Skip to main content

Abstract

In recent years several applications, namely in surveillance, human-computer interaction and video recovery based on its content has studied the detection and recognition of violence [22]. The purpose of violence detection is to automatically and effectively determine whether or not violence occurs in a short time. So, it is a crucial area since it will automatically enable the necessary means to stop the violence. To quickly solve this problem, we used models trained to solve general activity recognition problems such as Kinetics-400 to learn to extract general patterns that are very important to detect violent behaviour in videos. Our approach consists of using a state of the art pre-trained model in general activity recognition tasks (e.g. Kinetics-400) and then fine-tuning it to violence detection. We applied this approach in two violence datasets and achieved state-of-the-art results using only four input frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034–3042 (2016)

    Google Scholar 

  2. Cai, Z., Neher, H., Vats, K., Clausi, D.A., Zelek, J.: Temporal hockey action recognition via pose and optical flows. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  3. Carneiro, D., Novais, P., Durães, D., Pego, J.M., Sousa, N.: Predicting completion time in high-stakes exams. Future Gener. Comput. Syst. 92, 549–559 (2019)

    Article  Google Scholar 

  4. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600. arXiv preprint arXiv:1808.01340 (2018)

  5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  6. Cheng, M., Cai, K., Li, M.: Rwf-2000: An open large scale video database for violence detection. arXiv preprint arXiv:1911.05913 (2019)

  7. De Souza, F.D., Chavez, G.C., do Valle Jr, E. A., Araújo, A.D. A.: Violence detection in video using spatio-temporal features. In: 2010 23rd SIB-GRAPI Conference on Graphics, Patterns and Images, pp. 224–230. IEEE (2010)

    Google Scholar 

  8. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Durães, D., Marcondes, F.S., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: Detection violent behaviors: a survey. In: Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P. (eds.) ISAmI 2020. AISC, vol. 1239, pp. 106–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58356-9_11

    Chapter  Google Scholar 

  10. Feichtenhofer, C.: X3d: expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  12. Gao, Y., Liu, H., Sun, X., Wang, C., Liu, Y.: Violence detection using oriented violent flows. Image Vis. Comput. 48, 37–41 (2016)

    Article  Google Scholar 

  13. Gu, C., et al.: Ava: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6047–6056 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Kay, W., et al. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  16. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  17. Mabrouk, A.B., Zagrouba, E.: Spatio-temporal feature using optical flow based distribution for violence detection. Pattern Recogn. Lett. 92, 62–67 (2017)

    Article  Google Scholar 

  18. Marcondes, F.S., Durães, D., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: In-vehicle violence detection in carpooling: a brief survey towards a general surveillance system. In: Dong, Y., Herrera-Viedma, E., Matsui, K., Omatsu, S., González Briones, A., Rodríguez González, S. (eds.) DCAI 2020. AISC, vol. 1237, pp. 211–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53036-5_23

    Chapter  Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  20. Ribeiro, P.C., Audigier, R., Pham, Q.C.: Rimoc, a feature to discriminate unstructured motions: application to violence detection for video-surveillance. Comput. Vis. Image Underst. 144, 121–143 (2016)

    Article  Google Scholar 

  21. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3202–3212 (2015)

    Google Scholar 

  22. Roman, D.G.C., Chávez, G.C.: Violence detection and localization in surveillance video. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 248–255. IEEE (2020)

    Google Scholar 

  23. Sargano, A.B., Wang, X., Angelov, P., Habib, Z.: Human action recognition using transfer learning with deep representations. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 463–469. IEEE (2017)

    Google Scholar 

  24. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops, pp. 806–813 (2014)

    Google Scholar 

  25. Soliman, M.M., Kamal, M.H., Nashed, M.A.E.-M., Mostafa, Y.M., Chawky, B.S., Khattab, D.: Violence recognition from videos using deep learning techniques. In: 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 80–85. IEEE (2019)

    Google Scholar 

  26. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  27. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_11

    Chapter  Google Scholar 

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  29. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018)

    Google Scholar 

  30. Zhou, P., Ding, Q., Luo, H., Hou, X.: Violent interaction detection in video based on deep learning. In: Journal of Physics: Conference Series, vol. 844, p. 012044. IOP Publishing (2017)

    Google Scholar 

  31. Zhou, P., Ding, Q., Luo, H., Hou, X.: Violence detection in surveillance video using low-level features. PLoS one 13(10), e0203668 (2018)

    Google Scholar 

Download references

Acknowledgment

This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n\(\circ \) 039334; Funding Reference: POCI-01–0247-FEDER- 039334].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila Durães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, F., Durães, D., Marcondes, F.S., Lange, S., Machado, J., Novais, P. (2021). Efficient Violence Detection Using Transfer Learning. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds) Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Communications in Computer and Information Science, vol 1472. Springer, Cham. https://doi.org/10.1007/978-3-030-85710-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85710-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85709-7

  • Online ISBN: 978-3-030-85710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics