I II 1 11 11 II [
0.0
cl c3 c6 cl2 c24 c48

(b) Results for scaling PEs and constant number of blocks= 384 on our local cluster.

25 = parhip_map
parhip_vnl

s xPulp

15 Bl parMetis

10
- | | | | | | | | | | | ||
0.0

NUAVELVA VNN \Lqey\\\’i\«‘}%@b‘h@@\ﬁj6\091\00%‘09'D‘VILD‘Q‘G%%@?"A

(c) Results for scaling number of blocks and constant number of PEs= 24 on our local
cluster.

Fig.4: Relative running times for different scaling experiments on various clusters.

An MPI-based Mapping Algorithm for Hierarchical Architectures 13

We also perform weak scaling experiments on Lise, for R-mat and random
hyperbolic graphs of different sizes, for up to 768 and 1 536 PEs, respectively. For
the experiment, we double the number of vertices as PEs double. The number
of blocks is equal to the number of PEs used in the run and missing inputs are
due to failing runs. In Figure [5] we see that PARHIP_MAP has a similar scaling
behavior as XTRAPULP while the latter is faster as already observed from strong
scaling.

parhip_map_rhg
parhip_map_rmat
parMetis_rhg
xPulp_rhg
xPulp_rmat
parhip_vnl_rhg

PHeoet

c96 c192 c384 c768 c1536

Fig.5: Absolute running times for weak scaling experiments on Lise (logarithmic
scale).

4.2 Quality Results

To evaluate the solution quality, we use the objectives Coco and edgecut and run
all parallel competitors as well as a sequential mapping approach from KAHIP,
named here KAHIP,MAPE known to produce mapping results of high qual-
ity [10]. In Figure @, we present relative Coco results for a constant number of
PEs and an increasing number of blocks, since the latter often affects quality.
For edgecut, we report results directly in the text, due to space limitations.
Figure [6] shows that PARHIP_MAP achieves consistently the best Coco results
compared to all other parallel approaches. More precisely, we are, on average,
at least 4x better than XTRAPULP, 62% better than PARHIP, and 70% bet-
ter than PARMETIS. Regarding edgecut, we are only 10% worse than the best
competitor (PARHIP), 5% than PARMETIS, but 2.5 better than XTRAPULP.
Those results are surprisingly good for our algorithm — given the fact that we
do not optimize for edgecut, as the competitors do. Regarding the sequential
baseline, KAHIP_MAP, we even achieve better quality (PARHIP_MAP is 10%
better) and we are 30x faster using 24 PEs (as to 1 for KAHIP_MAP). Note that
KAHIP _MAP, also fails to finish in time or has memory issues in many cases.
Finally we should report that all tools occasionally fail to adhere to the balance
constraint of 3% but do not largely overpass it either.

12 Here, we set KAHIP_MAP to the fastsocial configuration.

14 M. Predari et al.

parhip_map
parhip_vnl
xPulp
parMetis
kahip_map

o I

X x X X x
O \BE (B (& (@0 (B AT AR AM AR TG AL AR 125980 150 0

Fig.6: Relative Coco results for 24 PEs (for the parallel tools). Lower is better.

5 Conclusions

In this work we propose a fully parallel mapping algorithm for distributed-
memory systems. Our algorithm is an integrated solution i. e., it addresses the
partitioning and mapping problems simultaneously. We target hierachical sys-
tems and encode the hierarchy with a concise representation using bit-labels. Our
approach exploits the above representation and uses parallel label propagation
to devise a fast refinement process. As far as we know, this is the first parallel
mapping algorithm for distributed-memory systems with a publicly available im-
plementation (within PARHIP). Given the experimental results, our algorithm
offers the best trade-off between mapping quality and speed compared to other
MPI-based approaches. For future work we would like to integrate more scal-
able initial partitioning techniques (like the one proposed in |10]) to improve the
performance of our current implementation.

Acknowledgements. This work was partially supported by the North-German Super-
computing Alliance (HLRN). We also thank our colleague Fabian Brandt-Tumescheit
for his technical support regarding our group’s cluster.

References

1. Aktulga, H.M., Yang, C., Ng, E.G., Maris, P., Vary, J.P.: Topology-aware mappings
for large-scale eigenvalue problems. In: Euro-Par 2012 Parallel Processing. pp. 830—
842. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

2. Angriman, E.; van der Grinten, A., von Looz, M., Meyerhenke, H., Néllenburg, M.,
Predari, M., Tzovas, C.: Guidelines for experimental algorithmics: A case study in
network analysis. Algorithms 12(7), 127 (2019)

3. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509-512 (1999)

4. Bhatelé, A., Kalé, L.V., Kumar, S.: Dynamic topology aware load balancing algo-
rithms for molecular dynamics applications. In: Proceedings of the 23rd Interna-
tional Conference on Supercomputing. p. 110-116. ICS ’09, Association for Com-
puting Machinery, New York, NY, USA (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

An MPI-based Mapping Algorithm for Hierarchical Architectures 15

Bhatelé, A., Gupta, G.R., Kalé, L.V., Chung, I.: Automated mapping of regular
communication graphs on mesh interconnects. In: 2010 International Conference
on High Performance Computing. pp. 1-10 (2010)

Brandfass, B., Alrutz, T., Gerhold, T.: Rank Reordering for MPI Com-
munication Optimization. Computers & Fluids 80(0), 372 — 380 (2013).
https://doi.org/http://dx.doi.org/10.1016 /j.compfluid.2012.01.019

Bulug, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances
in graph partitioning. In: Algorithm Engineering - Selected Results and Surveys,
Lecture Notes in Computer Science, vol. 9220, pp. 117-158 (2016)

Chan, S.Y., Ling, T.C., Aubanel, E.: The Impact of Heterogeneous Multi-Core
Clusters on Graph Partitioning: An Empirical Study. Cluster Computing 15(3),
281-302 (2012)

Chen, H., Chen, W., Huang, J., Robert, B., Kuhn, H.: Mpipp: An automatic profile-
guided parallel process placement toolset for smp clusters and multiclusters. In:
Proceedings of the 20th Annual International Conference on Supercomputing. p.
353-360. ICS 06, Association for Computing Machinery, New York, NY, USA
Faraj, M.F., van der Grinten, A., Meyerhenke, H., Traff, J.L., Schulz, C.: High-
Quality Hierarchical Process Mapping. In: 18th International Symposium on Ex-
perimental Algorithms (SEA 2020). vol. 160, pp. 4:1-4:15. Dagstuhl, Germany
(2020)

Funke, D., Lamm, S., Sanders, P., Schulz, C., Strash, D., von Looz, M.:
Communication-free massively distributed graph generation. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver,
BC, Canada, May 21 — May 25, 2018 (2018)

Glantz, R., Meyerhenke, H., Noe, A.: Algorithms for mapping parallel processes
onto grid and torus architectures. In: 23rd Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP 2015, Turku, Finland.
pp. 236-243 (2015)

Glantz, R., Predari, M., Meyerhenke, H.: Topology-induced enhancement of map-
pings. CoRR abs/1804.07131 (2018), http://arxiv.org/abs/1804.07131
Hoefler, T, Snir, M.: Generic Topology Mapping Strategies for Large-scale Parallel
Architectures. In: ACM International Conference on Supercomputing (ICS’11). pp.
75-85. ACM (2011)

Hoefler, T., Jeannot, E., Mercier, G.: An Overview of Process Mapping Techniques
and Algorithms in High-Performance Computing. In: High Performance Comput-
ing on Complex Environments, pp. 75-94. Wiley (Jun 2014)

Jeannot, E., Mercier, G., Tessier, F.: Process Placement in Multicore Clusters:
Algorithmic Issues and Practical Techniques. IEEE Transactions on Parallel and
Distributed Systems PP (99), 1-1 (2013). https://doi.org/10.1109/TPDS.2013.104
Jeannot, E., Mercier, G., Tessier, F.: Process Placement in Multicore Clusters:
Algorithmic Issues and Practical Techniques. IEEE Transactions on Parallel and
Distributed Systems 25(4), 993 — 1002 (2014)

Khorasani, F., Gupta, R., Bhuyan, L.N.: Scalable simd-efficient graph processing
on gpus. In: Proceedings of the 24th International Conference on Parallel Archi-
tectures and Compilation Techniques. pp. 39-50. PACT ’15 (2015)

Kirchbach, K.V., Schulz, C., Traff, J.L.: Better process mapping and sparse
quadratic assignment. ACM J. Exp. Algorithmics 25 (Sep 2020)

Kirmani, S., Park, J., Raghavan, P.: An embedded sectioning scheme for multipro-
cessor topology-aware mapping of irregular applications. IJHPCA 31(1), 91-103
(2017)

https://doi.org/http://dx.doi.org/10.1016/j.compfluid.2012.01.019
http://arxiv.org/abs/1804.07131
https://doi.org/10.1109/TPDS.2013.104

16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Predari et al.

Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing.
p- 163-170. STOC ’00, Association for Computing Machinery, New York, NY, USA
(2000)

Leskovec, J.: Stanford Network Analysis Package (SNAP), http://snap.
stanford.edu/index.html

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716727 (Apr 2012)

Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. IEEE Trans. Parallel Distributed Syst. 28(9), 2625-2638 (2017)
Pellegrini, F.: Static Mapping by Dual Recursive Bipartitioning of Process and
Architecture Graphs. In: Scalable High-Performance Computing Conference (SH-
PCC). pp. 486-493. IEEE (May 1994)

Pellegrini, F.: Scotch and libScotch 5.0 User’s Guide. Tech. rep., LaBRI, Université
Bordeaux I (December 2007)

Pellegrini, F.: Static Mapping of Process Graphs. In: Graph Partitioning, chap. 5,
pp. 115-136. John Wiley & Sons (2011)

Pellegrini, F.: Scotch and PT-Scotch Graph Partitioning Software: An Overview.
In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, pp. 373—
406. CRC Press (2012)

Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 76(3) (2007)
Salihoglu, S., Widom, J.: Gps: A graph processing system. In: Scientific and Sta-
tistical Database Management. Stanford InfoLab (July 2013)

Sanders, P.,; Schulz, C.: Distributed evolutionary graph partitioning. In: Pro-
ceedings of the Meeting on Algorithm Engineering & Expermiments. p. 16-29.
ALENEX ’12; Society for Industrial and Applied Mathematics, USA (2012)
Sanders, P., Schulz, C.: Kahip v0.53 - karlsruhe high quality partitioning - user
guide. CoRR abs/1311.1714 (2013)

Schloegel, K., Karypis, G., Kumar, V.: Parallel Static and Dynamic Multi-
Constraint Graph Partitioning. Concurrency and Computation: Practice and Ex-
perience 14(3), 219-240 (2002)

Slota, G.M., Rajamanickam, S., Devine, K., Madduri, K.: Partitioning trillion-edge
graphs in minutes. In: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 646-655 (2017)

Soo-Young Lee, Aggarwal: A mapping strategy for parallel processing. IEEE Trans-
actions on Computers C-36(4), 433-442 (1987)

Walshaw, C., Cross, M.: Jostle: Parallel multilevel graph-partitioning software —
an overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain
Decomposition Techniques, pp. 27-58. Civil-Comp Ltd. (2007), (Invited chapter)

http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html

	An MPI-based Algorithm for Mapping Complex Networks onto Hierarchical Architectures

