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Abstract. The 3 stage reducer problem is a point of interest for many researchers. In this
paper, this problem is reformulated to a bi-objective problem with additional constraints to
meet the ISO mechanical standards. Those additional constraints increase the complexity of
the problem, such that, NSGAII performance is not sufficient. To overcome this, we propose
to use BnB-NSGAII [10] method - a hybrid multi-criteria branch and bound with NSGAII
- to initialize NSGAII before solving the problem, seeking for a better initial population. A
new feature is also proposed to enhance BnB-NSGAII method, called the legacy feature. The
legacy feature permits the inheritance of the elite individuals between - branch and bound -
parent and children nodes. NSGAII and BnB-NSGAII with and without the legacy feature
are tested on the 3 stage reducer problem. Results demonstrate the competitive performance
of BnB-NSGAII with the legacy feature.

Keywords: NSGAII · multi-objective · MINLP · branch-and-bound · 3-stage reducer.

1 Introduction

In [3], the design of the 3 Stage Reducer (3SR) optimization problem has been introduced to
illustrate the optimal design framework of the power transmission mechanism. This problem has
been a point of interest for many researchers in different domains. Engineering researchers enhance
the problem for mechanical engineering applications. In [4], the problem is extended to a mixed
variables optimization problem. And recently a similar problem is stated in [5] to illustrate the
optimization of the volume and layout design of 3SR. Due to the problem complexity, optimization
researchers are interested to test optimization methods on it. In [14], the authors use the 3SR
problem to examine the performance of the constraint propagation method.

In this paper, the 3SR problem is reformulated to a bi-objective problem with additional con-
straints to meet the ISO mechanical standards. Those additional constraints increase the complexity
of the problem, such that, the well-known Non-Dominated Sorting Genetic Algorithm 2 (NSGAII)
[1] performance is not sufficient.

In [10], the authors enhance the performance of NSGAII by hybridizing it with the multi-
criteria branch and bound method [12], the proposed method is called BnB-NSGAII. In this paper,
we propose to use the BnB-NSGAII method to initialize NSGAII before solving the 3SR problem,
seeking a better initial population. The initial population seeding phase is the first phase of any
? Supported by organization ERDF, Grand Est and Lebanese University
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genetic algorithm application. It generates a set of solutions randomly or by heuristic initialization
as input for the algorithm. Although the initial population seeding phase is executed only once, it
has an important role to improve the genetic algorithm performance [2].

Furthermore, we propose a new feature to enhance the BnB-NSGAII method, called the legacy
feature. The legacy feature permits the inheritance of elite genes between branch-and-bound nodes.

The rest is organized as follows. Section 2 presents the 3SR problem and its complexity. The
proposed BnB-NSGAII legacy feature is explained in section 3. The computational results are
reported in section 4. Finally, an overall conclusion is drawn in section 5.

2 3 Stage Reducer Problem

The design problem consists in finding dimensions of main components (pinions, wheels and shafts)
of the 3 stage reducer (figure 1) to minimize the following bi-objective problem :

1. The volume of all the components of the reducer :

f1(x) = π

(
s=3∑
s=0

las
ra,s

2 +
s=3∑
s=1

[
bs
m2

ns
2 (Z2

s,1 + Z2
s,2)
])

(1)

2. The gap between the required reduction ratio ū and the ratio of the reducer (tolerance):

f2(x) = 1
ū

∣∣∣∣∣ū−
s=3∏
s=1

Zs,2
Zs,1

∣∣∣∣∣ , ū > 1 (2)

The problem is designed assuming the following are known:

– The power to be transmitted, Pt and the speed rotation of input shaft Ne.
– The total speed rotation reduction ratio ū, the position of the output shaft from the input shaft

position (figure 2).
– The dimension of the casing box.

Fig. 1. Front and back view of a 3 stage reducer with closure.

The 3SR problem is formulated with 2 objective functions, 41 constraints (presented in Appendix
A), 3 categorical variables (gears modules), 6 integer variables (number of teeth), and 11 continuous
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Fig. 2. Detailed view of the 3 stage reducer.

variables. Gears modules have 41 possibilities, pinion number of teeth ranges from 14 to 30 and
wheel number of teeth ranges from 14 to 150. Hence, the combinatorial space of the 3SR problem
consists in 413 + (30− 14)3 + (150− 14)3 ' 8.7× 1014. Thus, the problem is considered a mid-sized
problem concerning the number of variables and constraints, but, huge combinatorial space.

The additional constraints increase the complexity of the problem. This is noticed by solving
the problem using NSGAII with different initial conditions as follows. In first hand, NSGAII is
initialized with 1 feasible individual. On the other hand, NSGAII is randomly initialized. Each was
run 10 times with the same parameters shown in Table 1. Figure 3(a) shows how many run each
method converged to a feasible solution out of 10. Figures 3(a) and 3(b) show that if the initial
population contains at least 1 feasible individual, NSGAII converges to a good approximated Pareto
front every time. Whilst, if NSGAII is initialized with a random population, NSGAII either fails to
converge to a feasible solution, or it converges to a low-quality Pareto front.

Table 1. Parameters used for NSGAII algorithm

Parameters Value
Cross over probability 0.8
Mutation Probability 0.9
Population size 200
Allowable generations 500
Constraint handling Legacy method [1]
Crossover operator Simulated Binary crossover (SBX) [11]
ETAC 100
Mutation operator Partially-mapped crossover (PMX) [11]
ETAM 10
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Fig. 3. Results of 3SR problem solved by NSGAII with (blue) and without (red) initial feasible seed.

Figure 4 shows part of the domain of the 3SR problem explored by NSGAII with feasible initial
population. The explored domain shows the complexity of the problem, where both feasible and
infeasible solutions share the same domain on the projected objective domain. Moreover, all the
feasible solutions are too near to the infeasible ones.

Fig. 4. Explored portion of the domain, showing the 3SR problem complexity.

To enhance the quality of the solution of this problem - and accordingly any similar problem -
where feasible solutions are not known, our proposal is first to use BnB-NSGAII proposed in [10] to
search for feasible individuals. These individuals are then injected in the random initial population
of NSGAII.
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3 BnB-NSGAII
In [10] the authors proposed the BnB-NSGAII approach. In this approach, Multi-Criteria Branch
and Bound (MCBB) [13] is used to enhance the exploration force of NSGAII by investigating the
mixed-integer domain space through branching it to subdomains, then NSGAII bounds each one.
In this way, MCBB guides the search using the lower bounds obtained by NSGAII. Our proposal
is to furthermore enhance the exploration potential of BnB-NSGAII by adding the legacy feature.

3.1 General Concept of BnB-NSGAII
The general multi-Objective MINLP problem ( PMO-MINLP ) is written as

minimize
x,y

f(x,y) = f1(x,y), . . . , fp(x,y)

subject to
cj(x,y) ≤ 0, j = 1, ...,m
x ∈X, X ∈ Rnc

y ∈ Y , Y ∈ Nni ,

(3)

where p and m are the number of objectives and constraints respectively. X and Y denote the set
of feasible solutions of the problem for nc continuous and ni integer variables respectively.
PMO-MINLP is complex and expensive to solve. The general idea is thus to solve several sim-

pler problems instead. BnB-NSGAII divides PMO-MINLP by constructing a combinatorial tree
that aim to partition the root node problem - PMO-MINLP - into a finite number of subproblems
Pr1, . . . , P ri, . . . , P rn. Where i and n are the current node and the total number of nodes respec-
tively. Each Pri is considered a node. Each node is then solved by NSGAII. Solving a node is to
determine its lower and upper bounds. The upper bound of a node PNi is the Pareto front captured
by NSGAII, which is then stored in an incumbent list PN . Whilst the lower bound is the ideal
point P Ii of the current node.

P Ii = min fk(xi,yi); k = 1, . . . , p. (4)
By solving Pri, one of the following is revealed:
• Pri is infeasible, means that NSGAII didn’t find any solution that satisfies all constraints.

Hence, Pri is pruned (fathomed) by infeasibility.
• Pri is feasible, but, the current lower bound P Ii is dominated by a previously found upper

bound PN . Therefore, Pri is fathomed by optimality.
• Pri is feasible, and, P Ii is not dominated by PN , P Ii ≤ PN . PN is then updated by adding PNi

to it.
In the 3rd case, the combinatorial tree is furtherly branched by dividing Pri into farther subprob-
lems, called children nodes. If a node cannot be divided anymore, it is called a leaf node. Leaves are
the simplest nodes, since all integer variables are fixed such that y = ȳ. NSGAII then solve leaves
as Multi-Objective continuous Non-Linear problem ( PMO-NLP ):

minimize
x, ȳ

f(x, ȳ) = f1(x, ȳ), . . . , fp(x, ȳ)

subject to
cj(x, ȳ) ≤ 0, j = 1, ...,m
x ∈Xi,

(5)
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where Xi denotes the set of feasible solutions of the current node. PNi of each leaf is then added
to PN . The overall Pareto front is obtained by removing the dominated elements from PN .

3.2 BnB Legacy Feature

In NSGAII, the best population is that found in the last generation, since it contains the elite
individuals among all the previous generations. In BnB-NSGAII, each node is solved independently.
The output of each node is the captured Pareto front only. The last population in the node is thus
discarded, although it might be valuable to other nodes.

We propose to permit the legacy between nodes. Where each child node inherits the last popu-
lation from its parent node. The child node then initializes NSGAII by this population.

The children nodes are subproblems of their parent node. Thus, the boundary of parent node
is different than that for the children nodes, Yparent 6= Ychild. Hence, the population is rebounded
before initializing NSGAII. Rebounding the population may lead to the loss of the elite individuals,
though some of the elite genes are still conserved.

3.3 An Application of BnB-NSGAII

BnB-NSGAII is characterized by high exploration potential. Thus, in this paper, BnB-NSGAII is
used to search for at least one feasible solution for the 3SR problem. For this aim, BnB-NSGAII
is properly modified to 1) continue enumeration of the combinatorial tree even if the root node is
infeasible. 2) stop whenever a feasible solution(s) is found. Then, NSGAII is called to solve the 3SR
problem by initializing it with the feasible solution(s) found as shown in Figure 5.

Start

Solve node with
NSGAII

Yes NO
Feasible 
Solution 
Found

Initialize NSGAII with
feasible seed(s)

Solve 3SR problem
with NSGAII

End

NO

Yes

All integer
variables 
are fixed

Add children nodes to
node list

NOYes Node List is
empty

BnB-NSGAII fails to
find feasible solution

Select node from
node list

Fig. 5. Flowchart of BnB-NSGAII application.
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4 Numerical Experiment

NSGAII and BnB-NSGAII with and without the legacy feature were tested on the 3SR problem.
Each method was run 10 times. The test was done using the same parameters for the 3 solvers.
Table 1 shows the parameters used in this experiment.

4.1 Results and Discussion

In this experiment, the evaluation of the performance of each method is limited to how many times
the method finds at least 1 feasible solution over the 10 runs. Figure 6(a) shows the number of times
each method succeeded the test. It can be obviously concluded that BnB-NSGAII legacy method
overcomes the performances of NSGAII and BnB-NSGAII. It should be noted that the computa-
tional effort is not regarded since all the runs converge within 30 minutes. Which is considered an
acceptable time for such a problem.

(a) Number of converged runs (b) NSGAII

(c) BnB-NSGAII (d) BnB-NSGAII Legacy

Fig. 6. Explored domain by (b) NSGAII, (b) BnB-NSGAII and (d) BnB-NSGAII legacy methods. Feasible
and infeasible individuals are plotted in green and red respectively.
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Figure 6(b) shows that NSGAII explored local space of the domain depending on the initial
population. While Figure 6(c) shows that BnB-NSGAII explored random spaces of the domain.
Figure 6(d) shows that the legacy feature guides the exploration force of BnB-NSGAII towards the
feasible solutions.

5 Conclusion

The 3 stage reducer problem is a point of interest of many researchers, either to use/ enhance it
for engineering applications, or to examine the performance of optimization methods. The 3SR
problem is desirable for such experiments for its complexity.

The 3SR problem was reformulated to a bi-objective problem in this paper to demonstrate
a proposed application of BnB-NSGAII. The proposed application is to use BnB-NSGAII as an
initiator of NSGAII, where BnB-NSGAII initially seeks feasible individuals before injecting them
into the initial population of NSGAII.

BnB-NSGAII was enhanced by adding the legacy feature. The legacy feature is a generic feature
that can be implemented in any branch and bound algorithm. Any parameter that is tuned during
the node solving process could be the legacy. In this paper, the legacy was the last population in
the father node in BnB-NSGAII. The latter was then used to initialize the child node.

The performances of NSGAII and BnB-NSGAII with and without the legacy feature were tested
on the bi-objective version of the 3SR problem. Results show that the legacy feature guides the
exploration force of BnB-NSGAII leading it to a better solution than that obtained by NSGAII
and BnB-NSGAII.
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A 3SR Problem Constraints

A.1 Closure condition

Interference and fitting constraints are adopted from [5]. In [4], the closure condition was expressed
with the distance between the terminal point O3 shown in Figure 2 and required position of the
center of the output shaft. The coordinate of O3 can be easily compute with the center distance of
each stage and the angle ξ1, ξ2 and ξ3. But, if we consider that center distance of each stage allow
this closure condition, we can compute the value of ξ2 and ξ3. By this way can reduce he number
of variables in the optimization problem.

For a given value of ξ1 and r1,1, r1,2, center distance of each stage allow a closure if we have :

‖ ~O1O3‖ ≤ ‖ ~O1O2‖+ ‖ ~O2O3‖

Assuming the previous condition is true, we can compute the two intersection of circle of center O1
of ‖ ~O1O2‖ radius and circle of center O3 of ‖ ~O2O3‖ radius.

With a2 = ‖ ~O1O2‖ and a3 = ‖ ~O2O3‖ we have :{
a2 sinα1 − a3 sinα3 = 0
a2 cosα1 + a3 cosα3 = ‖ ~O1O3‖

which give :

cosα1 = O1H

O1O2
= a2

2 − a2
3 + (O1O3)2

2a2O1O3
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Fig. 7.

Knowing α1, computation of coordinate of O2 and O′

2 is straightforward. if the two position O2
and O′

2 allow the wheel of the 2nd stage to fit in the casing box, then O′

2 is preferred for lubrication
reason.

A.2 Mechanical constraint for one stage of the mechanism

Constraints related to the gear pair Following the recommendation from International Stan-
dard ISO 6336, [6],[7],[8] we can calculate, knowing the geometry of gear pair, the material and the
working conditions the contact and σH the bending stress σF in the gear pair. These stresses must
be less of equal to the respective permissible value σHP and σFP, depending on the material and
the working conditions.

From [8] the bending stress σF is given by (1 for the pinion and 2 for the wheel)::

σF(1,2) = σF0 (KAKVKFαKFβ)

with σF0(1,2), the nominal tooth stress :

σF0(1,2) = Ft
bmn

(YFYSYβYBYDT)

where :

– Ft : is the tangential load from [6].
– b : is the facewidth.
– mn : is the normal module.

Factors KA, KV, KFα, KFβ are related to dynamic ad loading conditions in the gear. Factors
YF, YS, Yβ , YB, YDT are related to the geometry effect on stress.

From [8], the permissible bending stress σFP is given by :

σFP = σFLim

SFmin
(YSTYNTYδrelTYRrelTYX)

with σFLim is the nominal stress number (bending) from reference test gears [9] and SFmin the
minimal required safety factor. Factors YST, YNT, YδrelT, YRrelT, YX are related to the reference test
gears and the geometry and material conditions of the gear pair.
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From [7] the contact stress is given by (1 for the pinion and 2 for the wheel):

σH(1,2) = Z(B,D)σH0
√
KAKVKHαKHβ

with σH0 is the nominal contact stress :

σH0 = (ZHZEZεZβ)
√

Ft
bd1

u+ 1
u

Factors ZH, ZE ,Zε, Zβ are related to the Hertzian theory of contact, and take into account geometry
and material in the gear pair.

From [7] the permissible contact stress σHP is :

σHP = σHLim

SHmin
(ZNTZLZVZRZWZX)

with σHLim is the allowable contact stress number and SHmin is the minimum required safety factor
for surface durability. Factors ZNT, ZL, ZV, ZR ,ZW, ZX are related to lubrication conditions,
surface roughness and hardened conditions and size of the tooth.

So to respect the requirement specification of a given power to be transmitted, the gear pair
must respect :

σF(1,2) ≤ σFP

σH(1,2) ≤ σHP

Considering that σF is proportional to Ft and σH is proportional to
√
Ft for a given gear pair, we

can rewrite these 2 conditions with Pt the power to be transmitted :
σFP

σF(1,2)
Pt ≥ Pt(

σHP

σH(1,2)

)2
Pt ≥ Pt

Usually, some factors are slightly for the pinion and the wheel so transmitted power is different for
the pinion (1) and the wheel (2). We will keep the minimal value.

So finally, for the stage number s on the reducer, the following conditions must be fulfilled :

min
(

σFPs

σF(1,2)s

)
Pt ≥ Pt (6)

min
(

σHPs

σH(1,2)s

)2
Pt ≥ Pt (7)

Following condition must be respected :
– For the transverse contact ratio : εα ≥ 1.3.
– For the minimal face width : b ≥ 0.1d2
– For the maximal face width : b ≤ d1

In order to use pinion with at least Zmin = 14 teeth, the value of the profile shift coefficient
must be adjusted to avoid gear meshing with the relation :

Zmin ≥
2(1− x1)

sinα2
n
⇒ x1 ≥ 1− Zmin

sinα2
n

2 ⇒ x1 ≥ 0.1812
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Constraint related to shaft’s reducer In each of the 4 shafts of the mechanism, the transmitted
torque produce shear stress. This stress must not exceed the allowable shear of the material of shafts
τmax. We assume here that all the shaft are using the same steel and that all shaft can be consider
as beam. So, with ra,0, the radius of input shaft, and ra,s, s = 1 . . . 3 the radius of output shaft of
the three stages, we have :

τs = 2Cs
πra,s3 ≤ τmax for s = 1 . . . 3 (8)

Cs is the output torque of each stage and Ce the torque on the input shaft, where Zi,1 and Zi,2 are
the number of teeth for pinion (1) and wheel (2) of stage number i:

Cs = Ce

i=s∏
i=1

Zi,2
Zi,1

For the input shaft we have :
τ0 = 2Ce

πra,03 ≤ τmax (9)

The total rotation angle between the initial section of the input shaft and the final section of the
output shaft is :

θ = 2Cela,0
Gπra,03 +

s=3∑
s=1

2Csla,s
Gπra,s3

For some reasons (dynamic behaviour of the reducer, ...) this total rotation angle should be limited
by a maximal value θmax.

θ ≤ θmax (10)
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