Skip to main content

Semantic Interoperability for Multiagent Simulation and Decision Support in Power Systems

  • Conference paper
  • First Online:
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection (PAAMS 2021)

Abstract

Electricity markets are complex and dynamic environments with very particular characteristics. Ambitious goals, including those set by the European Union, foster the increased use of distributed generation, essentially based on renewable energy sources. This requires major changes in electricity markets and energy systems, namely through the adoption of the smart grid paradigm. The use of simulation tools and the study of different market mechanisms and the relationships between their stakeholders are essential. One of the main challenges in this area is developing decision support tools to address the problem as a whole. This work contributes to increasing interoperability between heterogeneous systems, namely agent-based, directed to the study of electricity markets, the operation of smart grid, and energy management. To this end, this work proposes the use of ontologies to ease the interaction between entities of different natures and the use of semantic web technologies to develop more intelligent and flexible tools. A multiagent systems society, composed of several heterogeneous multiagent systems, which interact using the proposed ontologies, is presented as a proof-of-concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://itea3.org/project/seas.html.

  2. 2.

    https://www.w3.org/wiki/RdfSyntax.

  3. 3.

    https://www.w3.org/TR/ld-bp/.

  4. 4.

    https://www.modbus.org/.

  5. 5.

    https://www.w3.org/Submission/OWL-S/.

  6. 6.

    http://www.gecad.isep.ipp.pt/AAMAS2021-Tutorial-CPMAS/mascd/1.0/register-brp.ttl.

  7. 7.

    http://www.gecad.isep.ipp.pt/AAMAS2021-Tutorial-CPMAS/mascd/1.0/energy-balance.ttl.

References

  1. Sharma, K.C., Bhakar, R., Tiwari, H.P.: Strategic bidding for wind power producers in electricity markets. Energy Convers. Manag. 86, 259–267 (2014). https://doi.org/10.1016/j.enconman.2014.05.002

    Article  Google Scholar 

  2. Gencer, B., Larsen, E.R., van Ackere, A.: Understanding the coevolution of electricity markets and regulation. Energy Policy 143, 111585 (2020). https://doi.org/10.1016/j.enpol.2020.111585

    Article  Google Scholar 

  3. European Commission: 2020 climate & energy package—Climate action. https://ec.europa.eu/clima/policies/strategies/2020_en

  4. European Parliament: REGULATION (EU) 2019/943 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL - of 5 June 2019 - on the internal market for electricity (2019)

    Google Scholar 

  5. Lund, H.: Renewable Energy Systems - A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions. Academic Press, Cambridge (2014)

    Google Scholar 

  6. Gangale, F., Vasiljevska, J., Covrig, C.F., Mengolini, A., Fulli, G.: Smart grid projects outlook 2017: facts, figures and trends in Europe (2017). https://doi.org/10.2760/15583

  7. APX: Italian Borders Successfully Coupled (2015)

    Google Scholar 

  8. Santos, G., et al.: Multi-agent simulation of competitive electricity markets: autonomous systems cooperation for European market modeling. Energy Convers. Manag. 99, 387–399 (2015). https://doi.org/10.1016/j.enconman.2015.04.042

    Article  Google Scholar 

  9. Santos, G., Pinto, T., Praça, I., Vale, Z.: MASCEM: optimizing the performance of a multi-agent system. Energy 111, 513–524 (2016). https://doi.org/10.1016/j.energy.2016.05.127

    Article  Google Scholar 

  10. Li, H., Tesfatsion, L.: Development of open source software for power market research: the AMES test bed. Iowa State University, Department of Economics. Staff General Research Papers 2 (2009). https://doi.org/10.21314/JEM.2009.020

  11. Thimmapuram, P., Veselka, T.D., Koritarov, V., Vilela, S., Pereira, R., Silva, R.F.: Modeling hydro power plants in deregulated electricity markets: integration and application of EMCAS and VALORAGUA. In: 2008 5th International Conference on the European Electricity Market, EEM (2008). https://doi.org/10.1109/EEM.2008.4579096

  12. den Hartog, F., Daniele, L., Roes, J., IEEE: Toward semantic interoperability of energy using and producing appliances in residential environments. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference, pp. 170–175 (2015)

    Google Scholar 

  13. Doǧdu, E., et al.: Ontology-centric data modelling and decision support in smart grid applications a distribution service operator perspective. In: 2014 IEEE International Conference on Intelligent Energy and Power Systems, IEPS 2014 - Conference Proceedings, pp. 198–203 (2014). https://doi.org/10.1109/IEPS.2014.6874179

  14. Ravikumar, G., Khaparde, S.A.: A common information model oriented graph database framework for power systems. IEEE Trans. Power Syst. 32, 2560–2569 (2017). https://doi.org/10.1109/TPWRS.2016.2631242

    Article  Google Scholar 

  15. Pinto, T., Vale, Z.: AID-EM: adaptive decision support for electricity markets negotiations. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 6563–6565. International Joint Conferences on Artificial Intelligence (2019). https://doi.org/10.24963/ijcai.2019/957

  16. Gomes, L., Faria, P., Morais, H., Vale, Z., Ramos, C.: Distributed, agent-based intelligent system for demand response program simulation in smart grids. IEEE Intell. Syst. 29, 56–65 (2014). https://doi.org/10.1109/MIS.2013.2

    Article  Google Scholar 

  17. Praça, I., Ramos, C., Vale, Z., Cordeiro, M.: MASCEM: a multiagent system that simulates competitive electricity markets (2003). https://doi.org/10.1109/MIS.2003.1249170

  18. Oliveira, P., Pinto, T., Morais, H., Vale, Z.: MASGriP—A multi-agent smart grid simulation platform. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8 (2012). https://doi.org/10.1109/PESGM.2012.6345649

  19. Pinto, T., Sousa, T.M., Praça, I., Vale, Z., Morais, H.: Support Vector Machines for decision support in electricity markets’ strategic bidding. Neurocomputing 172, 438–445 (2016). https://doi.org/10.1016/j.neucom.2015.03.102

    Article  Google Scholar 

  20. Pinto, T., Praça, I., Vale, Z., Morais, H., Sousa, T.M.: Strategic bidding in electricity markets: an agent-based simulator with game theory for scenario analysis. Integr. Comput. Aided. Eng. 20, 335–346 (2013). https://doi.org/10.3233/ICA-130438

    Article  Google Scholar 

  21. Foundation for Intelligent Physical Agents: Welcome to the Foundation for Intelligent Physical Agents. http://www.fipa.org/

  22. Santos, G., Pinto, T., Vale, Z., Praça, I., Morais, H.: Electricity markets ontology to support MASCEM’s simulations. In: Bajo, J., et al. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 393–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39387-2_33

    Chapter  Google Scholar 

  23. Lefrançois, M., Kalaoja, J., Ghariani, T., Zimmermann, A.: SEAS knowledge model (2016)

    Google Scholar 

  24. Lefrançois, M.: Planned ETSI SAREF extensions based on the W3C&OGC SOSA/SSN-compatible SEAS ontology patterns. In: CEUR Workshop Proceedings, Amsterdam, Netherlands, p. 11p (2017)

    Google Scholar 

  25. Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the Smart Appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21545-7_9

    Chapter  Google Scholar 

  26. Daniele, L., Solanki, M., den Hartog, F., Roes, J.: Interoperability for smart appliances in the IoT world. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 21–29. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_3

    Chapter  Google Scholar 

  27. Pinto, T., Santos, G., Vale, Z.: Practical application of a multi-agent systems society for energy management and control: demonstration. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Montreal QC, Canada, pp. 2378–2380 (2019)

    Google Scholar 

  28. Canito, A., Santos, G., Corchado, J.M., Marreiros, G., Vale, Z.: Semantic web services for multi-agent systems interoperability. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 606–616. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30244-3_50

    Chapter  Google Scholar 

  29. Santos, G., et al.: Semantic services catalog: demonstration of multiagent systems society co-simulation (2021). https://doi.org/10.5281/ZENODO.4717828

  30. Teixeira, B., Pinto, T., Silva, F., Santos, G., Praça, I., Vale, Z.: Multi-agent decision support tool to enable interoperability among heterogeneous energy systems. Appl. Sci. 8, 328 (2018). https://doi.org/10.3390/app8030328

    Article  Google Scholar 

  31. Teixeira, B., Santos, G., Pinto, T., Vale, Z., Corchado, J.M.: Application ontology for multi-agent and web-services’ co-simulation in power and energy systems. IEEE Access 8, 81129–81141 (2020). https://doi.org/10.1109/ACCESS.2020.2991010

    Article  Google Scholar 

  32. Santos, G., Vale, Z., Faria, P., Gomes, L.: BRICKS: building’s reasoning for intelligent control knowledge-based system. Sustain. Cities Soc. 52, 101832 (2020). https://doi.org/10.1016/j.scs.2019.101832

    Article  Google Scholar 

  33. Santos, G., Faria, P., Vale, Z., Pinto, T., Corchado, J.M.: Constrained generation bids in local electricity markets: a semantic approach. Energies 13, 3990 (2020). https://doi.org/10.3390/en13153990

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Fundação para a Ciência e a Tecnologia (FCT) through the Ph.D. studentship SFRH/BD/118487/2016 and the project CEECIND/01811/2017.

Funding

This work was supported by the MAS-Society Project co-funded by Portugal 2020 Fundo Europeu de Desenvolvimento Regional (FEDER) through PO CI and under grant UIDB/00760/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, G., Pinto, T., Vale, Z., Corchado, J.M. (2021). Semantic Interoperability for Multiagent Simulation and Decision Support in Power Systems. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds) Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Communications in Computer and Information Science, vol 1472. Springer, Cham. https://doi.org/10.1007/978-3-030-85710-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85710-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85709-7

  • Online ISBN: 978-3-030-85710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics